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.e newest generalization of the Banach contraction through the notions of the generalized F-contraction, simulation function,
and admissible function is introduced..e existence and uniqueness of fixed points for a self-mapping on complete metric spaces
by the new constructed contraction are investigated..e results of this article can be viewed as an improvement of themain results
given in the references.

1. Introduction and Preliminaries

In 1922, Banach proved the following famous and funda-
mental result in fixed-point theory [1]. Let (X, d) be a
complete metric space. Let T be a contractive mapping on X;
that is, there exists q ∈ [0, 1) satisfying

d(Tx, Ty)≤ q.d(x, y), ∀x, y ∈ X. (1)

.en, there exists a unique fixed point x0 ∈ X of T.
.is theorem, which is called the Banach contraction
principle that is a forceful tool in nonlinear analysis [9–14]
and fixed-point theory, is a fascinating subject, with an
enormous number of algorithms and applications in
various fields of mathematics, see, e.g., [15–18]. .is
principle has been generalized in different directions by
various researchers. One of them is the following theorem
that is presented by Bryant.

Theorem 1 (see [2]). If f is a mapping of a complete metric
space into itself and if, for some positive integer k, fk is a
contraction, then f has a unique fixed point.

It is obvious that fk is continuous but there are examples
that show it cannot imply the continuity of f and so
.eorem 1 is a real extension of the Banach principle.

In 1969, Sehgal [19] proved the following interesting
generalization of .eorem 1.

Theorem 2 (see [19]). Let (X, d) be a complete metric space,
q ∈ [0, 1), and T: X⟶ X be a continuous mapping. If for
each x ∈ X there exists a positive integer k � k(x) such that

d T
k(x)

x, T
k(x)

y ≤ q d(x, y), (2)

for all y ∈ X, then T has a unique fixed point u ∈ X.
Moreover, for any x ∈ X, u � limn⟶∞Tnx.

Several researchers are interested to generalize Banach
contraction. Here, we state two of them. Wardowski [8]
generalized the Banach contraction as follows.

Definition 1 (see [8]). Let (X, d) be a metric space. .e
mapping T: X⟶ X is called an F-contraction, if there
exist F ∈F and τ > 0 such that, for all x, y ∈ X,

d(Tx, Ty)> 0⇒ τ + F(d(Tx, Ty))≤F(d(x, y)), (3)

where F: (0,∞)⟶R is strictly increasing limn⟶∞F(αn) �

− ∞ iff limn⟶∞αn � 0 and there exists a number k ∈ (0,1)

such that limα⟶0+αkF(α) � − ∞.
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Notation. .e family of all functions F: (0, +∞)⟶ R is
denoted byF (see [8]) if F satisfies the following conditions:

(F1) F is strictly increasing
(F2) for every sequence αn  in (0, +∞), we have
limn⟶∞F(αn) � − ∞ iff limn⟶∞αn � 0
(F3) there exists a number k ∈ (0, 1) such that
limα⟶0+αkF(α) � − ∞

.e collection of all functions F: (0, +∞)⟶ R is
denoted by G ( [20]) if F satisfies the following conditions:

(G1) F is strictly increasing
(G2) there exists a sequence αn  in (0, +∞) such that
limn⟶∞F(αn) � − ∞, or inf F � − ∞
(G3) F is a continuous mapping

Another way to generalize the Banach contraction is
through the following notion.

Definition 2 (see [3, 21]). Let ζ: [0,∞) × [0,∞)⟶ R be a
mapping, then ζ is called a simulation function if it satisfies
the following conditions:

(ζ1) ζ(0, 0) � 0
(ζ2) ζ(t, s)< s − t for all t, s> 0
(ζ3) if tn , sn  are sequences in (0,∞) such that
limn⟶∞tn � limn⟶∞sn > 0 and tn < sn for all n ∈ N,
then

limsup
n⟶∞

ζ tn, sn( < 0 (4)

We denote the set of all simulation functions by Z.
Ozturk [4], by using the simulation function and

Wardowski [8] idea, extended .eorem 2 as follows.

Theorem 3 (see [4]). Let (X, d) be a complete metric space
and T: X⟶ X a mapping which satisfies the condition: If
there exist f ∈ F and τ > 0 such that for each x ∈ X there is a
positive integer n(x) such that for all y ∈ X,

d T
n(x)

(x), T
n(x)

(y) > 0⇒ζ F(d(x, y)), τ(

+ F d T
n(x)

(x), T
n(x)

(y)  ≥ 0,

(5)

then T has a unique fixed point z ∈ X and Tn(x0)⟶ z for
each x0 ∈ X, as n⟶∞.

.e first aim of this paper is to generalize .eorem 2 by
introducing a more general contraction type mapping
through the notions of the generalized F-contraction,
simulation function, and admissible function. .en, by the
new constructed contraction and suitable conditions, the
existence and uniqueness of fixed points are investigated.

.e following definitions and preliminary results are
needed in the next section.

Definition 3 (see [6, 22]). Let α: X × X⟶ (0, +∞) be a
given mapping. .e mapping T: X⟶ X is said to be an
α-admissible, whenever α(Tx, Ty)≥ 1 provided α(x, y)≥ 1
and x, y ∈ X.

Definition 4 (see [23]). An α-admissible map T is said to
have the K-property, while for each sequence xn ⊆X with
α(xn, xn+1)≥ 1 for all n ∈ N0, the nonnegative integer
numbers, there exists a positive integer number k such that
α(Txn, Txm)≥ 1, for all m> n≥ k.

Lemma 1 (see [5]). Let F: (0, +∞)⟶ R be an increasing
function and αn  be a sequence of positive real numbers.
5en, the following holds:

(a) if limn⟶∞F(αn) � − ∞, then limn⟶∞αn � 0
(b) if inf F � − ∞ and limn⟶∞αn � 0, then limn⟶∞

F(αn) � − ∞

Lemma 2 (see [24]). Let (X, d) be a metric space and xn  be
a sequence in X such that limn⟶∞d(xn, xn+1) � 0. If xn  is
not a Cauchy sequence, then there exist ε> 0 and two se-
quences of positive integers nk  and mk  with nk >mk > k

such that d(xmk
, xnk

)> ε, d(xmk
, xnk− 1)< ε, and

(1) limk⟶∞d(xmk
, xnk

) � ε
(2) limk⟶∞d(xmk− 1, xnk

) � ε
(3) limk⟶∞d(xmk

, xnk+1) � ε
(4) limk⟶∞d(xmk− 1, xnk+1) � ε

2. Main Results

In this section, the main achievements of this article are
presented. .e existence and uniqueness of fixed points of
the self-mappings on complete metric spaces satisfying the
generalized F-contraction (relation (6) of the following
theorem) with suitable assumptions are established by the
first theorem. .e second theorem can be viewed as a
generalized version of Suzuki’s theorem given in [21]. Of
course it ensures existence of fixed points for self-mappings
under suitable hypothesis.

Theorem 4 Let (X, d) be a complete metric space and
α: X × X⟶ (0, +∞) be a symmetric function, where
α(x, y)≥ 1 and T: X⟶ X be a continuous mapping
which satisfies the condition: if there exist F ∈ F, τ > 0,
L≥ 0, and simulation function ζ such that for all x ∈ X

there is a positive integer n(x) such that for all y ∈ X and
d(Tn(x)(x), Tn(x)(y))> 0,

ζ τ + α(x, y)F d T
n(x)

x, T
n(x)

y  , F m(x, y) + LN1(x, y)(  ≥ 0,

(6)

where

2 Journal of Mathematics



m(x, y) � max d(x, y), d x, T
n(x)

x , d y, T
n(x)

y ,
d x, T

n(x)
y  + d y, T

n(x)
x 

2
⎧⎨

⎩

⎫⎬

⎭,

N1(x, y) � min d x, T
n(x)

x , d x, T
n(x)

y , d y, T
n(x)

x  ,

(7)

then T has a unique fixed point.

Proof. We shall built a recursive sequence xk  as follows:
for the chosen arbitrary point x0 ∈ X with n0 � n(x0), we set
x1 � Tn0x0 and inductively we get xi+1 � Tni xi with
ni � n(xi).

We assert that xi ≠ xi+1 for all i ∈ N0. Suppose, on the
contrary, there exists i0 ∈ N0 such that xi0

� xi0+1 � Tni0xi0
.

.en, xi0
turns to be a fixed point of Tni0 . On the other hand,

Txi0
� T T

ni0xi0
  � T

ni0 Txi0
 . (8)

.us,Txi0
form a fixed point ofTni0 . IfTxi0

� xi0
, then we

conclude that T has a fixed point and that terminate the
proof. Suppose, on the contrary, that Txi0

≠xi0
and hence

d(Tni0(Txi0
), Tni0(xi0

))> 0. .en, by (6), we have

0≤ τ + α xi0
, Txi0

 F d T
ni0xi0

, T
ni0Txi0

  , F m xi0
, Txi0

  + LN1 xi0
, Txi0

   ,

≤F m xi0
, Txi0

  + LN1 xi0
, Txi0

   − τ + α xi0
, Txi0

 F d T
ni0xi0

, T
ni0Txi0

   .
(9)

Hence,

τ + F d xi0
, Txi0

   � τ + F d T
ni0xi0

, T
ni0Txi0

  

≤ τ + α xi0
, Txi0

 F d T
ni0xi0

, T
ni0Txi0

  

≤F m xi0
, Txi0

  + LN1 xi0
, Txi0

  .

(10)

However,

m xi0
, Txi0

  � max d xi0
, Txi0

 , d xi0
, T

ni0xi0
 , d Txi0

, T
ni0Txi0

 ,
d xi0

, T
ni0Txi0

  + d Txi0
, T

ni0xi0
 

2
⎧⎨

⎩

⎫⎬

⎭ � d xi0
, Txi0

  ,

N1 � min d xi0
, T

ni0xi0
 , d xi0

, T
ni0Txi0

 , d Txi0
, T

ni0xi0
   � 0.

(11)

.erefore,

τ + F d xi0
, Txi0

  ≤F d xi0
, Txi0

  . (12)

So, τ ≤ 0, which is a contradiction. Consequently, we
deduce that for all i ∈ N0, xi ≠xi+1. .en, d(xi+1, xi)> 0, by
(6),

τ + F d xi+1, xi+2( (  � τ + F d T
ni xi, T

ni xi+1( (

≤ τ + α xi, xi+1( F d T
ni xi, T

ni xi+1( (

≤F m xi, xi+1(  + LN1 xi, xi+1( ( 

≤F m xi, xi+1(  + L d xi+1, xi+1( ( 

� F m xi, xi+1( ( .

(13)
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.en,

τ + F d xi+1, xi+2( ( ≤F m xi, xi+1( ( . (14)

However,

m xi, xi+1(  � max d xi, xi+1( , d xi, T
ni xi( , d xi+1, T

ni xi+1( ,
d xi, T

ni xi+1(  + d xi+1, T
ni xi( 

2
 

� max d xi, xi+1( , d xi+1, xi+2( ,
d xi, xi+2( 

2
 

≤max d xi, xi+1( , d xi+1, xi+2( ,
d xi, xi+1(  + d xi+1, xi+2( 

2
 

≤max d xi, xi+1( , d xi+1, xi+2(  .

(15)

If d(xi0+1, xi0+2)≥ d(xi0
, xi0+1) for some i0 ∈ N0, then

m xi0
, xi0+1 ≤ d xi0+1, xi0+2 , (16)

and since F is strictly increasing,

F m xi0
, xi0+1  ≤F d xi0+1, xi0+2  , (17)

so, it follows from (14) that

τ + F d xi0+1, xi0+2  ≤F d xi0+1, xi0+2  . (18)

So, τ ≤ 0, which is a contradiction. Consequently,

d xi+1, xi+2( <d xi, xi+1( , ∀i ∈ N0. (19)

Hence, from (14) and (19), we have

τ + F(d xi+1, xi+2( ≤F d xi, xi+1( (  (20)

or

F(d xi+1, xi+2( ≤F d xi, xi+1( (  − τ. (21)

In general, one can get

F(d xi+1, xi+2( ≤F d x0, x1( (  − iτ. (22)

Hence,

lim
i⟶∞

F d xi, xi+1( (  � − ∞. (23)

So, from (F2), we have

lim
i⟶∞

d xi, xi+1(  � 0. (24)

.erefore, with notice to (F3), there exists k ∈ (0, 1)

such that

lim
i⟶∞

d xi, xi+1( ( 
k
F d xi, xi+1( (  � 0. (25)

Now, (22) implies that

d xi, xi+1( ( 
k
F d xi, xi+1( ( ≤ d xi, xi+1( ( 

k
F d x0, x1( (  − iτ( .

(26)

.en, it can be easily seen that

lim
i⟶∞

i d xi, xi+1( ( 
k

� 0. (27)

So, there exists i0 ∈ N0 such that

d xi, xi+1( ≤
1

i
1/k, ∀i≥ i0. (28)

Consequently, if m> n> n0, then

d xn, xm( ≤
m

j�n

d xj, xj+1 

≤
m

j�n

1
j

(1/k)

≤ 

∞

j�n0

1
j

(1/k)
.

(29)

Since k ∈ (0, 1), the series 
∞
j�n0

1/j(1/k) is convergent.
.erefore, xi  is a Cauchy sequence, and since X is com-
plete, there exists u ∈ X such that xi⟶ u as i⟶∞.As a
next step, we show that u is a fixed point of Tn(u). Indeed, due
to the continuity of T, we have

d(Tu, u) � lim
i⟶∞

d Txi, xi(  � lim
i⟶∞

d xi+1, xi(  � 0, (30)

and so u is a fixed point of T. For proving the uniqueness of
the fixed point, let us consider u and v be two distinct fixed
points and n � n(u). So, we have d(u, v)> 0, and hence, we
get that d(Tu, Tv)> 0; then, by (6) and (ζ2),

0≤ ζ τ + α(u, v)F(d(Tu, Tv)), F m(u, v) + LN1(u, v)( ( 

≤F m(u, v) + LN1(u, v)(  − (τ + α(u, v)F(d(Tu, Tv))).

(31)

.erefore,

τ + α(u, v)F(d(Tu, Tv))≤F m(u, v) + LN1(u, v)( . (32)
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Hence, (32) implies that

τ + F(d(u, v)) � τ + F(d(Tu, Tv))

≤ τ + α(u, v)F(d(Tu, Tv))

≤F m(u, v) + LN1(u, v)( 

≤F(m(u, v) + L d(u, Tu))

� F(m(u, v) + 0)

� F(m(u, v)),

(33)

where

m(u, v) � max d(u, v), d(u, Tu), d(v, Tv),
d(u, Tv) + d(v, Tu)

2
 

� max d(u, v), 0, 0,
d(u, v) + d(v, u)

2
 

� d(u, v).

(34)

So, we have

τ + F(d(u, v))≤F(d(u, v)), (35)

which is a contradiction, as τ > 0. So, u � v. □

Corollary 1. 5eorem 3.3 of [7] of 5eorem 4 by taking
n(x) � 1. Because in this case,

ζ τ + α(x, y)F(d(Tx, Ty)), F m(x, y) + LN1(x, y)( ( ≥ 0.

(36)

Now, by (ζ2), we have

0≤ ζ τ + α(x, y)F(d(Tx, Ty)), F m(x, y) + LN1(x, y)( ( 

≤F m(x, y) + LN1(x, y)(  − (τ + α(x, y)F(d(Tx, Ty))).

(37)

5erefore,

τ + α(x, y)F(d(Tx, Ty))≤F m(x, y) + LN1(x, y)( .

(38)

Corollary 2. 5eorem 3 is contained in 5eorem 4 by taking
m(x, y) � d(x, y), α(x, y) � 1, and L � 0. Also,5eorem 4 is
reduced to theorem [8] by setting n(x) � 1.

.e following example shows that if the mapping T

satisfies the condition of .eorem 4, it cannot guarantee in
general the continuity of the mapping T.

Example 1. Let X � R denote the real numbers with the
usual metric d. Define function T: X⟶ X by

Tx �
1, x ∈ Q,

0, x ∈ Qc
.

 (39)

.en, T discontinues at each point of X, and T2 � 1. If α
is an arbitrary element of [0, 1), then

∀x ∈ X,∃nx � 2; ∀y ∈ X: d T
nx x, T

nx y(  � 0≤ αd(x, y).

(40)

Now, it is obvious that the function ζ(t, s) � αs − t of
condition (6) of .eorem 4 on [0,∞) × [0,∞) is a simu-
lation function and T satisfies following condition:

ζ d T
n
x, T

n
y( , d(x, y)( ≥ 0, (41)

but T discontinues at each point of X. Moreover, T satisfies
all the assumptions of .eorem 4, when L � 0 and the
unique fixed point of T is x � 1 and Picard’s iteration of T;
that is, if y ∈ X is an arbitrary point of X, then Tn(y) is
convergent to the fixed point.

Theorem 5. Let (X, d) be a complete metric space and
α: X × X⟶ (0, +∞) a symmetric function, where
α(x, y)≥ 1. Assume that T: X⟶ X is a mapping in which
there exist F ∈ G, τ > 0, and the simulation function ζ such
that for all x, y ∈ X with Tn(x)x≠Tn(x)y, where n(x) is a
positive integer and 1/2d(x, Tn(x)x)≤d(x, y) implies

ζ τ + α(x, y)F d T
n(x)

x, T
n(x)

y  , F(m(x, y)) ≥ 0,

(42)

where m(x, y) is defined as in 5eorem 4, satisfying the
following conditions:

(i) T is α-admissible,
(ii) there exists x0 ∈ X such that α(x0, Tx0)≥ 1,
(iii) if xn  is a sequence in X such that xn⟶ x as

n⟶∞ and α(xn, xn+1)≥ 1 for all n ∈ N0, then
α(xn, x)≥ 1 for all n ∈ N0, and

(iv) T has the K-property,

then T has a fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. .e recursive se-
quence xk  is inductively constructed as follows:
n0 � n(x0), and we set x1 � Tn0x0 and inductively get xi+1 �

Tni xi with ni � n(xi).
We assert that xi ≠xi+1 for all i ∈ N0. Suppose, on the

contrary, that there exists i0 ∈ N0 such that
xi0

� xi0+1 � Tni0xi0
. .en, xi0

turns to be a fixed point of Tni0 .
On the other hand,

Txi0
� T T

ni0xi0
  � T

ni0 Txi0
 . (43)

.us,Txi0
form a fixed point ofTni0 . IfTxi0

� xi0
, then we

conclude that T has a fixed point and that terminate the
proof. Suppose, on the contrary, that Txi0

≠xi0
and hence

d(Tni0(Txi0
), Tni0(xi0

))> 0. .en, by (42), we have

0≤ (τ + α xi0
, Txi0

 F d T
ni0xi0

, T
ni0Txi0

  , F m xi0
, Txi0

  ,

≤F m xi0
, Txi0

   − τ + α xi0
, Txi0

 F d T
ni0xi0

, T
ni0Txi0

   .

(44)

Hence,
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τ + F d xi0
, Txi0

   � τ + F d T
ni0xi0

, T
ni0Txi0

  

≤ τ + α xi0
, Txi0

 F d T
ni0xi0

, T
ni0Txi0

  

≤F m xi0
, Txi0

  .

(45)

However,

m xi0
, Txi0

  � max d xi0
, Txi0

 , d xi0
, T

ni0xi0
 , d Txi0

, T
ni0Txi0

 ,
d xi0

, T
ni0Txi0

  + d Txi0
, T

ni0xi0
 

2
⎧⎨

⎩

⎫⎬

⎭

� d xi0
, Txi0

  .

(46)

.erefore,

τ + F d xi0
, Txi0

  ≤F d xi0
, Txi0

  . (47)

So, τ ≤ 0, which is a contradiction. Consequently, we
deduce that, for all i ∈ N0, xi ≠ xi+1..en, d(xi+1, xi)> 0, and
so

1
2

d xi, T
ni xi(  �

1
2

d xi, xi+1( ≤d xi, xi+1( . (48)

Now, by (42),

τ + F d xi+1, xi+2( (  � τ + F(d T
ni xi, T

ni xi+1( 

≤ τ + α xi, xi+1( F(d T
ni xi, T

ni xi+1( 

≤F m xi, xi+1( ( .

(49)

Hence,

τ + F d xi+1, xi+1( ( ≤F m xi, xi+1( ( . (50)

However,

m xi, xi+1(  � max d xi, xi+1( , d xi, T
ni xi( , d xi+1, T

ni xi+1( ,
d xi, T

ni xi+1(  + d xi+1, T
ni xi( 

2
 

� max d xi, xi+1( , d xi+1, xi+2( ,
d xi, xi+2( 

2
 

≤max d xi, xi+1( , d xi+1, xi+2( ,
d xi, xi+1(  + d xi+1, xi+2( 

2
 

≤max d xi, xi+1( , d xi+1, xi+2(  .

(51)

If d(xi0+1, xi0+2)≥ d(xi0
, xi0+1) for some i0 ∈ N0, then

m xi0
, xi0+1 ≤ d xi0+1, xi0+2 , (52)

and since F is strictly increasing,

F m xi0
, xi0+1  ≤F d xi0+1, xi0+2  , (53)

so, it follows from (50) that

τ + F d xi0+1, xi0+2  ≤F d xi0+1, xi0+2  . (54)

Hence, τ ≤ 0, which is a contradiction. .erefore,

d xi+1, xi+2( < d xi, xi+1( , ∀i ∈ N0. (55)

Hence, from (50) and (55), we have

τ + F(d xi+1, xi+2( ≤F d xi, xi+1( (  (56)

or

F(d) xi+1, xi+2( ≤F d xi, xi+1( (  − τ. (57)

Consequently,

F(d xi+1, xi+2( ≤F d x0, x1( (  − iτ. (58)

Hence,

lim
i⟶∞

F d xi, xi+1( (  � − ∞. (59)

So, from (G2), we have

lim
i⟶∞

d xi, xi+1(  � 0. (60)

Now, we claim that xi  is a Cauchy sequence. If it is not
true, then by Lemma 2, there exist ε0 > 0 and two sequences
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of positive integers nk  and mk  with nk >mk > k such that
d(xmk

, xnk
)> ϵ0, d(xmk

, xnk− 1)< ε0, and

(L1) limk⟶∞d(xnk
, xmk

) � ε0
(L2) limk⟶∞d(xnk

, xmk− 1) � ε0

(L3) limk⟶∞d(xnk+1, xmk
) � ε0

(L4) limk⟶∞d(xnk+1, xmk− 1) � ε0
.erefore, the definition of m(x, y) implies

lim
k⟶∞

m xnk
, xmk − 1  � lim

k⟶∞
max d xnk

, xmk − 1 , d xnk
, T

n(x)
xnk

 , d xmk− 1, T
n(x)

xmk− 1 ,
d xnk

, T
n(x)

xmk− 1  + d xmk− 1, T
n(x)

xnk
 

2
⎧⎨

⎩

⎫⎬

⎭

� lim
k⟶∞

max d xnk
, xmk − 1 , d xnk

, xnk+1 , d xmk− 1, xmk
 ,

d xnk
, xmk

  + d xmk− 1, xnk+1 

2
⎧⎨

⎩

⎫⎬

⎭

� max ε0, 0, 0,
ε0 + ε0

2
  � ε0.

(61)

So,

lim
k⟶∞

m xnk
, xmk− 1  � ε0. (62)

On the other hand, since limk⟶∞d(xnk
, xmk− 1) � ε0 > 0

and limk⟶∞d(xnk
, xnk+1) � 0, with considering a subse-

quence if it is needed, one can suppose that there exists
k1 ∈ N such that for any k> k1 and nk >mk > k,

d xnk
, xnk+1 ≤d xnk

, xmk− 1 . (63)

So, it is obvious that, for all k> k1 and nk >mk > k,
1
2

d xnk
, T

n(x)
xnk

  �
1
2

d xnk
, xnk+1 < d xnk

, xmk− 1 . (64)

Also, using the K-property, there exists k2 ∈ N such that

α xnk
, xmk− 1 ≥ 1, ∀k> k2. (65)

If k≥max k1, k2 , then it follows from (65) that

τ + F d T
n(k)

xnk
, xmk− 1  ≤ τ + α xnk

, xmk− 1 F

· d T
n(x)

xnk
, T

n(x)
xmk− 1  

≤F m xnk
, xmk− 1  .

(66)

Letting n⟶∞, the continuity of F through (L1) and
(62) implies

τ + F ε0( ≤F ε0( , (67)

which is contradicted by τ > 0. Consequently, xi  is a
Cauchy sequence in the complete metric space X. Hence,
there exists u ∈ X such that xi⟶ u, as n⟶∞. To
complete the proof, we show that u is a fixed point of T. We
first claim, for all n≥ 0, that

1
2

d xi, xi+1( ≤ d xi, u( , or
1
2

d xi+1, xi+2( ≤ d xi+1, u( .

(68)

In fact, if we assume that, for some i0 ≥ 0, both of them
are false, then
1
2

d xi0
, xi0+1 >d xi0

, u , and
1
2

d xi0+1, xi0+2 > d xi0+1, u .

(69)

Hence, (55) implies

d xi0
, xi0+1 ≤d xi0

, u  + d u, xi0+1 

<
1
2

d xi0
, xi0+1  +

1
2

d xi0+1, xi0+2 

≤
1
2

d xi0
, xi0+1  +

1
2

d xi0
, xi0+1 

� d xi0
, xi0+1 ,

(70)

which is a contradiction and the claim is proved.
Now, let us begin with the first part of (68); that is,

suppose that
1
2

d xi, xi+1( ≤ d xi, u( , (71)

and on the contrary, assume that Tu≠ u. Without loss of
generality, one can imagine that Txi ≠Tu, for all i ∈ N0
(because if xi+1 � Txi � Tu for infinite values of i, then
uniqueness of the limit concludes that Tu � u). .en, from
(45) and (iii), we get

τ + F d xi+1, Tu( (  � τ + F d Txi, Tu( ( 

≤ τ + α xi, u( F d Txi, Tu( ( 

≤F m xi, u( ( .

(72)

And since F is continuous on (0, +∞), and d(u, Tu) > 0,
as i⟶∞, we get

τ + F(d(u, Tu))≤F lim
i⟶∞

 m xi, u( ( . (73)

However,
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m xi, u(  � max d xi, u( , d xi, xi+1( , d(u, Tu),

d xi, Tu(  + d u, xi+1( 

2
.

(74)

So, we have

limi⟶∞m xi, u(  � max 0, 0, d(u, Tu),
d(u, Tu) + 0

2
 

� d(u, Tu).

(75)

.erefore, if d(u, Tu)≠ 0, then from (73), we have

τ + F(d(u, Tu))≤F(d(u, Tu)), (76)

which is contradicted, as τ > 0. So, d(u, Tu) � 0, i.e., Tu � u.
Finally, if we assume that the second part of (68) is true, i.e.,

1
2

d xi+1, xi+2( ≤d xi+1, u( , (77)

then by using the same manner, we can prove that
d(u, Tu) � 0, i.e., Tu � u.

Suppose that u and v are two fixed points of T. If u≠ v,
then d(Tu, Tv)> 0. Furthermore, α(u, v)≥ 1, because
u, v ∈ Fix(T). It is also clear that 1/2d(u, Tu) � 0<d(u, v).
Hence, (45) implies

τ + F(d(u, v)) � τ + F(d(Tu, Tv))

≤ τ + α(u, v)F(d(Tu, Tv))

≤F(m(u, v)),

(78)

where

m(u, v) � max d(u, v), d(u, Tu), d(v, Tv),
d(u, Tv) + d(v, Tu)

2
 

� max d(u, v), 0, 0,
d(u, v) + d(v, u)

2
 

� d(u, v).

(79)

So, we get

τ + F(d(u, v))≤F(d(u, v)), (80)

which is a contradicted by τ > 0 and so u � v. .is completes
the proof. □

Corollary 3. If in 5eorem 5, we put n(x) � 1, then

ζ(τ + α(x, y)F(d(Tx, Ty)), F(m(x, y)))≥ 0. (81)

Now, by (ζ2), we have

0≤ ζ(τ + α(x, y)F(d(Tx, Ty)), F(m(x, y)))

≤F(m(x, y)) − (τ + α(x, y)F(d(Tx, Ty))).
(82)

5erefore,

τ + α(x, y)F(d(Tx, Ty))≤F(m(x, y)). (83)

Hence, we get 5eorem 3.3 of [7].
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