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In this article, we introduce cyclic relatively nonexpansive mappings with respect to orbits and prove that every cyclic relatively
nonexpansive mapping with respect to orbits T satisfying T(A)⊆B, T(B)⊆A has a best proximity point. We also prove that Mann’s
iteration process for a noncyclic relatively nonexpansive mapping with respect to orbits converges to a fixed point. (ese relatively
nonexpansive mappings with respect to orbits need not be continuous. Some illustrations are given in support of our results.

1. Introduction and Preliminaries

In the year 1948, Brodskĭı et al. [1] introduced a geometrical
property known as the normal structure to study the existence
of a common fixed point for a family of isometry mappings. In
[2], Kirk used a geometrical notion, namely, normal structure
for a nonempty bounded closed and convex subset K of a
reflexive Banach spaceX, thereby getting the existence of a fixed
point for a mapping that does not increase distance (a non-
expansivemapping). Let (G, H) be a pair of subsets in a Banach
space X. A mapping T: G∪H⟶ G∪H is said to be a
relatively nonexpansive mapping if T(G)⊆H, T(H)⊆G (or
T(G)⊆G, T(H)⊆H) and ‖Tu − Tv‖≤ ‖u − v‖, for
u ∈ G, v ∈ H. IfG � H, thenT is a nonexpansive self-mapping.
In the year 2005, Eldred et al. [3] introduced a geometrical
notion called proximal normal structure, for a nonempty,
convex weakly compact pair (G, H), in order to study the
existence of a fixed point (the best proximity point) for relatively
nonexpansivemappings under suitable assumptions.Motivated
by Harandi et al. [4], in the year 2020, Gabeleh et al. [5] in-
troduced a notion called noncyclic relatively nonexpansive
mapping with respect to orbits T satisfying T(G)⊆G, T(H)⊆H
and showed the existence of a fixed point (best proximity point)
under certain assumptions. In the setting of Banach spaces, the
existence of fixed point and best proximity point theorems,

respectively, for nonexpansive and relatively nonexpansive
mappings has been extensively studied by many authors (see
[3, 5–8]). For more exciting results about the best proximity
point for contraction and multivalued mappings studied by
many authors, see [9–12]. For any pair of subsets (C, D) of X,
the following notations will be used in the sequel:

R(u, D) ≔ sup ‖u − v‖: v ∈ D{ }, u ∈ C;

δ(C, D) ≔ sup R(u, D): u ∈ C{ };

C0 ≔ u ∈ C: ‖u − v‖ � dist(C, D), v ∈ D{ };

D0 ≔ v ∈ D: ‖u − v‖ � dist(C, D), u ∈ C{ },

(1)

where dist(C, D) ≔ inf ‖u − v‖: u ∈ C, v ∈ D{ }.

Definition 1 (see [3]). A nonempty pair (C, D) of subsets in
a normed linear space X is known as a proximal pair if for
every u1 ∈ C, v1 ∈ D there exist u2 ∈ C, v2 ∈ D such that
‖u1 − v2‖ � dist(C, D) � ‖u2 − v1‖.

Note: the pair (C0, D0) is a proximal pair and (C0, D0) ⊆
(C, D), that is C0 ⊆ C, D0 ⊆ D.

Definition 2 (see [13]). A nonempty pair (C, D) of subsets in
a Banach space X is said to be a proximal parallel pair if
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(i) (C, D) is a sharp proximal pair, that is, for each
(u1, v1) ∈ C × D, there is unique element
(u2, v2) ∈ C × D such that
‖u1 − v2‖ � dist(C, D) � ‖u2 − v1‖.

(ii) D�C+h, for a certain h ∈ X.

By using the above definition, Rajesh et al. [14] intro-
duced the rectangle property as follows.

Definition 3 Let X be a Banach space and let (C, D) be a
nonempty, convex proximal parallel pair. (e nonempty
proximal parallel pair (C, D) is assumed to have the rect-
angle property iff ‖u + h − v‖ � ‖v + h − u‖, for u, v ∈ C,
where D � C + h, h ∈ X.

Definition 4 (see [3]). Let X be a Banach space. A nonempty
convex pair (G, H) of subsets in X is assumed to have
proximal normal structure if for every nonempty, closed
convex bounded proximal pair (C, D)⊆(G, H) for which
dist(C, D) � dist(G, H) and δ(C, D)> dist(C, D), there is
(u, v) ∈ (C, D) such that

max R(u, D), R(v, C){ }< δ(C, D). (2)

(e following two theorems are obtained from Eldred
et al. [3].

Theorem 1. Let X be a Banach space and let (G, H) be a
nonempty, convex weakly compact proximal pair in X. Let
T: G∪H⟶ G∪H with T(G)⊆H, T(H)⊆G and
‖Tu − Tv‖≤ ‖u − v‖, for u ∈ G, v ∈ H. Suppose (G, H) has
proximal normal structure. 0en, there exist u0 ∈ G, v0 ∈ H

such that ‖u0 − Tu0‖ � dist(G, H) � ‖v0 − Tv0‖.

Theorem 2. Let X be a strictly convex Banach space and let
(G, H) be a nonempty, convex weakly compact proximal pair
in X. Let T: G∪H⟶ G∪H with T(G)⊆G, T(H)⊆H and
‖Tu − Tv‖≤ ‖u − v‖, for u ∈ G, v ∈ H. Suppose (G, H) has
proximal normal structure. 0en, there exist u0 ∈ G, v0 ∈ H

such that Tu0 � u0, Tv0 � v0 and ‖u0 − v0‖ � dist(G, H).

Remark 1. In the above two theorems, if G � H, then the
main result of Kirk [2] is obtained.

Definition 5 (see [15]). A uniformly convex space X is a
normed linear space such that for each ε> 0,

inf 1 −
‖u + v‖

2
: ‖u‖≤ 1, ‖v‖≤ 1, ‖u − v‖≥ ε > 0. (3)

Moreover, if u, v, w ∈ X, R> 0, 0≤ ε≤ 2R, such that
‖u − w‖≤R, ‖v − w‖≤R, ‖u − v‖≥ ε which implies

u + v

2
− w

������

������≤ 1 − δ
ε
R

  R. (4)

(e following result based onMann’s iteration process is
well known.

Proposition 1 (see [16]). Let X be a uniformly convex space,
ε> 0, and 0< ξ < 1. For any R> 0, if u, v ∈ X, ‖u‖≤R, ‖v‖≤R,
‖u − v‖≥ ε, then there is δ � δ(ε/R)> 0, so that

‖ξu +(1 − ξ)v‖≤ 1 − 2δ
ε
R

 min ξ, 1 − ξ{ } R. (5)

Espinola proved the following result.

Lemma 1 (see [13]). Let X be a strictly convex Banach space.
If (C, D) is a proximal pair in X, then (C, D) is a proximal
parallel pair.

Definition 6 (see [5]). Let X be a Banach space and let G and
H be nonempty subsets of X. A mapping
T: G∪H⟶ G∪H satisfying T(G)⊆G, T(H)⊆H is known
as noncyclic relatively nonexpansive mapping with respect
to orbits provided that for every (u, v) ∈ G × H if
‖u − v‖ � dist(G, H), then ‖Tu − Tv‖ � dist(G, H);
otherwise,

‖Tu − Tv‖≤R(u, O(v)), ‖Tu − Tv‖≤R(v, O(u)), (6)

where O(v) ≔ v, Tv, . . . , Tnv, . . .{ }⊆H and O(u)⊆G.

In the above definition, if G � H, we obtain the defi-
nition of Harandi et al. [4] as follows.

Definition 7. Let X be a Banach space and H be a nonempty
subset of X. A mapping T: H⟶ H is known as a non-
expansive mapping with respect to orbits if

‖Tu − Tv‖≤R(u, O(v)), ∀ u, v ∈ H. (7)

Remark 2. Every nonexpansive mapping is a nonexpansive
mapping with respect to orbits, whereas the converse may
not be true.

2. Results for Cyclic Relatively Nonexpansive
Mappings with respect to Orbits

Motivated by Harandi et al. [4] and Gabeleh et al. [5], we
define the following definition which will be extensively used
in the sequel.

Definition 8. Let G and H be nonempty subsets of a Banach
space X. A mapping T: G∪H⟶ G∪H satisfying
T(G)⊆H, T(H)⊆G is known as cyclic relatively non-
expansive mapping with respect to orbits provided that for
every (u, v) ∈ G × H if ‖u − v‖ � dist(G, H), then
‖Tu − Tv‖ � dist(G, H); otherwise,

‖Tu − Tv‖≤R(u, O(v)), ‖Tv − Tu‖≤R(v, O(u)), (8)

where O(v) ≔ v, Tv, . . . , Tnv, . . .{ }, T2n+1v ∈ G, T2nv ∈ H,
and O(u)⊆G∪H for n � 0, 1, 2, . . . ,.

Example 1. Let X � ℓ∞(� ℓ∞(N)) and let em  � δk
m  be

the standard basis for ℓ∞ (where em denotes the element with
1 in the mth place and 0 elsewhere). Consider the sets
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A � aei: 0< a≤ 1  andB � bej: 0< b≤ 1 , where i≠ j. (9)

Let T: A∪B⟶ A∪B be a mapping defined by

T aei(  �
��
a

√
ej andT bej  �

�
b

√
ei. (10)

Clearly, T is not a cyclic relatively nonexpansive map-
ping. Let u � aei and v � bej. (en,

‖Tu − Tv‖∞ �
��
a

√
ej −

�
b

√
ei

�����

�����∞
� max

��
a

√
,

�
b

√
 ,

R(u, O(v)) � sup
n

u − T
n
v

����
����∞ � sup

n

max a,
�
b

2n√
  � 1,

R(v, O(u)) � sup
n

v − T
n
u

����
����∞ � sup

n

max b,
��
a2n√

  � 1.

(11)

It shows that T is a cyclic relatively nonexpansive
mapping with respect to orbits.

Now, we prove the following proposition.

Proposition 2. If T: G∪H⟶ G∪H is a cyclic relatively
nonexpansive mapping, then T is a cyclic relatively non-
expansive mapping with respect to orbits.

Proof. Let T be a cyclic relatively nonexpansive mapping.
For u ∈ G, v ∈ H, ‖Tu − Tv‖≤ ‖u − v‖≤R(u, O(v)). Simi-
larly, ‖Tv − Tu‖≤R(v, O(u)). (is shows that T is a cyclic
relatively nonexpansive mapping with respect to orbits. □

Lemma 2. Let X be a strictly convex Banach space and let
(C, D) be a nonempty, convex weakly compact proximal pair
of subsets in X. Suppose (C, D) has the rectangle property. Let
T: C∪D⟶ C∪D be a cyclic relatively nonexpansive
mapping with respect to orbits. Further, assume that proximal
pair (C, D) does not contain any proximal pair (G, H) of
subsets in X such that T(G)⊆H, T(H)⊆G. 0en,
(C, D)⊆(conv(T(D)), conv(T(C))).

Proof. Let G � conv(T(D))∩C and H � conv(T(C)) ∩D.
(en,G andH are, respectively, convexweakly compact subsets
of C and D. Suppose (u, v) ∈ C × D such that ‖u − v‖ �

dist(C, D). (en, (Tv, Tu) ∈ T(D) × T(C) and (T(D),

T(C))⊆(C, D) which implies (Tv, Tu) ∈ G × H. Since
‖u − v‖ � dist(C, D), by Definition 8, we get ‖Tv−

Tu‖ � dist(C, D). Hence, dist(G, H) � dist(C, D). It suffices
to prove that (G, H) is a proximal pair if for every u ∈ G, there
is v ∈ H such that

dist(C, D) � ‖u − v‖. (12)

Let u ∈ conv(T(D))∩C. (en, u � 
n
i�1 ciTvi, where

vi ∈ D, ci ≥ 0 and 
n
i�1 ci � 1. Since (C, D) is a proximal pair,

there is vi
′ ∈ C such that

dist(C, D) � vi
′ − vi

����
����, i � 1, 2, . . . , n. (13)

(en, u′ � 
n
i�1 ciTvi
′ ∈ conv(T(C)) such that ‖u − u′‖ �

dist(C, D) and u′ ∈ H. (us, (G, H)⊆(C, D) is a proximal
pair (and hence proximal parallel pair). It is easy to see that
(G, H) is invariant under T, that is, T(G)⊆H, T(H)⊆G. (is

proves that (C, D) � (G, H). Hence, (C, D)⊆ (conv(T(D)),

conv(T(C))). □

Theorem 3. Let X be a strictly convex Banach space and let
(A, B) be a nonempty, convex weakly compact proximal pair
in X. Let T: A∪B⟶ A∪B be a cyclic relatively non-
expansive mapping with respect to orbits. Suppose (A, B) has
proximal normal structure and the rectangle property. 0en,
there is (u, v) ∈ A × B such that ‖u − Tu‖ � dist(A,

B) � ‖v − Tv‖.

Proof. Let F be the set of all nonempty, convex weakly
closed proximal pair of subsets (C, D) of (A, B) satisfying
T(C) ⊆D, T(D) ⊆ C and dist(A, B) � dist(C, D). Let ″≺″ be
a relation defined on F by (C1, D1)≺ (C2, D2) if and only if
(C1, D1)⊆(C2, D2), where (C1, D1), (C2, D2) ∈ F. It is easy
to see that F is a partially ordered set. Also, if T is a totally
ordered set, then T⊆F has the finite intersection property
(FIP). Hence,

(E, F) ≔ ∩
(C,D)∈T

(C, D) (14)

is a nonempty, convex weakly compact proximal pair and
(E, F) ∈ F. By Zorn’s lemma, partially ordered set F has a
minimal element, say (C, D). (erefore, from Lemma 2, we
conclude that

(C, D)⊆(conv(T(D)), conv(T(C))). (15)

If δ(C, D) � dist(A, B), we get our result and the the-
orem is complete. Suppose

δ(C, D)> dist(A, B). (16)

By proximal normal structure, there is (u1, v1) ∈ C × D

and η ∈ ]0, 1[ such that

max R u1, D( , R v1, C(  ≤ ηδ(C, D). (17)

Since (C, D) is a proximal pair, there is (u1′, v1′) ∈ C × D

such that

u1 − v1′
����

���� � u1′ − v1
����

���� � dist(A, B). (18)

So, for any w ∈ D, we have

u1 + u1′

2
− w

��������

��������
≤

u1 − w

2

������

������ +
u1′ − w

2

��������

��������

≤
ηδ(C, D)

2
+
δ(C, D)

2

≤ βδ(C, D), where, β �
1 + η
2
∈ ]0, 1[.

(19)
Let u2 � (u1 + u1′/2) and v2 � (v1 + v1′/2). (en,

R u2, D( ≤ βδ(C, D), R v2, C( ≤ βδ(C, D) and u2 − v2
����

����

� dist(C, D).

(20)
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Define

G � u ∈ C: R(u, D)≤ βδ(C, D) 

H � v ∈ D: R(v, C)≤ βδ(C, D) .
(21)

(en, (G, H) is a nonempty, convex weakly compact
proximal pair of subset of (C, D). By Lemma 1, (G, H) is also

a proximal parallel pair of subset of (C, D). Now, we need to
claim that T(G)⊆H, T(H)⊆G. Since
(C, D)⊆(conv(T(D)), conv(T(C))) and (A, B) has rect-
angle property, for u ∈ G,

R(Tu, C) � sup ‖Tu − w‖: w ∈ C{ }≤ sup ‖Tu − w‖: w ∈ conv(T(D)) 

� sup ‖Tu − Tv‖: Tv ∈ T(D){ }≤ sup R(u, O(v)): v ∈ D{ }≤R(u, D)≤ βδ(C, D).
(22)

(is shows that T(G)⊆H. Similarly, for v ∈ H,

R(Tv, D) � sup ‖Tv − z‖: z ∈ D{ }≤ sup ‖Tv − z‖: z ∈ conv(T(C)) 

� sup ‖Tv − Tu‖: Tu ∈ T(C){ }≤ sup R(v, O(u)): u ∈ C{ }≤R(v, C)≤ βδ(C, D).
(23)

(is shows that T(H)⊆G. (erefore, (G, H) ∈ F. But
δ(C, D) � supu∈GR(u, D)≤ βδ(C, D)< δ(C, D), which is a
contradiction. (is shows that C and D are singleton sets.
(erefore, there is (u, v) ∈ (A, B) such that
‖u − Tu‖ � dist(A, B) � ‖v − Tv‖. □

In (eorem 3, if A � B, we obtain the result of Harandi
et al. (see (eorem 2.2 in [4]). (e following example il-
lustrates that the rectangle property in (eorem 3 cannot be
dropped.

Example 2. Let X � (R2, ‖.‖), an Euclidean space, and let

A � (u, 5 − 5u): u ∈ [0, 1]{ }

B � (u + 1, 5 − 5u): u ∈ [0, 1]{ }.
(24)

(en, the pair (A, B) with B � A + h, h � (1, 0) satisfies
all the assumptions of (eorem 3 except the rectangle
property. It is easy to see that the pair (A, B) does not have
the rectangle property by taking particular points
(1, 0), (0, 5) ∈ A and (2, 0), (1, 5) ∈ B. Let
T: A∪B⟶ A∪B be a mapping as in Definition 8. We
need to claim that

‖Tu − Tv‖≤R(u, O(v))≤R(u, B), (u, v) ∈ A × B, O(v) ≔ v, Tv, . . . , T
n
v dots , T

2n+1
v ∈ A, T

2n
v ∈ B. (25)

Now, in particular, let u � (1, 0) ∈ A and v ∈ B. If
T2n+1(v) � (0, 5) ∈ O(v) for some v ∈ B, then
R(u, B)<R(u, O(v)), which is absurd. It happened because
(A, B) does not have the rectangle property.

(e next example will illustrate our result, (eorem 3.

Example 3. Let X � (R2, ‖.‖), an Euclidean space, and let

A � −
1
2
, v : −

1
2
≤ v≤

1
2

 

B �
1
2
, v : −

1
2
≤ v≤

1
2

 .

(26)

(en, the pair (A, B) satisfies all the assumptions of
(eorem 3, and B � A + h, where h � (1, 0). Let
T: A∪B⟶ A∪B be a mapping defined by

T u1, v1(  � u1, −
v1

2
  +(1, 0),

T u2, v2(  � u2, −
v2

4
  − (1, 0),

(27)

where (u1, v1) ∈ A, (u2, v2) ∈ B. Clearly, T is cyclic relatively
nonexpansive with respect to orbits but not cyclic relatively
nonexpansive. (en, ∃((− (1/2), 0), ((1/2), 0)) ∈ A × B such
that

−
1
2
, 0  − T −

1
2
, 0 

�������

�������
� 1 �

1
2
, 0  − T

1
2
, 0 

�������

�������
. (28)

3. Results for Noncyclic Relatively
Nonexpansive Mappings with
respect to Orbits

Gabeleh et al. [5] proved the following interesting theorem.
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Theorem 4. Let X be a strictly convex Banach space and let
(C, D) be a nonempty, convex weakly compact pair in X.
0en, the pair (C, D) has proximal normal structure iff for
every noncyclic relatively nonexpansive mapping T with re-
spect to orbits, there is (u, v) ∈ C × D such that Tu � u, Tv �

v and ‖u − v‖ � dist(C, D).

In (eorem 4, if A � B, the result of Harandi et al. (see
(eorem 2.2 in [4]) is obtained. Next, we show that Mann’s
iteration process (see [7, 17, 18]) converges to a fixed point if
X is a uniformly convex Banach space.

Theorem 5. Let X be a uniformly convex Banach space and
let A and B be nonempty, convex closed bounded subsets of X.
Let T: A∪B⟶ A∪B be a noncyclic relatively non-
expansive mapping with respect to orbits. Let an initial point
u0 ∈ A, and define a sequence

un+1 � 1 − ξn( un + ξnTun, where θ< ξn

< 1 − θ, θ ∈]0, 1/2], n � 0, 1, 2, 3, . . .
(29)

(en, limn⟶+∞‖un − Tun‖ � 0. Moreover, if
d(un, A0)⟶ 0, T is continuous, and T(A) is subset of a
compact set, then the limit point of the sequence un  is a
fixed point for T.

Proof. Suppose dist(A, B)> 0. From (eorem 4, there is
v ∈ B such that Tv � v. Since

un+1 − v
����

����≤ 1 − ξn(  un − v
����

���� + ξn Tun − Tv
����

����

≤ 1 − ξn(  un − v
����

���� + ξnR un, O(v)( 

� un − v
����

����,

(30)

and ‖un − v‖  is nonincreasing sequence, there is a positive
real number k> 0 so that limn⟶+∞‖un − v‖ � k. Since X is
uniformly convex, then δ(ε)> 0 for ε> 0 is a strictly in-
creasing (and continuous) function. So, it is possible to
choose ε1 > 0 so small that

1 − aδ
ε

k + ε1
   k + ε1( < k, where, a> 0. (31)

Let us assume that there exists a subsequence uni
  of

un  with ‖uni
− Tuni

‖≥ ε> 0. Choose i, such that
‖uni

− v‖≤ k + ε1. From Definition 6, we have
‖Tuni

− Tv‖≤R(uni
, O(v)) � ‖uni

− v‖≤ k + ε1. Now,

v − uni+1

�����

����� � 1 − ξn(  v − uni
  + ξn Tv − Tuni

 
�����

�����

≤ 1 − 2δ
ε

k + ε1
 min ξn, 1 − ξn   k + ε1( 

≤ 1 − bδ
ε

k + ε1
   k + ε1( , where, 0< b

≤ 2min ξn, 1 − ξn .

(32)

By choosing ε1 > 0 so small, we get

1 − bδ
ε

k + ε1
   k + ε1( < k, (33)

which is a contradiction. Hence,
limn⟶+∞‖un − Tun‖ � limn⟶+∞‖un − un+1‖ � 0. Since
T(A) is a subset of a compact set, the sequence un  has a
subsequence uni

  such that limi⟶+∞uni
� u ∈ A. As

d(un, A0)⟶ 0, there is wn ∈ A0 such that

lim
n⟶+∞

un − wn

����
���� � 0. (34)

Hence, there exists a subsequence wni
  of wn  in A0

such that limi⟶+∞wni
� u ∈ A0. (us, there is w ∈ B0 such

that ‖u − w‖ � dist(A, B). Now,

uni+1
− Tw

�����

����� � 1 − ξn( uni
+ ξnTuni

 
�����

− 1 − ξn( Tw + ξnTw 
����

≤ 1 − ξn(  uni
− Tw

�����

�����

(35)

Since ‖u − w‖ � dist(A, B), by Definition 6, we get
‖Tu − Tw‖ � dist(A, B). (erefore, from equation (35),
when i⟶ +∞, we have ‖u − Tw‖≤ dist(A, B) which
implies ‖u − Tw‖ � dist(A, B). By strict convexity of the
norm, Tw � w which implies Tu � u because u is the unique
point of A nearest to w. □

From the above theorem, if dist(A, B) � 0, we get the
following corollary.

Corollary 1. Let X be a uniformly convex Banach space and
let A be nonempty, closed bounded convex subset of X. Let
T: A⟶ A be a nonexpansive mapping with respect to or-
bits. Let the initial point u0 ∈ A, and define a sequence

un+1 � 1 − ξn( un + ξnTun, where, θ < ξn

< 1 − θ, θ ∈]0, 1/2], n � 0, 1, 2, 3, . . . .
(36)

(en, limn⟶+∞‖un − Tun‖ � 0. Moreover, if T is con-
tinuous and T(A) is subset of a compact set, then the limit
point of the sequence un  is a fixed point for T.

(e following example illustrates (eorem 5.

Example 4. Let X � (R2, ‖.‖), an Euclidean space, and let

A � (u, v): − 2≤ u≤ − 1,
− 1
2
≤ v≤

1
2

 

B � (u, v): 1≤ u≤ 2,
− 1
2
≤ v≤

1
2

 .

(37)

Define T: A⟶ A by

T(u, v) � T1u, T2v(  �
u − 6
7

, −
v

2
 , for (u, v) ∈ A,

(38)
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and T: B⟶ B by

T(u, v) �
u + 6
7

, −
v

4
 , for (u, v) ∈ B, (39)

where T1: [− 2, − 1]⟶ [− 2, − 1] and
T2: [− (1/2), (1/2)]⟶ [− (1/2), (1/2)]. It clearly shows that
T: A∪B⟶ A∪B is noncyclic relatively nonexpansive
with respect to orbits but not noncyclic relatively

nonexpansive. Let the initial point (u, v) ∈ A, and set
u1 � (1 − ξ1)u + ξ1T1u. We have T1u � ((u − 6)/7).
(erefore,

u1 �
u 7 − 6ξ1(  − 6ξ1

7
. (40)

Following the same line of Example 2.2 in [7], we get

un �
1
7n u 7 − 6ξ1(  · · · 7 − 6ξn(  − 6ξ1 7 − 6ξ2(  · · · 7 − 6ξn( 

− 6.7ξ2 7 − 6ξ3(  · · · 7 − 6ξn( 

− · · · − 6.7n− 2ξn− 1 7 − 6ξn(  − 6.7n− 1ξn,

(41)

and limn⟶∞un � − 1. Again, we have T2v � − (v/2). Let

v1 � 1 − ξ1( v + ξ1T2v �
v 2 − 3ξ1( 

2
. (42)

Now, T2v1 � − (v1/2) � − (v(2 − 3ξ1)/22). (erefore,

v2 � 1 − ξ2( v1 + ξ2T2v1 �
v 2 − 3ξ2(  2 − 3ξ1( 

22
, and so on.

(43)
In general,

vn �
v 2 − 3ξn(  2 − 3ξn− 1(  . . . 2 − 3ξ1( 

2n , (44)

and limn⟶+∞vn � 0. Hence, limn⟶+∞(un, vn) �

(− 1, 0) ∈ A. Since (− 1, 0) ∈ A0, there exists (1, 0) ∈ B0 such
that ‖(− 1, 0) − (1, 0)‖ � 2 � dist(A, B). Again, ‖T(− 1, 0)−

T(1, 0)‖ � 2 � dist(A, B). (is shows that sequence
(un, vn)⟶ (− 1, 0) ∈ A as n⟶ +∞, a fixed point for T.
In a similar way, we can show that if (u′, v′) ∈ B, then
limn⟶+∞(un

′, vn
′) � (1, 0) ∈ B, a fixed point for T.

4. Conclusions

From the results obtained in this article, we draw the fol-
lowing conclusions.

In this research article, we study the existence of the best
proximity point for cyclic relatively nonexpansive mappings
with respect to orbits. Additionally, this research article
establishes the convergence of Mann’s iteration process for a
noncyclic relatively nonexpansive mapping with respect to
orbits and nonexpansive mapping with respect to orbits to a
fixed point. (ere may be scope for extension of results
obtained in Section 3 by using other well-known iteration
processes.
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