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Considering the impacts of white noise, Holling-type II functional response, and regime switching, we formulate a stochastic
predator-prey model in this paper. By constructing some suitable functionals, we establish the sufficient criteria of the stationary
distribution and stochastic permanence. By numerical simulations, we illustrate the results and analyze the influence of regime
switching on the dynamics.

1. Introduction

Functional responses are very important in the predator-
prey system, which is the amount of prey catch per predator
per unit of time and has significant effect on the dynamical
properties. Usually there are two kinds of functional re-
sponse: prey dependent (such as Holling II and Holling IV,
see [1–3]) and predator dependent (such as Hassell–Varley,
Beddington–DeAngelis, and Crowley–Martin, see [4, 5]).
Recently, a number of researchers have devoted their efforts
to the predator-prey system with functional response and
obtained some nice results [1–7].

For the ecological system, the growth rate of population
is inevitably affected by environmental white noise, which
almost exists everywhere in real world [8–10]. May reveals
that due to stochastic fluctuations in environmental con-
ditions, all the natural parameters exhibit a certain amount
of random perturbations, and hence, random disturbance is
introduced in many mathematical models to reveal the effect
of white noise [10–15]. Besides the white noise, the growth of
species also suffers from fluctuating environments such as
hurricanes and earthquakes, which is described by colorful
noise in mathematical modelling [16–18]. /e colorful noise
may take several values and switch among different regimes
of environments. /e switching is memoryless, and the

waiting time for the next switching follows an exponential
distribution./at is, in mathematical sense, it is aMarkovian
process. Actually, when the environments fluctuate fre-
quently, colorful noise may bring great influence to pop-
ulation dynamics and even change the permanence and
extinction of species, so the impacts of colorful noise on
population dynamics have attracted many researchers, see,
e.g., [19–22].

Motivated by above discussion, in this article, we for-
mulate a stochastic model with Holling-type II functional
response and colorful noise. By stochastic analysis, we aim to
study the stability in distribution and stochastic permanence
of the system.

/e rest of this paper is structured as follows. Section 2
begins with our model and some notations. Section 3 is
devoted to the stability in distribution of the above system.
Section 4 focuses on the stochastic permanence. Some ex-
amples are given to illustrate our main results in Section 5.
Finally, a brief conclusion and discussion are given to end
the paper in Section 6.

2. The Model and Notations

Hsu and Huang [6] proposed the following predator-prey
model with Holling-type II functional response:
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dx(t) � x(t) r1 − b1x(t) −
c1y(t)

1 + x(t)
􏼠 􏼡dt + σ1x(t)dB1(t),

dy(t) � y(t) − r2 − b2y(t) +
c2x(t)

1 + x(t)
􏼠 􏼡dt + σ2y(t)dB2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where r1 > 0 and − r2 < 0 represent the birth rate of prey and
death rate of predator, respectively; b1 and b2 are intra-
specific competition rate between species; c1 > 0 is the

capture rate, and c2 > 0 is the conversion rate of food; σ2i (i �

1, 2) denotes the density of white noise; (y(t)/1 + x(t)) is
the Holling-type II functional response. B1(t) and B2(t) are
independent standard Brownian motions defined on the
probability space (Ω,F, Ft􏼈 􏼉t≥ 0, P) with a filtration
Ft􏼈 􏼉t≥ 0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all p-null set). In view of the
impact of regime switching (colorful noise) analyzed before,
system (1) turns to the following:

dx(t) � x(t) r1(α(t)) − b1(α(t))x(t) −
c1(α(t))y(t)

1 + x(t)
􏼠 􏼡dt + σ1(α(t))x(t)dB1(t),

dy(t) � y(t) − r2(α(t)) − b2(α(t))y(t) +
c2(α(t))x(t)

1 + x(t)
􏼠 􏼡dt + σ2(α(t))y(t)dB2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

/e regime switching α(t) is a Markovian chain in a
finite state space S � 1, 2, . . . , N{ }. /e generator of α(t) is
defined as χ � (χij)N×N with

P α(t + ϵ � j|α(t) � i􏼈 􏼉 �
χijϵ + o(ϵ), i≠ j,

1 + χiiϵ + o(ϵ), i � j,
􏼨 (3)

where ϵ> 0, χij is the transition rate from the ith stage to the
jth stage and χij ≥ 0 if i≠ j while χii � − 􏽐i≠jχij. It is often

assumed that every sample of α(t) is a right continuous step
function and irreducible with a finite simple jumps in any
finite subinterval of R+ � [0,∞). It obeys a unique sta-
tionary distribution π � (π1, π2, . . . , πN) satisfying πχ � 0
and 􏽐

N
k�1 πk � 1, πk > 0, ∀k ∈ S. /e detailed switching

mechanism of the hybrid system is referred to [19, 23].
Let u(t) � lnx(t), v(t) � lny(t), then system (2) is

equivalent to the following model:

du(t) � r1(α(t)) −
σ21(α(t))

2
− b1(α(t))e

u(t)
−

c1(α(t))e
v(t)

1 + e
u(t)

􏼠 􏼡dt + σ1(α(t))dB1(t),

dv(t) � − r2(α(t)) −
σ22(α(t))

2
− b2(α(t))e

v(t)
−

c2(α(t))e
u(t)

1 + e
u(t)

􏼠 􏼡dt + σ2(α(t))dB2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

For the later discuss, we introduce some notations about
the Itô’s integral for stochastic differential equations with
Markovian switching [19, 22]. Let

dx(t) � f(x(t), t, α(t))dt + g(x(t), t, α(t))dB(t), (5)

where f: R2 × R+ × S⟶ R2, g: R2 × R+ × S⟶ R2×2 are
measurable functions. Let V ∈ C2,1(R2 × R+ × S, R2). Define
the operator LV as follows:

LV(x, t, k) � Vt(x, t, k) + Vx(x, t, k)f(x, t, k)

+
1
2
trace g

T
(x, t, k)Vxx(x, t, k)g(x, t, k)􏽨 􏽩 + 􏽘

N

j�1

χkjV(x, t, j),

(6)

where Vt(x, t, k) � (zV(x, t, k)/zt), Vx(x, t, k) � ((zV

(x, t, k)/zx1), (zV(x, t, k)/zx2)), and Vxx(x, t, k) �

(z2V(x, t, k)/zxizxj)2×2, i, j � 1, 2.

2 Journal of Mathematics



/e generalized Itô’s formula is defined as

dV(x, t, k) � LV(x, t, k)dt + Vx(x, t, k)g(x, t, k)dB(t).

(7)

Lemma 1 (see [21]). If the following conditions hold.

(i) For i≠ j, χij > 0.
(ii) For each k ∈ S and any

ς ∈ R2, ϱ|ς|2 ≤ ςTg(x, t, k)gT(x, t, k)ς≤ ϱ− 1|ς|2 holds
with ϱ ∈ (0, 1] for all x ∈ R2.

(iii) 2ere exists a bounded open subset D ⊂ R2 with a
regular boundary (i.e., smooth) such that, for any
k ∈ S, there exists a nonnegative function
V(·, k): DC⟶ R satisfying V(·, k) is twice con-
tinuously differentiable and for some ϵ> 0,

LV(x, k)≤ − ε, for any (x, k) ∈ D
C

× S. (8)

/en, (5) is ergodic and positive recurrent; that is, there
exists a unique stationary density μ(·, ·), for any Borel
measurable function f(·, ·): R2 × S⟶ R with
􏽐k∈S􏽒

R2 |f(x, k)|μ(x, k)dx<∞, we have

P lim
t⟶∞

1
t

􏽚
t

0
f(x(s), α(s))ds � 􏽘

k∈S
􏽚

R2
f(x, k)μ(x, k)dx⎛⎝ ⎞⎠ � 1.

(9)

About the existence and uniqueness of positive so-
lutions and the moment boundedness of (2), we have the
following two lemmas. /e proofs of them are very
standard and are omitted here. Readers may refer to
[3, 21].

Lemma 2. 2ere is a unique positive solution
(x(t), y(t), α(t)) for system (2) on t≥ 0 with initial value
(x(0), y(0), α(0)) ∈ R2

+ × S, and the solution will remain in
R2

+ × S with probability 1.

Lemma 3. For any initial value (x(0), y(0), α(0)) ∈ R2
+ × S

and any p> 0, there exists a constant K(p) such that the
solution (x(t), y(t), α(t)) for system (2) satisfying
E(x(t) + y(t))p ≤K(p) for all t≥ 0.

For simplicity, we give some notations as follows:

Πi(k) � ri(k) −
σ2i (k)

2
, i � 1, 2,

Πi � 􏽘
k∈S

πkΠi(k), i � 1, 2,

σ � max
k∈S

σ1(k), σ2(k)􏼈 􏼉,

Π(k) � min Π1(k),Π2(k)􏼈 􏼉,

Π � 􏽘
k∈S

πkΠ(k),

􏽢f � max
k∈S

f(k),

f
⌣

� max
k∈S

f(k).

(10)

3. Stationary Distribution

In this section, we discuss the stationary distribution of (2).

Theorem 1. For any initial value (x(0), y(0), α(0)) ∈ R2
+ ×

S and any k ∈ S, the solution (x(t), y(t), α(t)) of (2) is
ergodic and has a unique stationary distribution in R2

+ × S if
the following condition holds:

ζ �
c
⌣

2

􏽢r1 + 􏽢b1
r
⌣

1 −
􏽢σ21
2

􏼠 􏼡 − 􏽢r2 −
􏽢σ22
2
> 0. (11)

Proof. According to the equivalent property of (2) and (4),
we only need to prove it for (4). Define
V1(t, u, v) � ((eu + pev)2/2), where p � (c

⌣

1/􏽢c2), and then
we have
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LV1 � e
u

+ pe
v

( 􏼁e
u

r1(α(t)) −
σ21(α(t))

2
− b1(α(t))e

u
−

c1(α(t))e
v

1 + e
u􏼠 􏼡

+ p e
u

+ pe
v

( 􏼁e
v

− r2(α(t)) −
σ22(α(t))

2
− b2(α(t))e

v
+

c2(α(t))e
v

1 + e
u􏼠 􏼡

+
σ21(α(t)

2
e
2u

+ e
u

e
u

+ pe
v

( 􏼁􏼐 􏼑 +
σ22(α(t)

2
p
2
e
2v

+ pe
v

e
u

+ pe
v

( 􏼁􏼐 􏼑

� e
u

+ pe
v

( 􏼁 e
u

r1(α(t)) −
σ21(α(t))

2
􏼠 􏼡 − b1(α(t))e

2u
−

c1(α(t))e
u+v

1 + e
u􏼢 􏼣

+ e
u

+ pe
v

( 􏼁 − pe
v

r2(α(t)) +
σ22(α(t))

2
􏼠 􏼡 − pb2(α(t))e

2v
+

pc2(α(t))e
u+v

1 + e
u􏼢 􏼣

+ e
u

+ pe
v

( 􏼁
σ21(α(t))

2
e

u
+
σ22(α(t))

2
pe

v
􏼠 􏼡 +

σ21(α(t))

2
e
2u

+
σ22(α(t))

2
p
2
e
2v

≤ e
u

+ pe
v

( 􏼁 e
u

r1(α(t)) −
σ21(α(t))

2
􏼠 􏼡 − b

⌣

1e
2u

− pe
v

r2(α(t)) +
σ22(α(t))

2
􏼠 􏼡􏼢

− pb
⌣

2e
2v

􏼕 +
e

u
+ pe

v
( 􏼁

2
σ21(α(t))e

u
+ pσ22(α(t))e

v
􏼐 􏼑 +

σ21(α(t))

2
e
2u

+
σ22(α(t))

2
p
2
e
2v ≤

≤ r1(k) −
σ21(k)

2
􏼠 􏼡 e

u
+ pe

v
( 􏼁e

u
− b

⌣

1e
3u

− p
2
b
⌣

2e
3v

+ σ21(α(t))e
2u

+ p
2σ22(α(t))e

2v

+
p σ21(k) + σ22(k)􏼐 􏼑

2
e

u+v ≤

−
b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ ϱ,

(12)

where

ϱ � sup
u,v∈R2

−
b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ r1(k) −
σ21(k)

2
􏼠 􏼡 e

u
+ pe

v
( 􏼁e

u
⎧⎨

⎩

+σ21(k)e
2u

+ p
2σ22(k)e

2v
+

p σ21(k) + σ22(k)􏼐 􏼑

2
e

u+v
⎫⎬

⎭.

(13)

On the other hand,

L(− v) � r2(α(t)) +
σ22(α(t))

2
+ b2(α(t))e

v
−

c2(α(t))e
u

1 + e
u

≤ r2(α(t)) +
σ22(α(t))

2
+ 􏽢b2e

v
−

c
⌣

2e
u

1 + e
u

≤ r2(k) +
σ22(k)

2
+ 􏽢b2e

v
−

c
⌣

2r1(k)

r1(k) + b1(k)

+
c
⌣

2

r1(k) + b1(k)

r1(k) − b1(k)e
u

1 + e
u .

(14)

Set 􏽥q � (( 􏽢c1 + 􏽢b2)/ �r2), and similarly we have
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L ln 1 + e
u

( 􏼁 − u + 􏽥qe
v

( 􏼁 �
e

u

1 + e
u r1(α(t)) −

σ21(α(t))

2
− b1(α(t))e

u
−

c1(α(t))e
v

1 + e
u􏼢 􏼣 +

σ21(α(t))

2

×
e

u

1 + e
u

( 􏼁
2 + − r1(α(t)) +

σ21(α(t))

2
+ b1(α(t))e

u
+

c1(α(t))e
v

1 + e
u􏼢 􏼣

+ 􏽥q e
v

− r2(α(t))( 􏼁 −
σ22(α(t))

2
− b2(α(t))e

v
+

c2(α(t))e
u

1 + e
u􏼠 􏼡 +

σ22(α(t))

2
e

v
􏼢 􏼣

�
e

u
r1 (α(t)) − b1(α(t))e

u
( 􏼁

1 + e
u −

c1(α(t))e
u+v

1 + e
u

( 􏼁
2 −

σ21(α(t))e
2u

􏼑

2 1 + e
u

( 􏼁
2

⎡⎣ ⎤⎦

+ − r1(α(t)) +
σ21(α(t))

2
+ b1(α(t))e

u
+

c1(α(t))e
v

1 + e
u􏼢 􏼣

+ 􏽥q − r2(α(t))e
v

− b2(α(t))e
2v

+
c2(α(t))e

u+v

1 + e
u 􏼡􏼢 􏼣

≤ r1(k) − b1(k)( 􏼁e
u

−
r1(k) − b1(k)e

u

1 + e
u􏼢 􏼣 − r1(k) +

σ21(k)

2
+ b1(k)e

u
+ c1(k)e

v

+ 􏽥q − r2(α(t))e
v

+ c2(k)e
u+v

􏼂 􏼃.

(15)

Define V2 � − v + (c
⌣

2/r1(α(t)) + b1(α(t)))(ln(1 + eu)−

u + 􏽥qev), and then

LV2 ≤ r2(α(t)) +
σ22(α(t))

2
+ 􏽢b2e

v
−

c
⌣

2r1(α(t))

r1(α(t)) + b1(α(t))
+

c
⌣

2

r1(α(t)) + b1(α(t))

r1(α(t)) − b1(α(t))e
u

1 + e
u

+
c
⌣

2

r1(α(t)) + b1(α(t))
r1(α(t)) − b1(α(t))( 􏼁e

u
−

r1(α(t)) − b1(α(t))e
u

1 + e
u􏼢 􏼣􏼨 − r1(α(t))

+
σ21(α(t))

2
+ b1(α(t))e

u
+ c1(α(t))e

v
+ 􏽥q − r2(α(t))e

v
+ c2(α(t))e

u+v
􏼂 􏼃􏼩

≤ r2(k) +
σ22 · (k)

2
−

c
⌣

2r1(k)

r1(k) + b1(k)
+

c
⌣

2

r1(k) + b1(k)

σ21(k)

2
+ 􏽥q􏽢c2e

u+v
􏼢 􏼣

≤ −
c
⌣

2

r1(k) + b1(k)
r1(k) −

σ21(k)

2
􏼠 􏼡 + r2(k) +

σ22(k)

2
+

c
⌣

2

􏽢r1 + 􏽢b1
􏽥q􏽢c2e

u+v

≤ − ζ + qe
u+v

,

(16)

where q � (c
⌣

2􏽢c2/􏽢r1 + 􏽢b1)􏽥q. Let V � V1 + MV2, where M �

(2/ζ) max􏼈2, sup(u,v)∈R2
+
(− (b

⌣

1/4)e3u − (p2b
⌣

2/4)e3v + ϱ)􏼉. It is
easy to observe that

LV � LV1 + MLV2 ≤ − Mζ + Mqe
u+v

−
b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ ϱ,

(17)

and

Mζ
4
≥ 1. (18)

Define a bounded closed set as follows:

U � (u, v): |u|≤ ln ε− 1
, |v|≤ ln ε− 1

, (u, v) ∈ R
2

􏽮 􏽯, (19)
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where ε is a sufficiently small number, and then the set UC �

(R2
+/U) contains the following four domains:

U
1
ε � (u, v) ∈ R

2
: − ∞≤ u≤ ln ε􏽮 􏽯,

U
2
ε � (u, v) ∈ R

2
: − ∞≤ v≤ ln ε􏽮 􏽯,

U
3
ε � (u, v) ∈ R

2
: u≥ ln ε− 1

􏽮 􏽯,

U
4
ε � (u, v) ∈ R

2
: v≥ ln ε− 1

􏽮 􏽯.

(20)

Take ε sufficiently small enough such that

0< ε<
ζ
4q

,

0< ε<
p
2
b
⌣

2

4Mq
,

0< ε<
b
⌣

1

4Mq
,

(21)

− Mζ −
b
⌣

1

4ε
+ η1 ≤ − 1,

− ζ −
p
2
b
⌣

2

4ε
+ η2 ≤ − 1,

(22)

where η1, η2 are defined later. Next, we verify LV(u, v)≤ − 1
for all (u, v) ∈ UC � U1

ε ∪U2
ε ∪U3

ε ∪U4
ε .

Case 1. If (u, v) ∈ U1
ε , namely, − ∞≤ u≤ lnε, then

eu+v ≤ εev ≤ ε(1 + e3v). By (17), (18), and (21), we have

LV≤ − Mζ + Mqεev
−

b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ ϱ

≤ − Mζ + Mqε + Mqεe3v
−

b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ ϱ

�
− Mζ
4

+
− Mζ
4

+ Mqε􏼠 􏼡 + −
p
2
b
⌣

2

4
+ Mqε⎛⎝ ⎞⎠e

3v
−

b
⌣

1

4
e
3u

+
− Mζ
2

−
p
2
b
⌣

2

4
e
3v

−
b
⌣

1

4
e
3u

+ ϱ⎛⎝ ⎞⎠

≤
− Mζ
4

+
− Mζ
4

+ Mqε􏼠 􏼡 + −
p
2
b
⌣

2

4
+ Mqε⎛⎝ ⎞⎠e

3v
−

b
⌣

1

4
e
3u

+
− Mζ
2

+ sup
(u,v)∈R2

+

−
p
2
b
⌣

2

4
e
3v

−
b
⌣

1

4
e
3u

+ ϱ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ − 1.

(23)
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Case 2. If (u, v) ∈ U2
ε , namely, − ∞≤ v≤ ln ε, then

eu+v ≤ εeu ≤ ε(1 + e3u), and similarly we have

LV≤ − Mζ + Mqεeu
−

b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ ϱ

≤
− Mζ
4

+
− Mζ
4

+ Mqε􏼠 􏼡 + −
b
⌣

1

4
+ Mqε⎛⎝ ⎞⎠e

3u
−

p
2
b
⌣

2

4
e
3v

+
− Mζ
2

+ sup
(u,v)∈R2

+

−
b
⌣

1

4
e
3u

−
p
2
b
⌣

2

4
e
3v

+ ϱ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ − 1.

(24)

Case 3. If (u, v) ∈ U3
ε , then we derive from (17) and (22) that

LV≤ − Mζ + Mqεeu
−

b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ ϱ

≤ − Mζ −
b
⌣

1

4ε
+ η1

≤ − 1,

(25)

where
η1 � sup(u,v)∈R2

+
(− (b

⌣

1/4)e3u − (p2b
⌣

2/2)e3v + Mqeu+v + ϱ).

Case 4. If (u, v) ∈ U4
ε , similarly, from (17) and (22) we have

LV≤ − Mζ + Mqεeu
−

b
⌣

1

2
e
3u

−
p
2
b
⌣

2

2
e
3v

+ ϱ

≤ − Mζ −
p
2
b
⌣

2

4ε
+ η2

≤ − 1,

(26)

where
η2 � sup(u,v)∈R2

+
(− (b

⌣

1/2)e3u − (p2b
⌣

2/4)e3v + Mqeu+v + ϱ).

Consequently, we deduce that LV(u, v)≤ − 1 on all
(u, v) ∈ UC. Obviously, the other condition of Lemma 1
holds too, so we conclude from Lemma 1 that system (4) is
ergodic and has a unique stationary distribution in R2

+ × S;
that is, system (2) is ergodic and has a unique stationary
distribution in R2

+ × S. /is completes the proof.
For (2), if the state Markovian chain α(t) takes value in

space S � 1{ }, namely, there is no switching, then (2) turns
to the following subsystem:

dx(t) � x(t) r1 − b1x(t) −
c1y(t)

1 + x(t)
􏼠 􏼡dt + σ1x(t)dB1(t),

dy(t) � y(t) − r2 − b2y(t) +
c2x(t)

1 + x(t)
􏼠 􏼡dt + σ2y(t)dB2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(27)

For (27), from /eorem 1, we can easily obtain the
following conclusion.

Corollary 1. For any initial value (x(0), y(0)) ∈ R2
+, the

solution (x(t), y(t)) of (27) is ergodic and has a unique
stationary distribution in R2

+ if the following condition holds:

􏽥ζ �
c2

r1 + b1
r1 −

σ21
2

􏼠 􏼡 − r2 −
σ22
2
> 0. (28)

Remark 1. It is clear that, for any positive integer
k,(c2(k)/r1(k) + b1(k))(r1(k) − (σ21(k)/2)) − r2(k) − (σ22(k)

/2)>(c
⌣

2/ 􏽢r1 + 􏽢b1)(r
⌣

1 − (􏽢σ21/2)) − 􏽢r2 − (􏽢σ22/2). /at is, /eo-
rem 1 shows that switching system (2) has stationary dis-
tribution only under the condition that every subsystem of
(2) has stationary distribution. If there exists no switching,
Corollary 1 gives the sufficient condition of stationary
distribution of (27), which is accordant with /eorem 1
of [3].

4. Stochastic Permanence

For (2), if we consider the birth rate instead of the death rate
of predator, then (2) turns to the following model:

dx(t) � x(t) r1(α(t)) − b1(α(t))x(t) −
c1(α(t))y(t)

1 + x(t)
􏼠 􏼡dt + σ1(α(t))x(t)dB1(t),

dy(t) � y(t) r2(α(t)) − b2(α(t))y(t) +
c2(α(t))x(t)

1 + x(t)
􏼠 􏼡dt + σ2(α(t))y(t)dB2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where r2(·)> 0 is the birth rate of species y(t) and other
parameters are the same as before. Now, we consider the
stochastic permanence of (29).

Definition 1. (see [16])System (29) is stochastically per-
manent if for every ε ∈ (0, 1) and any k ∈ S, there is a pair of
constants M> 0 and N> 0 such that for any initial data
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(x(0), y(0), α(0)) ∈ R2
+ × S, the solution

X(t) � (x(t), y(t)) of (29) has the property that

lim inf
t⟶∞

P |X(t)|≥M{ }≥ 1 − ε,

lim sup
t⟶∞

P |X(t)|≤N{ }≥ 1 − ε,
(30)

where P represents the probability of events.

Assumption 1. For some k ∈ S, χkj > 0, k≠ j.

Lemma 4. Under Assumption 1, if Π> 0, then there exists
δ0 > 0 such that for any
0< δ < δ0, G(δ) � diag(υ1(δ), υ2(δ), . . . , υN(δ)) − χ is a
nonsingular M-matrix, where υk(δ) � δΠ(k) − (1/2)δ2σ2.

Remark 2. /e proof is rather standard. Readers may refer
to the details in [24] or [21, 23].

Theorem 2. For any initial value
(x(0), y(0), α(0)) ∈ R2

+ × S, system (29) is stochastically
permanent under conditions of Lemma 3.

Proof. /e proof is motivated by [22]. Let G be a matrix or
vector, and denote by G≫ 0 all the elements of G are
positive. Under the hypotheses, Lemma 2 shows G(δ) is a
nonsingular M-matrix, and then by M-matrix theory (see
/eorem 2.1 [22]), there exists ρ � (ρ1, ρ2, . . . , ρN)T≫ 0
such that G(δ)ρ≫ 0, that is, ρkυk(δ) − 􏽐

N
j�1 χkjρj > 0, k ∈ S.

So, there exists a constant τ > 0 such that

ρkυk(δ) − 􏽘
N

j�1
χkjρj − τρk > 0, k ∈ S. (31)

Define functional V � ρk(1 + 􏽥V)δ, where
􏽥V � (1/(x + y)), then for above τ > 0, we compute τV + LV

as follows:

τV + LV � τρk(1 + 􏽥V)
δ

+ 􏽘
N

j�1
χkjρj(1 + 􏽥V)

δ
+ ρkδ(1 + 􏽥V)

δ− 1
− 􏽥V

2
􏼐 􏼑

× r1(α(t))x + r2(α(t))y − b1(α(t))x
2

− b2(α(t))y
2

+
c2(α(t)) − c1(α(t))

1 + x
xy􏼠 􏼡

+ ρkδ(1 + 􏽥V)
δ− 1 􏽥V

σ1(α(t))x + σ2(α(t))y

x + y
􏼠 􏼡

2

+
1
2
ρkδ(δ − 1)(1 + 􏽥V)

δ− 2
− 􏽥V

2 σ1(α(t))( 􏼁x − σ2((α(t))y)
2

􏼔 􏼕

� τρk(1 + 􏽥V)
δ

+ 􏽘
N

j�1
χkjρj(1 + 􏽥V)

δ
− ρkδ(1 + 􏽥V)

δ− 1 􏽥V
r1(α(t))x + r2(α(t))y

x + y

+ ρkδ(1 + 􏽥V)
δ− 1b1(α(t))x

2
+ b2(α(t))y

2
− c2(α(t)) − c1(α(t))( 􏼁/(1 + x)( 􏼁xy

(x + y)
2

+ ρkδ(1 + 􏽥V)
δ− 1 􏽥V

σ1(α(t))x + σ2(α(t))y

x + y
􏼠 􏼡

2

+
1
2
ρkδ(δ − 1)(1 + 􏽥V)

δ− 2 􏽥V
2 σ1(α(t))x + σ2(α(t))y

x + y
􏼠 􏼡

2

� 􏽥V
δ

f 􏽥V
δ

􏼒 􏼓􏼒 􏼓 + g(􏽥V),

(32)
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where limV⟶∞(g(􏽥V)/􏽥V
δ
) � 0, and

f 􏽥V
δ

􏼒 􏼓 � τρk + 􏽘
N

j�1
χkjρj − ρkδ

r1(α(t))x + r2(α(t))y

x + y
+ ρkδ

σ1(α(t))x + σ2(α(t))y

x + y
􏼠 􏼡

2

+
1
2
ρkδ(δ − 1)

σ1(α(t))x + σ2(α(t))y

x + y
􏼠 􏼡

2

≤ τρk + 􏽘
N

j�1
χkjρj − ρkδ

Π1(k)x

x + y
− ρkδ
Π2(k)y

x + y
+
ρkδ

2σ2

2

≤ τρk + 􏽘
N

j�1
χkjρj − ρkΠ(k)δ +

ρkδ
2σ2

2

� τρk + 􏽘
N

j�1
χkjρj − ρkυk(δ)

< 0.

(33)

By Ito’s formula, we have

L e
τt

V(t)􏼐 􏼑 � e
τt

(τV + LV)

≤ e
τt τρk − ρkυk(δ) + 􏽘

N

j�1
χkjρj

⎛⎝ ⎞⎠􏽥V
δ

+ o 􏽥V
δ

􏼒 􏼓⎛⎝ ⎞⎠

≤Y(δ)e
τt

,

(34)

where Y(δ) � (maxk∈Ssup􏽥V∈R2
+

((τρk − ρkυk(δ)+ 􏽐
N
j�1 χkjρj)

􏽥V
δ

+ o(􏽥V
δ
)), 1). Integrating d(eτtV(t)) from 0 to t and

taking expectation give

E ρke
τt

(1 + 􏽥V)
δ

􏽨 􏽩 − ρk(1 + 􏽥V(0))
δ ≤

Y(δ)

k
e
τt

− 1􏼐 􏼑. (35)

Hence,

E(1 + 􏽥V)
δ ≤

Y(δ)

kmink∈Sρk

+ e
− τt 1 +

1
x(0) + y(0)

􏼠 􏼡

δ

. (36)

Let H(δ) � (Y(δ)/kmink∈Sρk), then

lim sup
t⟶∞

E(x(t) + y(t))
− δ ≤H(δ). (37)

Since |X| � (x2 + y2)(1/2), then we deduce that
E|X|− δ ≤ 2(δ/2)H(δ), and hence,

P |X|<
�
2

√

2
ε

H(δ)
􏼠 􏼡

(1/δ)

� M
⎧⎨

⎩

⎫⎬

⎭ ≤
E|X|

− δ

M
− δ ≤

2(δ/2)
H(δ)

2(δ/2)
(ε/H(δ))

− 1 � ε. (38)

/erefore, P |X|≥M{ }≥ 1 − ε holds. By Lemma 3, using
Chebyshev’s inequality again, it is clear that P |X|≤N{ }≥ 1 −

ε for some constant N. /erefore, (29) is stochastically
permanent by Definition 1. /e proof is completed.

Obviously, if there is no switching, we can similarly
obtain the following corollary.

Corollary 2. For any initial value (x(0), y(0)) ∈ R2
+, the

subsystem of (29) is stochastically permanent if
ri − (σ2i /2)> 0, i � 1, 2.

Remark 3. /eorem 2 reveals that when some subsystems of
(2) are no stochastic permanent, if we give a suitable

switching, then switching system (2) may be stochastic
permanent, which implies the switching has very important
influence to the dynamics of (2). By simulation, we can verify
it directly, see Figure 1.

5. Examples and Simulations

In this section, some examples are given to illustrate our
theoretical results and reveal the effects of regime switching
and stochastic factors [25]. For simplicity, we assume that
the continuous-time discrete state Markovian chain α(t)

takes value in the space S � 1, 2{ }, then system (2) reduces to
the following subsystems:

Journal of Mathematics 9



dx(t) � x(t) r1(1) − b1(1)x(t) −
c1(1)y(t)

1 + x(t)
􏼠 􏼡dt + σ1(1)x(t)dB1(t),

dy(t) � y(t) − r2(1) − b2(1)y(t) +
c2(1)x(t)

1 + x(t)
􏼠 􏼡dt + σ2(1)y(t)dB2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)

dx(t) � x(t) r1(2) − b1(2)x(t) −
c1(2)y(t)

1 + x(t)
􏼠 􏼡dt + σ1(2)x(t)dB1(t),

dy(t) � y(t) − r2(2) − b2(2)y(t) +
c2(2)x(t)

1 + x(t)
􏼠 􏼡dt + σ2(2)y(t)dB2(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)
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Figure 1: /e effect of switching π on the dynamics of (39) and (40). (a) /e nonstochastic permanence of (39) and (40) with π � (0.1, 0.9).
(b) /e stochastic permanence of (39) and (40) with π � (0.1, 0.9).
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Figure 2: (a) /e stationary distribution of system (39). (b) /e stationary distribution of system (40).
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Figure 3: Distribution of the switching α(t). (a) /e time series of α(t). (b) /e histogram of α(t).
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Figure 4: /e stationary distribution of switching systems (39) and (40) with π � (0.4, 0.6). (a) /e time series graph of (x(t) and y(t)). (b)
/e density graph of (x(t) and y(t)).
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Figure 5: /e stochastic permanence of (39) and (40) with π � (0.4, 0.6).
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We let r1(1) � 0.8, b1(1) � 0.2, c1(1) � 0.8, σ1(1) �

0.3; r2(1) � 0.5, b2(1) � 0.8, c2(1) � 1, σ2(1) � 0.4; r1 (2)

� 0.7, b1 (2) � 0.3, c1 (2) � 0.8, σ1(2) � 0.2; and r2 (2) �

0.4, b2 (2) � 0.3, c2 (2) � 1, σ2(1) � 0.4. By Corollary 1, we
know that (39) and (40) both have stationary distribution,
see Figure 2.

Suppose the distribution of α(t) is π � (0.4, 0.6) (see
Figure 3). It is easy to verify that ζ > 0. /eorem 1 implies
that (2) has stationary distribution, see Figure 4.

If r2(1) � − 0.2, r2(2) � − 0.3, and π � (0.4, 0.6), then
/eorem 2 shows that (39) and (40) are stochastic perma-
nence, see Figure 5.

If σ1(2) � 1.2, σ2(2) � 1, and π � (0.1, 0.9), then the
switching system is not stochastic permanence, but if we take
π � (0.9, 0.1), then the system is stochastic permanence,
which implies the switching is very important to make (39)
and (40) be permanent, see Figure 1.

6. Conclusions and Discussion

In this paper, we study a stochastic predator-prey system
with regime switching and Holling-type II functional
responses. /eorems 1 and 2 give the sufficient conditions
of stationary distribution and the stochastic permanence
of (2). Finally, some examples are given to verify the main
results. Our numerical examples reveal that switching and
random factors bring much influence to the dynamics of
this system.

By comparison analysis, we give Remarks 1 and 2 to
show that our main results improve or generalize the cor-
responding results in [3]. /e main method applied in this
paper is by constructing some suitable functionals instead of
stochastic analysis techniques to study the stationary dis-
tribution, which is less applied for switching system. In the
process of our analysis, Holling-type II functional response
brings some difficulties and we apply inequality techniques
to overcome them.

As Arditi and Ginzburg [23] pointed out that the
predator-dependent functional response can provide better
description in some cases, then how to deal with predator-
dependent functional response such as Bedding-
ton–DeAngelis type? Furthermore, studies have shown that
the mental state of the adolescent prey can be mediated by
fear induced from predators and the alternation causes
deleterious outcomes on their adult’s survival [24] and then
how fear will impact our system? All these are interesting for
us to study in the future.
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system with delays and Lévy jumps,” Advances in Differential
Equations, vol. 2018, p. 423, 2018.

[16] X. Mao and C. Yuan, Stochastic Differential Equations with
Markovian Switching, Imperial College Press, London, UK,
2006.

12 Journal of Mathematics



[17] Q. Luo and X. Mao, “Stochastic population dynamics under
regime switching,” Journal of Mathematical Analysis and
Applications, vol. 334, no. 1, pp. 69–84, 2007.

[18] L. Zu, D. Jiang, and D. O’Regan, “Conditions for persistence
and ergodicity of a stochastic Lotka-Volterra predator-prey
model with regime switching,” Communications in Nonlinear
Science and Numerical Simulation, vol. 29, no. 1–3, pp. 1–11,
2015.

[19] J. Bao and J. Shao, “Permanence and extinction of regime-
switching predator-prey models,” SIAM Journal on Mathe-
matical Analysis, vol. 48, no. 1, pp. 725–739, 2016.

[20] H. Chen, P. Shi, and C.-C. Lim, “Stability analysis for neutral
stochastic delay systems with Markovian switching,” Systems
& Control Letters, vol. 110, pp. 38–48, 2017.

[21] M. Liu, X. He, and J. Yu, “Dynamics of a stochastic regime-
switching predator-prey model with harvesting and distrib-
uted delays,” Nonlinear Analysis: Hybrid Systems, vol. 28,
pp. 87–104, 2018.

[22] S. Wang, L. Wang, and T. Wei, “Permanence and asymptotic
behaviors of stochastic predator-prey system with Markovian
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