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In the present research work, we investigate the existence of a solution for new boundary value problems involving fractional
differential equations with y-Caputo fractional derivative supplemented with nonlocal multipoint, Riemann-Stieltjes integral
and y-Riemann-Liouville fractional integral operator of order y boundary conditions. Also, we study the existence result for
the inclusion case. Our results are based on the modern tools of the fixed-point theory. To illustrate our results, we

provide examples.

1. Introduction

Fractional calculus has played a very important role in
different areas of research (see [1, 2] and the references cited
therein). Consequently, fractional differential equations
have grasped the interest of many researchers working in
diverse applications [3-6]. Recently, several researchers have
tried to propose different types of fractional operators that
deal with derivatives and integrals of arbitrary orders and
their applications. For instance, Kilbas et al. in [2] intro-
duced the properties of fractional integrals and fractional
derivatives concerning another function. Some generalized
fractional integral and differential operators and their
properties were introduced by Agrawal in [7]. Very recently,
Almeida in [8] presented a new type of fractional differ-
entiation operator, the so-called y-Caputo fractional op-
erator, and extended work of Caputo [2, 9]. Almeida et al. in
[10, 11] investigated the existence and uniqueness of the
results of nonlinear fractional differential equations in-
volving a Caputo-type fractional derivative with respect to
another function, employing the fixed-point theorem and
Picard iteration method. Numerous interesting results
concerning the existence, uniqueness, and stability of initial
value problems and boundary value problems for fractional
differential equations with y-Caputo fractional derivatives

by applying different types of fixed-point techniques were
obtained by Abdo et al. [12, 13], Vivek et al. [14], and
Wahash et al. [15]. An important application that is con-
trolled by the theory of y-fractional differentiation can be
found in [16].

In this paper, we investigate a new boundary value
problem of fractional differential equations supplemented
with nonlocal multipoint, Riemann-Stieltjes integral frac-
tional boundary conditions involving Riemann-Liouville
fractional integral operator of order y >0 with respect to
function y given by the form

D, (“Dh u () + h(t,u() = f(tu(®), 0<apsl,
u(0) = a,Q[u],
u(1) = a,0[u] +a32u1 0oyt (1)

(1)

where “Dg, , and* D€+ denotes the y-Caputo fract10nal
derivatives of orders 0 < a<1 and 0 < <1, respectively, I}, 0%y 18
the y-Riemann-Liouville fractional integral operator of order
y>0. The functions h: [0,1] xR — xR and f:10,1]

R— xR are continuous, whereas Q[u] = Jo u(s)dA, (s)
and 9[u] = J‘ 0 u(s)dA, (s) are Riemann-Stieltjes 1ntegral
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and A, (-), (i = 1,2) is a function of bounded variation. a; (i =
1,2,3) is a real constant, and y;, ; (i = 1,...,m) are positive
constants.

We also study the corresponding inclusion problem that
is given by

Df, (‘Db u) + h(t,u(t)) € F(tu(t), 0<ap<l,
u(0) = a,Q[ul,

u(l) = a,0[ul +ay Y pIb. u(n,),
i=1

(2)

where F: C([0,1],R) — 2 (R) is a multivalued function,
where 2 (R) is the family of all subsets of R and the other
quantities are the same as defined in problem (1).

Notice that this Riemann-Stieltjes integral fractional
boundary conditions arise in manifold applications of
computational fluid dynamics, distribution methods, and so
forth (for example, see [17, 18]).

AC}[a,b] = {f: [a,b] — Candy"" ' f € AC[a,b],y = xl_Pi},

Ac; [a,b] = ACJa, b,

Cyela,bl = {f : [a,b] — Candy"'f € Cla,bl,y"f € C,,,y = x“’d},

endowed with the norm|flc, = Zz;é Iy* fllc + ||V”f||cw-
The convention C7[a,b] = C"a,b] endowed with the
norm ”f"q =3 ]/kafllc is used.

Definition 2. Let a >0, h be an integrable function defined
on [a,b], and y € C"[a,b] be an increasing differentiable
tunction such that y(¢) #0 for all ¢ € [a,b]. The left-sided
y-Riemann-Liouville fractional integral of order « of a
function h is given by

{41 1 f a— ’
510 = s jo (W)~ y () 'y(Dh()ds.  (4)

Definition 3. Let n—1<a<n, h: [a,b] — R be an inte-
grable function and y € C"[a,b] be an increasing differ-
entiable function such that y (¢) # 0 for all ¢ € [a, b]. The left-
sided y-Riemann-Liouville fractional derivative of order «
of a function & is defined by

14| 1
‘Dy. h(t) =155 |— —| h(t) =——
0yt (1) O'W[w(t)dt] ® [(n-a
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This paper is organized as follows. In Section 2, we recall
some preliminary results and some related definitions. In
Section 3, we discuss the existence results of solutions by
relying on Krasnoselskii fixed-point theorem and Ler-
ay-Schauder nonlinear alternative. Also, we present an
example. Finally, we describe the inclusion case and deduce
the existence of solutions by applying Krasnoselskii’s mul-
tivalued fixed-point theorem in Section 4.

2. Preliminaries

For the convenience of the reader, we present here some
necessary basic definitions, lemmas, and results which are
used throughout this paper [2, 8, 10, 12, 19, 20].

Definition 1. Let [a,b] be a finite interval and 0 <e< 1 and

AC]Ja, b] be the set of absolute continuous functions on
[a, b]. Then, we define

dx
(3)
dx
al’ .
Dgﬁ)wh(t) = |iL E:I I&)‘i‘yh(t), (5)
v(t)

where n = [a] + 1 and [«] denote the integer part of the real
number a.

Definition 4. Let n—-1<a<n, heC"'[a,b], and
y € C"'[a,b] be an increasing differentiable function such
that y(t)#0 for all t € [a,b]. The left-sided y-Caputo
fractional derivative of order « of a function # is defined by
n-1, k]

Cy«a Y1 v
D h(t) = D, | h(t) _;;) I

(w () - w(0),

(6)

where h&,k] (t) = [(1/1;/(1?)) (d/dD)]*h(t) and n = [a] +1 for
a ¢ Nandn = afor a € N. Furthermore, if h € C"[a,b] and
a ¢ N, then

t
| [, v O -y ol o )
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Thus, if n = [a] € N, one has
“Df. 1 (8) = hl” (1). (8)

Lemma 1. Given a function h € ACﬁ([O, 1]) and a € R,

then
n-1(851) (0)
Ig. Dy i (8) = h(t) = ) (‘”k')
k=0 :

(w(t) -w)". (9

Lemma 2. Let o, 5>0 and h: [a,b] — R; then,
(@) I, [y () =y (V" = (I (B (I (a+ p))
[w(t) (0]
(i) “Dg. ,, [y (t) - W(O)]ﬁ L= (@B (T (B-a)
[y (1) -y )1
(iii) “D. [y (1) -y (0)]* = 0,¥k € {0,1,...
neN
(iv) 18, 5. i (6) = I/ h(t)
The existence of solutions of problem (1) relies on the
following fixed-point theorems [21, 22].

,n—1},

Theorem 1 (Krasnoselskii’s fixed-point theorem). Let p be a
closed, convex, bounded, and nonempty subset of a Banach
space X. Let T, and T, be operators such that

(i) T, () + T, (u,) belong to p whenever u,,u, € p

(ii) T, is compact and T, is a contraction mapping

Then, there exist u, € p such that u, =T, (uy) + T, (uy).

u(t) = Ighy(t) = 15, g () +

+a, Z#,( oy ()

Proof. We apply y-Riemann-Liouville fractional integral of
order « to both sides of the linear y—fractional differential
equation:

‘D, (“Dhu(t) + (1)) = (1),

We obtain

O<a,f<l.  (13)

“Dh.u(t) +g(t) =I5,y (D) +cy. (14)

Next, applying y-Riemann-Liouville fractional integral
of order 3 to both sides of (14), we obtain

u(t) = _Ig*,wg(t) + If)‘f/fyy(t) + Igwc1 + ¢y, (15)

where ¢, and ¢, are arbitrary constants. By Definition 1,
general solution (15) can be written as

(y (1) -y (0)°
(T(B+1)

0+ y/g (’71)) +a,9Qfu] —a,

Theorem 2 (Leray-Schauder fixed-point theorem). Let C be
a closed and convex subset of a Banach space E and U be an
open subset of C with 0 € U. Suppose that 7: U — C is a
continuous, compact (that is, 7" (U) is a relatively compact
subset of C) map. Then, either

(i) ¥ has a fixed point in U or

(ii) there are u €dU (the boundary of U in C) and
A€ (0,1) with u = A7 (u)

For computational convenience, we set the following:

(v () -y (0))
a32“1 T(y+1)
(10)
. Z (v () =~y O _ (v (1) -y ()
- T(B+y+1) T(B+1)
Lemma 3. Let y,g € C([0,1],R); then, the linear

y—fractional differential equation
Dg l!/<‘:D°‘O+,v/u(t) + g(t)> = y(1),
u(0) = a,Qlul, (11)

u(1) = a,0[u] +a; Y wlIb. ,u(n;),
i=1

has a solution u(t) on [0,1] given by

(16 - 15,9 1)
(12)
9[u]:| +a,Q[ul.

(wur-<mf+%

(16)

u() = Iphy(®) - 15, g () +

F(ﬁ

Using the boundary condition # (0) = a,Q[u], we obtain

¢, = a,Q[u]. Thus, (16) takes the form

u(t) = I y (1) - I, (v () = v (0) +a,Q[ul.

(17)

g(t)+r(ﬁ+1)

Applying the operator If, ,
obtain

, >0, on equation (17), we

e (y(6) =y (0)FY

IY+ — I“‘*’ﬁ"'y Iﬁj’)’
L () y® -1 + VT

0+,y
(18)
Qlu] (y (1) -y (0))"
I'(y+1) ’
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Using the boundary condition u(1)=a,0[u]+
as Y Hilé)wu(qi), we find that

1 ot ¥ oc++
=7 Toeyy (1) = I’éwg(l) a29[u]+a10[u< aaz (‘”(F(y—+‘ﬁ§))>+a32m( O*iyy (1) O*Wg(”’))

(19)

Inserting the value of ¢, in (17) yields solution (12). The space C([0,1],R). Let U = {u: u € C([0, 1], R)} denote the

converse follows by direct computation. O Banach space of all continuous functions on [0, 1] into R
endowed with the norm [[ul| = sup{|u(t)|: t € [0, 1]}. Here,

3. Main Results we define an operator 7: U — U associated with problem
1) by

In this section, we prove the existence of solutions of
problem (1). We shall assume that f and h are in the Banach

(y () -y (0))

(Tu)(t) = Ig £ (tu(8) — I bt () + 15 £ (L u (1)

(TB+1)
I L 0) Y f () - T e (1,) 20
i=1
+a,9Qu] - a,0[u]] + a,Q[u].
Therefore, problem (1) has a solution if and only if the For computational convenience, we introduce the
operator J has a fixed point. notations
o - G-y M) -y ) (y1)-y©)
T(a+p+1) T(B+1) [T (o + 8)
[ew-yor? ww-yor IZI () =)™
I(a+B+1) L(B+1) % Fa+pB+y+1) (1)
(v (n) -y (0)™
Fr(B+y+1) ’
_ (v (1) -y ()
?1 = aIQ[u]<1 +W), (22)
_ ) =y ) [ () =)™ (y(1) -y (0)
27 T (a+p) T(a+B+1) T(B+1) -
tla |Z| () =y )" (y(n) - w(©@)"
NN T Tas pry+1) T(B+y+1) ’

B (y(1) -y (0) () -y ()
?3—a1<1+ T+ f) )j dA, (s) <—IC|F( B )J dA, (s). (24)
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Now, we will state and prove the existence result via
Krasnoselskii’s fixed-point theorem.

Theorem 3. Let f,h: [0,1] xR — R be continuous
functions satisfying the conditions:

(H1) Lf (&) = f (& @) < pyllu—ull, and |k (¢, u)-
h(t, )| <p,llu -l for all t € [0,1], every u,ii € R and
p>0, withp¥, + €5 <1andp = max{p,,p,}.

(H2) There exist continuous nonnegative functions
M, M, € C([0,1],R) such that

(T ) (1) = I8 f (4,u () - I, i (1 u (D)),

(¥ () -y (0))

(72u) (1) = aTB+1)

If (t,w)| <M, (t)and |h(t,u)| <M, (t),V(t,u) € [0,1] xR,
(25)

and M = max{M,, M,}. Then, problem (1) has at least
one solution on [0,1].

Proof. For a positive number €, consider B, ={u € U:
[ull<e},where e€>|M||€ + &,, and we split T into two
operators 7, and 7, where 5 = 7| + 7 ,, on the bounded
set B, by

<Igff,,f(l,u(1))—Ig+)wh(1,u(1))+a32yi (26)
i=1

(I8 f (o () = 10 B (o () ) + @y 92 [u] = a,00u]) + @, Q[ul.

For any u € B,, by using (H2), we have

L) -y(s)™F

||91u + F]zu” < SUPse(o,1 <“

_ J (Y& -y

0 I'(B)

0 I'(a+p)

Ly (1) - ()Pt

Y ()| f (s,u(s))lds

($)h(s,u(s))lds

_ B
L @ -y(0) “

ICIT (a + B)

_Jl (v -y )"

0 I'(B)

Tarp VO su@)lds

Y ()l (s, u(s))lds

m m_ N s atfty-1,
+la3|§|ﬂi|<J (v(m:) -y ()

T(a+pB+7)

0

Y (9)If (s,u(s))lds

; - Bry-1.
_J'? (v(n:) - () V/(s)|h(s,u(s))|s>+|a1(pﬂ[u]| (27)

0 L(B+y)

—|a26[u]|] +|a10.[u]|}

(W@ -y O (& -y  (y)-y(0)°

<|[IMllsup;e o, {

T(atf+1) T@+1)  KT@+p)

. [(wm -y O™ () -y ()

I'(a+p+1)

r(ﬁ+1) +|a3|;|yi|

( (v (1) = v @)™ (y(n) -y (0) V)] }
rB+y+1)

I(a+B+y+1)

+aIQ[u]<1 +

<|M|EC + &, <e.

(w(l)—wo»ﬁ)
ICIT (o + B)
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Hence, 7 ,u + 9 ,u € B,. Next, we show that 7, is a
contraction mapping. Let u,%i € R and ¢ € [0, 1], so by
using (H1), we have

b= 7l ssmn | 1 g

_ at+p-1,
[J‘O (W(l;(aw:;g)) w(s)|f (s,u(s)) — f (s, 7 (s))|ds

p-1
j()%w(s)m(s u(s) = (s, (9)lds

1 ( ) atf+y-1,
*'“3|Z i <j e ﬁs+)y) ¥

If (s,u(s) = f (s, u(s))lds

: N Bry-1.
) J’v (W("’%(ﬁwf;))) V(I (s u(s)) - h(s 7 (s)lds

+a,¢ (Qu] - Qa]) - a, (8[u] - 0[@]) + a, (2[u] - Q[EAD}

_ (y () -y () [ (y(1) - y(0)**F
SP”U—U"SUPte[o,l]{ |(|F((X+ﬁ) [ r OC+‘B+ 1)

-y IZI 1« ) =y (0)"F
rg+1) s F(oc+[>’+y+1)

(v (1) - w(0)" (y(1) -y (0))
TB+y+D) )””1(“ NNCE) ) (28)

LN B (w(1)—w(o>)’5>
.J0|u u|dA, (s) a2< T @+ p)

1
: JO I — 7ldA, (s)

() =) [ (p(1) -y (0)**
S”””'”"{ NCET) [ T(a+f+1)

_ a+f+y
-y 3|Z| |< - y(0))

rB+1) F(oc+ﬂ+y+1)

(v (n;) - v (0)™ (y(1) -y (0))°
TBry+1) fa\ M @ )

N _ M) _
Iolu uldA, (s) a2< HXCET) JI f|dA, (s)

IORRTO)AVE
< |:p?2 + a1<1 +W> JO dAl (S)

(y (1) — y(0))
‘“Z(Wﬂ d"‘2(S>]Ilw il

< (p%, + &3)lu—1l.
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By assumption p&, + &5 <1, we obtain that 7, is a
contraction mapping. Since fandh are continuous
functions, we have 7, as continuous. Also, I, is
uniformly bounded on B, as

15 f (6 u(0) = I, 1 (6, u (0)|

||91”” = SUPrefo,1]

t £ — oc+ﬁ71
<SUPye0.1] { J.o %w(sﬂf (s,u(s))|ds

; B B-1,
_Joww(s)m(s,u(s))lds}

g DO () -y ()
- T(a+p+1) T(B+1) '

(29)

Finally, we prove the compactness of the operator 7.
To show this, we define sup ¢ (o.1)x5, | f (£, U)] = f<oo
and  sup e i (fbu)l =h<oco  and  take
0<t,<t, <1. Thus, we have

n [ (w(t) - w ()™ = (y () - w() ]

|7 u(t,) - T u(t)| < Jo

F'(a+p)

Y ()If (s,u(s)lds

t

G (y(t,) - ()™
*J T(a+p)

Y (9IS (s, u(s))lds

0

()l (s, u(s)lds

B J't1 [(‘//(tz) - V/(S))ﬂ_l ~(w(t) - W(S))ﬂ_l]

I'(B)

(30)

a1

S

_J”waa—wmf‘*
(D))

v (s)|h(s,u(s))|ds

[2( (v(ty) - ‘//(tl))mﬁ)

<— <
I(a+p+1)

+( (1) = v () = (y(t,) - v(0)*]

h

ey P ®) -y @)f) - () -y )

+(y(t) - W(O))ﬁ] — 0, ast,—t;, —0,

independent of u € B,. Thus, 7, is equicontinuous. So,
T, is relatively compact on B,. Hence, by the Arze-
la-Ascoli theorem, I, is compact on B.. Thus, the
hypotheses of Theorem 6 are satisfied which leads
problem (1) to have at least one solution on [0, 1].

Now, we apply Leray-Schauder nonlinear alternative
fixed-point theorem to establish an existence result for
problem (1). O

Theorem 4. Let f,h: [0,1] xR — R be continuous
functions and the following conditions are satisfied:

(H3) There exist functions 1,1, € C([0,1],R) with | =

max{l,,l,} and nondecreasing functions q,,q,:
R* — R*,q = max{q,,q,} such that
|f @& wl<lig (lul), (31)

[h(t,u)l <lq, (lul), forall (t,u) € [0,1] x R.
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(H4) There exists a constant N >0 such that Proof. Let us show that the operator 5 maps bounded sets

N into bounded sets in C([0, 1], R). For a positive r, let B,
_ > 1. (32) {fu e C([0,1],R): |lul| <7} be a bounded set in C ([0, 1], IR).
lllg(N)E + %, For each t € [0, 1], by (H3), we have

Then, problem (1) has at least one solution on [0, 1].

¢ _ a+f-1,
CRCE] ) “”(t}(a‘”fjg VOIS (sl

) J (y (1) -y ()"
o T

(W () =y (O [ [ (w(1) -y (s)™F
e “0 Fo VOl (s ul)ids

L%w )Ih(s, u(s)>lds+|“slz|“t

w(S)Ih(s u(s))lds

;i . a+f+y-1
<JZ (W(ﬂf)(méssl) ) YOI (s u(o)lds

i N Sy—-1,
- JZ (w(ﬂzg(ﬁﬁ(;))) ¢(s)|h(s,u(5))||d|5>

+|a,9Q[u]| ~|a,0[ul]] +|a, 2[u]|}

(W) -y (ON*  (y(t) -y (0)
s"ll"%(||u||)suPte[o,1]{ ‘/’r(“ +1;;+1) + VIICIF(ocI/:Lﬁ)

(1//(1) - l//(O))aJr l//(o))otJrﬁer
(W” 3|Z' 1 r<a+ﬁ+y+1) (33)

(W (&) -y () (y(t) -y ()
+ n12||q2 (”u")suptE[O,l]{ 17(:"1—\(/31/_:_ 1) - 17(|r((x1/:_ ﬁ)

GO -yOF | |Z| ) —v @)™
T(B+1) s F(B+y+1)

(y (1) - y(0))
+aIQ[u]<1 +—|(|F(oc+/3) )

—w(ONE — w0 — w0
slllllq(IIrII){W(l) y ()™ (y (1) -y ()" (y(1)-y(0)

T(atf+1) TG+ KL (a+tp)
(w(1) =y (ON*F  (y(1) - y(0)
[ Ta+f+1)  T(B+1) +“3’;|“"|

I'(a+p+y+1) r+y+1)

< (v () = v O (y(n) - w(o»ﬂ”)] }

(y (1) - y(0)
+alQ[u]<1 +7|(|r(04+/3) )

<llq lirhe + %,.
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Next, we show that J maps bounded sets into equi-
continuous sets of C([0,1],R). Let u € B,; then, for
t;,t, € [0,1], with ¢, <t,, we have

6 [(w(t) v ()™ = (w(t) - w(e)™ ]
0 I'(a+p)

[Tu(es) - Tue)| < |

Y Of (s u(s)lds

:, atf-1,
+J W) VO™ ) (s u(s)lds

I'(a+p)

) Jfl [(v(t) -y )™ -y (t) -y )]
0 r()

()l (s,u(s))lds

t) — ﬁ !
- % (9 (s u(s))lds

() - y(0)° - (y(ty) - v(0)]
ICIT (a + )

“ (1//(1) ()Pt
0 (a+p)

Ly -y )
- 1 h d
jo R A UCTICNLE .

v (s)If (s,u(s))lds

a+f+y-1
+a Z i <j0 (v, (ME?” YOI (s u()lds

,- N Bry-1.,
3 JZ (W(Wzl)_‘(ﬁl/i(;))) V/(s)|h(s,u($))|d5>

|‘11‘PQ |\“z ]”

[Z(w(tz) —y ()™ + (v (1) -y () — (y(t) -y ()™

<1l Clirl) TatBrD)

. [(w(ts) - w(0) - (v (t)) - v ()] ((w(l) —y(0)*F
ICIT (a + ) T(a+B+1)

a+p+y
|“3|Z|Mz ( () = ¥ (0)) >}+||lz||q2(nru>

I(a+pf+y+1)

2(v() - y(t) - (v(t) - w(0) + (v (t) - w(©0)
r(g+1)

() -y - (y(t) -y )] (w(l)—wm))ﬁ |Z| 1 - y(0))"
[IT (a + B) T(B+1) F1as F(ﬁ+y+1) ’
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which tends to zero independent of u € B, as t, —t; — 0.
So, we deduce that the operator
T:C([0,1],R) — C([0,1],R) is completely continuous
(by Arzela-Ascoli theorem). It remains to show the
boundedness of the set of all solutions u=AJ (u) for
A€ (0,1). Let u € U be a solution of problem (1). So, for
t € [0,1], we obtain

lu(®)] =AM (Tuw) (O] <|[(Tu) @), (35)
which, on taking the norm for t € [0, 1], yields
lull < g (lr)% + ©,, (36)
and then
fluell
—_—— < 37
g ClirNE + &, (37

From (H4), we can find N > 0 such that ||u| # N. Take a
set %, ={uecC([0,1],R): |ull < N} and notice that the
operator J: 9% — C(]0,1],R) is continuous and com-
pletely continuous. By choice of %, we cannot find a u €0%
such thatu = AJ (u) for some A € (0, 1). Hence, by Theorem
2, the operator 7 has a fixed point u € % which is a solution

of problem (1). O
Example 1. Consider the following boundary value
problem:
DY (DgDu(t) + h(tu(®)) = f(Lu(®), 0<ap<l,
u(0) = a,Q[u],
2
u(l) =a,0[u] +a, Zyilg+,wu ()
i=1
(38)

where a=(1/4),=(1/2),A,(s) = A
(s)=s,a,=a,= (3/4),a;=1,m=2,
i = (US) g, = (2/5),m, = (16),1, = (5/6),y = (1/3), and
v (t) = 2t* + 1. Clearly, vy is an increasing function on [0, 1]
and y (t) = 4t is a continuous function on [0, 1].

To illustrate the application of Theorem 3, we take

—t
cosu e

2v74 4 120

1 t°
h(t,u) = (smu+57>,

where f and h satisfy the assumption of Theorem 3. By using
the given data, we find p =0.0208, { =0.589473482,

ftu) =
(39)

®°'Sp: C([0,1],X) — P

cp.cv

is a closed graph operator in C ([0, 1], X) x C([0, 1], X).

Lemma5. IfF: X — P, (Y)isu.s.c., then F, (F) is a closed
subset of X xY; ie., for every sequence {x,},. C X and

(C€([0,1], X)),
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M =0.072916, &, = 0.3951268038, and & = 0. In addition,
pE, + &5 ~0.008218637519 < 1. Therefore, the result of
Theorem 3 applies to problem (38) with f (¢,u) and h (¢, u)
given above.

4. Existence Results for Inclusion Case

In this section, we extend the results to cover the inclusion
problem and prove the existence of solutions for problem (2)
by applying the fixed-point theorem [23]. We recall some
basic notations for the inclusion case [24-30].
For a normed space (X, | - ), let
Pq(X) ={y € P(x): yisclosed},

40
(R) ={y € (R): yiscompact and convex}. (40)

cp cv

A multivalued map F: [0,1] x R — P (R) is said to be
caratheodory if
(i) t — F(t,x) is measurable for each x € R

(i) x — F(t,x) is upper semicontinuous for almost
all t € [0,1]

Furthermore, a caratheodory function F is called
L'-Caratheodory if

(iii) for each a >0, there exist ¢, € L' ([0, 1], R*) such
that

IF (, )|l = sup{|vl: v € F (£, x)} < @, (t), (41)

for all x|l

For each y € C([0, 1], R), define the set of selections of F
by

Sk

<« and for a.e. t € [0,1].

={v e L'([0,1],R"): v(t) € F(t, y (1)), fora.e.t € [0,1]}.
(42)

S

Let (X,d) be a metric space induced from the normed
space (X; |- ). We have H;: P(X) x P(X) — R U{oo}
given by

H,; (A, B) = max{sup,.,d (a, B), sup,cpd (A, b)},  (43)

where d(A,b) =inf,.,d(a;b) and d(a, B) = inf, zd (a; ).
So, (£4(X),H,) is a metric space [31].

Lemma 4. Let X be a Banach | space. Let
F: [0,T] xR — P, (X) be an L'-Caratheodory multi-
valued map, and let ® be a linear continuous mapping from
L'([0,1], X) toC ([0, 1], X). Then, the operator

x — (©°Sp) (x) = O(Sg,) (44)

{yn}neNCY’ lf =00, X, = Xu;Vn YV and
vy, € F(x,), then y, € F(x,). Conversely, if F is completely
continuous and has a closed graph, then it is upper
semicontinuous.
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Definition 5. A function u € C([0, 1], R) is called a solution
of problem (2) if we can find a function f € L' ([0, 1],R)

(y(t) —1//(0

B
IO+,Wh(t) + TE+1

u(t) =I5 £ () -

+a,9Q[u] - a,0[u]] + a,Q[u].

For convenience, we denote

_ B
s - WW-y©)

11

with f(t) € F(t,u)a.e.on [0, 1] such that u(0) =a,Q[u],
u(1) = a,0[ul +a; Y, Iy, ,u(y;) and

Ik -1, h<1>+aszyl( I8 £ () = 167 b () )

I(+1) ICIT (a + B)

_ a+f
NEZORTO

(y(1) -y (0)) ((w(l)—

I'(a+p+1) ICIT (a + fB)

Our result is based on the following fixed-point theorem.

Theorem 5. LetU and U be, respectively, the open and closed
subsets of Banach space X, such that 0eU; let
xw:U— 2, (X) be multivalued and
xw):U— X e e single-valued such that y, (U) + x, (U) is
bounded. Suppose that

(a) x, is a contraction with a contraction k < (1/2)

(b) x, is u.s.c and compact
Then, either

(i) the operator inclusion Ax € x,x + x,x has a solution
forA=1or

(ii) there is an element u €0U such that Mu € y,u + x,u
for some A > 1, where 0U is the boundary of U

Theorem 6. Assume that
(NI) F: [0,1] xR — P, (R)is L'

(N2)  There exists a  continuous  function
@ € C([0,1],R*) and A € C([0,1],R") such that

- Carathéodory.

i . w (v ()
Jo () = {z U0 e O Ty

(v () -y (0) <<w 1

(45)
y(0) (v () = v ()"
T(B+1) +a 3|Z| 1 T(B+y+1) ’ (46)
—y(0)* (v (n) -y ()"

Faspen 9 3|Z|“’| r(a+/3+y+1) ' (47)

IF (¢, u)ll» = sup{lul: u € F(t,u)} < A()d (lul);

forall (t,u) € [0,1] x R.
(48)

(N3) Let h: [0,1] x R — R be a continuous functions
satisfying

lh(s,u) —h(s,0)|<&lu—1ul, Vu,u€Rand&>0.
(49)
(N4) There exists a number >0 such that
T
(50)

—_——<,
IAlo ()€ + %,

where & and @, are defined in (21) and (22), respec-
tively. Then, problem (2) has at least one solution on
[0,1] if EA, < (1/2).

Proof. Let D = {u € U: |lul <&} be an open set in U. Define
the multivalued operator y,: D — 2 (U) by

_ B
L0 -yOF < I3 f (1) +a Zm 1557 (1) + aygQlu] - ay [u]) +a,0[u] }

(51)
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and define the single-valued operator y,: D — U by

£) -y (0)°
Xz(u)z{zEU:z(t)=—I§+)v,h(t)—W< h(1)+a3z;411/3yh )>]> (52)

Observe that y = x; + x,, and it is given by

t _ (x+ﬂ—1 ,
O (W(t)l.,(aw:;)); w(s)f(s)ds

Y(w) = {z(t) ¢ C([0,1],R): z(t) = J

J (y(®) -y ()"
0

) w(s)h(s)ds

(V/(t) - V/(O))ﬁ 1 (w(l) _ w(s))oﬁ—ﬁ—l ,
" (T(a+p) Uo ['(a+p) v (s)f (s)ds

_ p-1
[ DOy g gas (53)

I'(p)

at+f+y-1,
s z."’z < J-O ll](rlli(o( Z/és-)l-))/) W(S)f(S)ds

I (v (1) -y ()
0 L(B+y)

w(s)h(s)ds)

+a,0Q[u] —azﬂ[u]:| +a,Qful, f € Sg, ]»

Indeed, if z € y (u), then there exists f € Si,, such that

Seu ={f € L' ([0,1],R"): f(t) € F(t,u(t)), forae.t € [0,1]}. (54)

We will show that the maps y,; and y, satisty the hy-
potheses of Theorem 5. This will be done in several
steps. O



Journal of Mathematics 13

Step 1. x, is a contraction. Let u, 7 € R, by (N3), we have

() -yt

. ) v (s)|h(s,u(s)) — h(s,i(s))lds

s~ ol <sopon |- .

_ B _ B-1.
@ -yO) <Jo 205 10) 1(/(S)lh(s u(s)) —h(s,i(s))lds

[¢IT (a + B) I'(B)
W(S))ﬁ y-1. N
|a3| Z |/,11 J 1"([)’ Y (s)h(s,u(s)) —h(s,u(s))lds
_ (v -y GO -y ((®-y©)
=l _”"Sup““)’”{ FE+) (@) < @+
(55)
v (0))
+[as] Z ] W)H
G-y @) -y (@) -y
- %””’”"[ T@+) T KT@+p ( TB+ )
y ()™
\“3|Z|M W)]
<EAflu -l
which proves that y, is a contraction map. Step 2. x, (u) is convex for all u € D. Let z,,z, € x, (). We

select f, f, € Sg,, such that, for each t € [0, 1], we obtain

_ B
2 (1) = Ipy fi (D) + %<ﬁ me 1" £ () +a1¢mu1—aze[u1>+alo[ul (56)

fori=1,2. Let ¢t € [0,1]and ¢ € [0, 1]. So, we have

t _ OH-ﬁ—l ,
(2, + (1 - )z,] (1) = JO (w(t)r(awfslg Y [f1 () +(1 - 9)f,(9)]ds

(W (&) =y ) [ [ (y(1)—y(s)*F !
MNTCET) (Jo Favp VO

[9f 1)+ (1= 9)f2(9)]ds +|as] ). || (57)

n(y () -y ()P
'Jo T(a+pB+7) y(s)

Jof1()+ A =¢)f,(s)]ds +a,[¢+ (1 - $)]eQ[u]
—a,[¢p+(1—P)10[u]) +a,[¢ + (1 - §)1Q[ul.
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Since S, is convex, it follows that ¢z, + (1 - ¢)z, € x, (1) For a positive number ¢, let B, = {u € U: |lul| <¢} be a
and then y, (u) is convex-valued. bounded ball in D. So, for all z € x,, u € B, there exists

f €Sk, such that

Step 3. x, is compact and upper semicontinuous. This will be
done in various statements. First, we show that y, maps
bounded sets into bounded sets in U.

_ w0
z2(t) = Ig, (1) AU 1) 4 <Ig‘f,wf( +a3Zy, I8 £ (1) + a,9Q[u] —aze[u]> +a,Qful. (58)

(T(B+1)

By using (N2), for each t € [0, 1], we have

t atf-1,
1z (t)] < JO (W(t)m +(S£ w(S)If (s, u(s))lds

~ B _ at+fp-1,
L v®-y(0) (Jo (y(D) - y() Y(If (s,u(s))lds

ICIT (a + B) I'(a+p)

; at+f+y-1,
ol 3l [ Iy 1 s ol

I'(a+p+7y)

+ lal(pQ [u]| —|a29[u]|) +|a1(2[u]|

(w(1) - w(0)**

(v (1) =y (0))*F (w(t)—w(O))ﬁ(

<[IAll@ (Jlue ||)[ Tatf+1) * 1T (a + B)

, (0) at+p+y
I%IZI/« r('fxlﬁ‘”wll) >]+a1mu](1+

Consequently,
lzll <l All@lulDA, + %), (60)

where &, and A, are defined in (22) and (47), respectively.
Second, we prove that y; maps bounded sets into equi-
continuous sets. Let 7,7, € [0,1] with 7, <7, and u € B;;
we have

I'(a+p+1)

(1) -y ()"

(59)
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7 _ s a+f-1 - s atf-17
IZ(Tz)—Z(Tl)ISJO [(v(r) = v() F(M%(T) V() ]w(s)lf(s,u(s))lds

a+f-1,

@) -y ) - (v(n) - v )]
ICIT (a + )

. at+f-1,
(jo S w(s>|f<s,u(s))|ds+|a3|ZIM

I'(a+p)
(61)

: N at+f+y-1,
. JZ (W(nf)(a f/(;i)w ()l f(s,u(S))|dS>

20w () —y ()™ + (v () ~ v ()™ — (v (r) - v (@)™
- I(a+p+1)

N [ (v (1) = v () = (y()) - v ()] (w(n —y(0)*F
ICIT (ac + ) T(a+B+1)

sl 3 e w<o>>“+’*”>.

IF(a+p+y+1)

In the above inequality, the right hand side tends to zero ~ completely continuous. Finally, we show x, has a closed
independent of u € B, as 1, — 7, — 0. Consequently, by ~ graph. Letu, — u,, z, € x; (1,,), and z, — z,. Then, we
the  Arzela-Ascoli  theorem, we conclude that  show that z, €y, (u,). Since z, €y, (u,), there exists
X1: D — P(U) is completely continuous and then y, is  z, € S, such that for each t € [0,1], we find that

(w () —v(0))

2 () = ol fu 0+ =r

< gfwfn(l)+a32y, 1607 £, (1) + a,9Q[u] - a, [u]>+alﬂ[u]. (62)

Now, we have to show that there exists z * € Sg, such
that for each t € [0, 1],

_ B
+M< S (1)+a3Zy, ‘Hﬁwf (1,) + a,9Q[u] - a,0 [u]>+aIQ[u]. (63)

z.(8) = I, f. (1) TG

Consider  the continuous  linear  operator
®: L' ([0,1],R) — U given by

(y () -y (0))

FrON® =I5y f O+ =y

( I4,]‘(1) +a, Zy, ’Hﬁwf(nl) +a,9Q[u] —a29[u]> +a,Qful. (64)
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Note that

tx+ - 0 4 a++
|2 () = 2. (O] = supyeo |Ioh (£ (B) = . (B) + %( HACHOESNE) +a;ZM, i

(65)

() = fo () + a19Q[u] - a,0[ul)|,

which goes to 0, as n — 0. It follows by Lemma 5 that @°Sy. is a closed graph op-
erator. Furthermore, we obtain z,(f) € ®(Sp’un). Since
u, — u,, we have

_ B
+M< V/f (1)‘“132.”1 ‘Hﬁwf 11,)+a1(pQ[u]—a29[u]>+a19[u], (66)

z, (t) = I f . (1) TG

for some z, € S, . Hence, y; has a closed graph (and Step 4. There exists an open set Q<C([0,1],R) with
therefore has closed values). Hence, we conclude that y, isa ~ u ¢ Ay, (1) for any A > 1 and for each u €0@. Take A > 1. Let u
compact multivalued map, upper semicontinuous with be a solution of (2); then, there exists f € L' ([0, 1], R) with
convex closed values. feSs fu such that for t € [0, 1], we have

(w(t) -y ()™ (y@®) -y "

u(t) = T(a+p) v (s)f (s)ds - jo NG v (s)h(s)ds
- w(0) 1) - a1, - -1
" (w((r)(a f,(g))) “0 Wil a‘l/_:z)) V(9 ()ds - L%w(ﬂh(s)ds

a+f+y-1,
tas Z Ui < JO r)(‘x + ;S_)'_),y) Z (S)f (S)dS

" 4 pry-1
REURT ws)h(s)ds)mlgomu] - ,00ul] + a0

at+f-1,

(0] < JO (y () - y(s))

(y(@®) -y
g YOOl —jo—w(s>|h(s>|ds

r'(p)

) — w(0) 1) - wtp-1. 1
(wéf)(af;))) [Jo i ocmr(SIJ’))) Yy ©If (9)lds - Jo i Z)(S)) w(s)lh(s)|ds (67)

z (v (n) - y(9)F7 " (y(n) -y

+a3;”’<Jo Farfryp VOO Jo TRy VOhEs

+ a,9Q[u] — a,0[u]] + a,Q[u]

(y(1) -y ()™ (y(1) -y () (y1)-y(0)
<||A||®(||ull){ B+ T(B+1) + T + )

Je@-yo)™ wm-y©)F ta IZI e ) =y (0)"F

T(a+pf+1) T(B+1) % F(oc+,8+y+1

C(y(n) -y (0) ( (w(l)—w(o»ﬂ)
TBry+l) ta Q| 1+ G (@ + B)

slAle(lul)¥ + ),
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which implies

Il <1 (68)
IAl® (lul)E + &,

By (N4), there exists 7> 0 such that ||u]| # 7. Define a set
Q ={u € C([0,1],R): [lul < 7}. (69)

Note that the operator y,: @ — 2 (U) is a compact
multivalued map, u.s.c. with convex closed values. With the
given choice of @, it is not possible to find u €d@ satisfying
u € Ay (u) for some A > 1. Consequently, the operator y (1)
has a fixed point u € @, which is a solution of problem (2).

Example 2. Consider
problem:

the following boundary value

DD (Dgu(t) + h(tu (b)) € F(tu(t), 0<ap<l,
u(0) = a,Q[ul,

2
u(1) = a,0[ul +as Y wlh. u(n),

i=1

(70)

where F: C([0,1],R) — % (R) is a multivalued map given
by

|u] (1+2t) (I+1)
u— F(t,u) = + , COSU + .
|u] + 11 9 3
(71)
For f € F, we obtain
1+2¢ 1+t 5
| f] < max i +( ), +7( ) <= (72)
|u] + 11 9 3 3

Here, o= (1/3),5 = (1/4), A,
a, = (3/4),a;=1,m=2,

py = (1/7),u, = (3/7),ny = (1/5), 1, = (4/5),y = (1/2),
and v (t) =3t* + 2. Clearly, v is an increasing function on
[0,1] and y () = 6t is a continuous function on [0, 1].

Clearly,

I|F (t, )l = supf{lul: u € F(t,u)} <A (ull);

(s) =A,(s) =s,a, =0,

(73)
forall (t,u) € [0,1] X R,
with [|[A]| = 1and @ (||ul]) = (5/3).
Next, we take
4 4t
h(t,u):—(sinu+t e ), (74)
217 26 + 3t

where the function h satisfies the assumption of Theorem 6.
By using the given data, we find &=
0.0184331797, { = —0.378649448, A, = 6.552924874, € =
2.343253024, and &, = 0. Thus,

[ull >Al@(lul)E + &, = 3.905421707, (75)

17

and we have

1
&N, = 0.1207912419 < 3 (76)

Therefore, all the conditions of Theorem 6 are satisfied.
Then, there exists at least one solution of problem (70) on
[0,1].
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