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In this paper, we introduce fractional Boas transforms and discuss some of their properties. We also introduce the notion of
wavelets associated with fractional Boas transforms and give some results related to their vanishing moments. Finally, a
comparative study of Hilbert transforms and fractional Boas transforms is done.

1. Introduction

)e ordinary transformations have been replaced with the
fractional ones, which play a significant role in information
processing. )is transition has occurred naturally due to its
various applications in quantum mechanics and optics and
purvey us a tool, to characterize a signal completely, in the
form of the fractional order, which happens to be the new
degree of freedom or an appended parameter for encoding.
Among all fractional transforms, the fractional Fourier
transform (FRFT), a generalization of the Fourier transform,
has been widely studied. In the last three decades, the
fractional Fourier transform (FRFT) has played a substantial
role in signal processing, optical systems, and quantum
physics [1–3]. Another important variation of FRFT is ca-
nonical fractional FT [4], which is very effective in optical
information processing, since it is easily achievable using
simple optical setups and it renders a mere rotation of the
two important phase-space distributions: the Wigner dis-
tribution and the ambiguity function. )e canonical frac-
tional FTwas first introduced in [5] more than 90 years ago,
which was later improvised by various researchers for ap-
plications in quantum mechanics [3], optics [6], and signal
processing [2]. Another fractional transform, the complex
fractional FT, closely related to the canonical fractional FT
has been introduced in [7]. )e generalization of Legendre
transformation to the fractional Legendre transformation

was formulated on the lines of FRFT in [8]. Based on the
approach of eigenfunction kernel decomposition similar to
the one given in [9], some new fractional integral trans-
forms, including the fractional Mellin transform, a fractional
transform associated with the Jacobi polynomials, a Rie-
mann-Liouville fractional derivative operator, and a frac-
tional Riemann-Liouville integral, have been proposed in
[10]. In the analogy with canonical fractional Fourier and
Hankel transforms, the fractional Laplace and Barut-Gir-
ardello transforms have been introduced in [11]. )e ap-
plications of these transforms in science and engineering are
still subject of research.

In order to process one-sided signals, fractional cosine (CT)
and sine transforms (ST) were employed. )eir digital appli-
cation along with that of fractional Hartley transforms (HaT)
was discussed in [9, 12]. One may refer to [13] for image
watermarking scheme classified on the basis of variant fractional
transforms such as fractional discrete FT, HaT, CT, and ST.

Gabor [14] introduced the Hilbert transform (HT), an
important tool in optics, by constructing an analytic signal
from a one-dimensional signal. In 1950, its optical imple-
mentation was performed in two different approaches, when
Kastler [15] employed it for image processing, primarily for
edge enhancement, and Wolter [16] utilized it for spec-
troscopy. Further advancements in HT can be seen in [17].
)e efficacy of HT was raised with the origination of frac-
tional Hilbert transform (FRHT) by Lohmann et al. [18] in
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1996, which proffered an additional degree of freedom in the
form of a fractional order. Two ways of fractional HT were
proposed, which resulted in increase of fractional order and
provided improvements in image processing. )e first
method was based on a spatial filter with a fractional pa-
rameter and the other was based on the FRFT. For details,
one may see [6, 19]. )e FRHT for two-dimensional objects
was presented in [20]. Later, Tseng and Pei [13] formulated
an SSB modulation by considering the parameter of the
fractional phase in FRHT as a secret key. Zayed [21] gen-
eralized the HT in a distinctive way and suppressed the
negative frequency component of the signal in the FRF
domain to obtain the analytic part of a signal. Using FRHT,
Cusmariu [22] proposed three possible versions of fractional
analytic signals. Tao [23] employed FRFT and FRHT and
presented a secured SSB modulation system.

Paley and Wiener [24] studied a class of square inte-
grable functions whose Fourier transforms vanish outside
the intervals [− κ, κ] in great details. )is class denoted by B2

κ
was later named by Paley-Weiner class of entire functions
and a member of this class is a function band limited to
[− κ, κ]. Contrary to this study, Boas was curious in exam-
ining the properties of square integrable functions whose
Fourier transforms vanish on [− κ, κ], that is, the class
BR− [− κ,κ]. Boas noticed that these properties were not trivial
and led to the introduction of Boas transforms (BT) in [25].
Later, BT was studied by Goldberg [26], Heywood [27], and
Zaidi [28] who played a substantial role in outlining the
properties and the results. For complete review of BT, one
may read [29]. In a roundabout way, it was employed in the
theory of filters in electrical engineering. Recall from [29]
that any finite energy signal f on passing through a high pass
filter whose system transfer function is given by H(w) �

Ae
itow

, if |w|≥ 1;

0, if otherwise
􏼨 gives an output g such that

􏽢g(w) � H(w)􏽢f(w). )us, 􏽢g vanishes on (− 1, 1). Using
Boas’ theorems, one can characterize the output of the high-
pass filter in two ways: (i) A signal g is the output of a high-
pass filter if and only ifB(Bg) � − g. (ii) If g is an output of
high-pass filter, thenBg � Hg. Not much research has been
done about it until 2019, when Khanna et al. introduced the
notion of BTof wavelets (in a preprint form), which was later
published in [30]. During the same year, Khanna and
Kathuria [31] studied convolution of Boas transforms of
wavelets. )e motivation behind this study was the rela-
tionship between Boas and Fourier transforms of wavelets
and the observation that wavelets ψ(x) for which the Fourier
transform 􏽢ψ(η) vanishes almost everywhere on (− 1, 1) can
be characterized by the Boas transform of wavelets Bψ(x).
Since Boas transforms are closely related to Hilbert trans-
forms, readers must be interested in reading Hilbert
transforms of wavelets. For more details, see [30–40].

1.1. Plan of the Work. )e paper is organized as follows: In
Section 2, we introduce the notion of fractional Boas
transforms (FRBT) and give some properties in the form of
observations. Titchmarsh-type and Tricomi-type results are

established and a relationship between FRHT and FRBT is
given followed by an inversion formula of FRBT and frac-
tional Boas transform product theorem. In Section 3,
wavelets associated with FRBT are introduced and a rela-
tionship between two wavelets in terms of (Bθ − Hθ) op-
erator is given. We give a necessary and sufficient condition
under which FRBTof a given wavelet is multiple of the first-
order derivative of the given wavelet. We further give suf-
ficient condition for the higher vanishing moments of FRBT
of wavelets. Finally, we give a sufficient condition on two
wavelets to obtain a two-dimensional wavelet and the
number of vanishing moments of their convolution is given.

2. Fractional Boas Transforms

)e Boas transform of a function f ∈ L2(R), denoted by
Bf(x) in terms of principal value integral, is defined as

Bf(x) �
1
π

p.v. 􏽚
∞

0

f(x + u) − f(x − u)

u
2 sin(u)du

�
1
π

p.v. 􏽚
∞

− ∞

f(x + u)

u
2 sin(u)du,

(1)

for any x for which the integral exists.
)e relationship between the Boas transform B and the

Hilbert transform H of a function f is given by

(Bf)(x) � (Hf)(x) − Hf∗g􏼈 􏼉(x), (2)

where

g(x) �
2
π

􏼒 􏼓
1/2 1 − cos(x)

x
2􏼠 􏼡. (3)

)e FRHT of f ∈ L2(R) is defined as
Hθf(x) � cos(θ)f(x) + sin(θ)Hf(x), − π/2≤ θ≤ π/2. It
can be easily verified that the operator Hθ satisfies the
properties of linearity, translation-invariance, dilation-in-
variance, orthogonality, unitary nature, and linear inde-
pendence.)e linear independence property endorses one to
induce a novel base from a given set of linearly independent
functions.

Now, we define an operator Bθ on L2(R) by

Bθ � cos(θ)I + sin(θ)B,
− π
2
≤ θ≤

π
2

� Hθ − sin(θ)(H∗g),

(4)

where Bθ is called a fractional Boas transform. For
θ � π/2,Bθ � B.

Observations

(i) Bθ is translation-invariant; that is, if
eθ(x) � Bθf(t)􏼈 􏼉(x), then for translation opera-
tor Tc, we have

Tceθ(x) � eθ(x − c) � Bθ f(t − c)􏼈 􏼉(x) � Bθ Tcf􏼈 􏼉(x).

(5)
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(ii) Bθ is dilation-invariant. Let Dα denote the dilation
operator defined as Dαf(x) � f(αx), α ∈ R+.
)en BθDαf(x) � DαBθf(x) � eθ(αx). )us,
fractional Boas transform operator commutes with
Dα.

(iii) )e transformation Bθ: L2(R)⟶ L2(R) is a
nonsurjective bounded linear transform on L2(R).
In fact, we have

Bθf
����

����2≤ Hθf
����

����2 +‖sin(θ)(Hf∗g)‖2

≤ Hθf
����

����2 +|sin(θ)|‖Hf‖2‖g‖1.
(6)

Now, 􏽤Hθf(η) � e− iθ(sgnη) 􏽢f(η). Since f ∈ L2(R), it
follows from Parseval’s identity that
‖Hθf‖2 � ‖f‖2. )us,

Bθf
����

����2≤ ‖f‖2(1 +
���
2π

√
sin(θ))< +∞. (7)

(iv) Let h, f ∈ L2(R). )en 􏽒
R

h(x)Bθf(x)dx � 􏽒
R

B− θh(x)f(x)dx. In particular, if h � f and θ ≠ 0,
then 􏽒

R
f(x)Bθf(x)dx � 0. Further, 􏽒

R
(Bθf

(x))2dx � 􏽒
R

(B− θf(x))2dx.
Indeed, we have

􏽚
R

h(x)Bθf(x)dx � cos(θ)􏽚
R

h(x)f(x)dx + sin(θ )􏽚
R

h(x)Bf(x)dx

� 􏽚
R
B− θh(x)f(x)dx.

(8)

If h � f, then

􏽚
R

f(x) Bθf(x) − B− θf(x)( 􏼁dx � 0, (9)

which gives 􏽒
R

f(x)Bf(x)dx � 0. Further, if
h(x) � Bθf(x), then

􏽚
R

Bθf(x)( 􏼁
2dx � 􏽚

R
B− θ Bθf􏼈 􏼉(x)f(x)dx

� 􏽚
R
cos2(θ)f

2
(x)dx − sin2(θ)􏽚

R
B

2
f(x)f(x)dx

� 􏽚
R

B− θf(x)( 􏼁
2dx.

(10)

(v) For − π/2≤ θ1, θ2 ≤ π/2, we have

B
2
θ1f(x) � B2θ1f(x) + sin2 θ1( 􏼁(2(f∗g)(x)

− ((f∗g)∗g)(x)).
(11)

Indeed, we have

Bθ1Bθ2f(x) � Bθ1 Hθ2f(x) − sin θ2( 􏼁(Hf∗g)(x)􏽮 􏽯

� Hθ1Hθ2f(x) − sin θ2( 􏼁Hθ1H(f∗g)(x) − sin θ1( 􏼁 HHθ2f∗g􏼐 􏼑(x) + sin θ2( 􏼁((f∗g)∗g)(x)

� Hθ1+θ2f(x) − sin θ1 + θ2( 􏼁(Hf∗g)(x) + 2 sin θ1( 􏼁sin θ2( 􏼁(f∗g)(x)

− sin θ1( 􏼁sin θ2( 􏼁((f∗g)∗g)(x) ∵Hθ1Hθ2f(x) � Hθ1+θ2f(x)􏼐 􏼑

� Bθ1+θ2f(x) + 2 sin θ1( 􏼁sin θ2( 􏼁(f∗g)(x) − sin θ1( 􏼁sin θ2( 􏼁((f∗g)∗g)(x)

� Bθ1+θ2f(x) + sin θ1( 􏼁sin θ2( 􏼁 B
2
f(x) + f(x)􏼐 􏼑.

(12)
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)en, the iteration property of the fractional Boas
transform (11) can be easily obtained by taking
θ2 � θ1.

(vi) Let f ∈ L2(R) be a function such that
xnf(x) ∈ L2(R), for n ∈ N. )en,

Bθ x
n
f(x)􏼈 􏼉 � x

n
Hθf(x) − sin(θ)

1
π

􏽘

n− 1

k�0
x

k
􏽚
R

t
n− 1− k

f(t)dt + −
1
2πi

􏼒 􏼓
n

􏽚
1

− 1
􏽢f

(n)
(η)e

2πiηx
(sgnη − η)dη⎛⎝ ⎞⎠. (13)

Indeed, we have

Bθ x
n
f(x)􏼈 􏼉

� cos(θ)x
n
f(x) + sin(θ) x

n
f(x) −

1
π

􏽘

n− 1

k�0
x

k
􏽚
R

t
n− 1− k

f(t)dt − 􏽚
R
H t

n
f(t)􏼈 􏼉g(x − t)dt⎛⎝ ⎞⎠

� x
n
Hθf(x) − sin(θ)

1
π

􏽘

n− 1

k�0
x

k
􏽚
R

t
n− 1− k

f(t)dt + 􏽚
R
sgn(η) 􏽤t

n
f(t)(η)Ex􏽢g(− η)dη⎛⎝ ⎞⎠

� x
n
Hθf(x) − sin(θ)

1
π

􏽘

n− 1

k�0
x

k
􏽚
R

t
n− 1− k

f(t)dt + 􏽚
R

−
1
2πi

􏼒 􏼓
n
􏽢f

(n)
(η)e

2πiηxsgn(η)(1 − |η|)dη⎛⎝ ⎞⎠

� x
n
Hθf(x) − sin(θ)

1
π

􏽘

n− 1

k�0
x

k
􏽚
R

t
n− 1− k

f(t)dt + −
1
2πi

􏼒 􏼓
n

􏽚
1

− 1
􏽢f

(n)
(η)e

2πiηx
(sgn(η) − η)dη⎛⎝ ⎞⎠.

(14)

(vii) Let R denote the reflection operator, defined by
Rf(x) � f(− x), x ∈ R. )en, BθRf(x) �

RBθf(x) − 2 sin(θ)RBf(x).

We have

BθRf(x) � HθRf(x) − sin(θ)(HRf ∗g)(x)

� cos(θ)Rf(x) − sin(θ)RHf(x) + sin(θ)(HR(f∗g))(x)

� cos(θ)Rf(x) − sin(θ)RHf(x) − sin(θ)(RHf∗g)(x)

� RBθf(x) − 2 sin(θ)RHf(x).

(15)

(viii) It is easy to verify that if h(x) � Bθf(x), then

d
dx

Bθf(x)􏼈 􏼉 � Bθ
df(x)

dx
􏼨 􏼩. (16)

(ix) )e fractional Boas transform of a convolution of
two functions f and h can be expressed as a
convolution of one of the functions with the
fractional Boas transform of the other function;
that is,

Bθ(f∗ h)(x) � Bθf∗ h( 􏼁(x) � f∗Bθh( 􏼁(x). (17)

Next, we give a Titchmarsh-type result for the fractional
Boas transform.

Proposition 1. If f, ϑ ∈ L2(R), then

􏽚
R
Bθf(x)Bθϑ(x)dx≤􏽚

R
f(x)ϑ(x)dx. (18)

Proof. We compute
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􏽚
R
Bθf(x)Bθϑ(x)dx

� 􏽚
R

(cos(θ)f(x) + sin(θ)Bf(x))(cos(θ)ϑ(x) + sin(θ)Bϑ(x))dx

� 􏽚
R

cos2(θ)f(x)ϑ(x) + cos(θ)sin(θ)f(x)Bϑ(x) + sin(θ)cos(θ)Bf(x)ϑ(x)􏼐

+ sin2(θ)Bf(x)Bϑ(x)dx

� cos2(θ)􏽚
R

f(x)ϑ(x)dx + cos(θ)sin(θ)􏽚
R

f(x)Bϑ(x)dx

− sin(θ)cos(θ)􏽚
R

f(x)Bϑ(x)dx + sin2(θ)􏽚
R
Hf(x)Hϑ(x)dx

− sin2(θ)􏽚
R
Hf(x)(Hϑ∗g)(x)dx − sin2(θ)􏽚

R
(Hf∗g)(x)Hϑ(x)dx

+ sin2(θ)􏽚
R

(Hf∗g)(x)(Hϑ∗g)(x)dx

� 􏽚
R

f(x)ϑ(x)dx − 2sin2(θ)􏽚
R

􏽢f(η)􏽢ϑ(η)􏽢g(η)dη + sin2(θ)􏽚
R

􏽢f(η)􏽢ϑ(η)(􏽢g(η))
2dx

� 􏽚
R

f(x)ϑ(x)dx + sin2(θ) 􏽚
1

− 1
􏽢f(η)􏽢ϑ(η) − 2(1 − |η|) +(1 − |η|)

2
􏼐 􏼑dη

≤􏽚
R

f(x)ϑ(x)dx.

(19)

Next, we give a Tricomi-type result for the fractional
Boas transform. □

Proposition 2. Let f, ϑ be functions such that

(i) f, ϑ, 􏽢f, 􏽢ϑ ∈ L1(R)

(ii) 􏽢f(0) � 0

(iii) 􏽢f(η) vanishes for |η|> 1 and 􏽢ϑ(η) vanishes for |η|≤ 1

4en,Bθ f(x)Bθϑ(x) − ϑ(x)Bθf(x)􏼈 􏼉 � sin(θ)(Bϑ(x)

B− θf(x) − ϑ(x)Bπ/2− θf(x).

Proof. We have

Bθ f(x)Bθϑ(x) − ϑ(x)Bθf(x)􏼈 􏼉

� Bθ f(x)(cos(θ)ϑ(x) + sin(θ)Bϑ(x)) − ϑ(x)(cos(θ)f(x) + sin(θ)Bf(x))􏼈 􏼉

� Bθ sin(θ)(f(x)Bϑ(x) − ϑ(x)Bf(x))􏼈 􏼉

� sin(θ)(cos(θ)(f(x)Bϑ(x) − ϑ(x)Bf(x)) + sin(θ)B f(x)Bϑ(x) − ϑ(x)Bf(x)􏼈 􏼉)

� sin(θ)cos(θ)f(x)Bϑ(x) − sin(θ)cos(θ)ϑ(x)Bf(x) + sin2(θ)B f(x)Bϑ(x)􏼈 􏼉 − sin2(θ)B ϑ(x)Bf(x)􏼈 􏼉.

(20)

In view of Boas transform product theorem ()eorem
3.9, [31]), we have

Bθ f(x)Bθϑ(x) − ϑ(x)Bθf(x)􏼈 􏼉

� sin(θ)cos(θ)f(x)Bϑ(x) − sin(θ)cos(θ)ϑ(x)Bf(x) + sin2(θ)f(x)B
2ϑ(x) − sin2(θ)Bϑ(x)Bf(x)

� sin(θ)[Bϑ(x)(cos(θ)f(x) − sin(θ)Bf(x)) − ϑ(x)(cos(θ)Bf(x) + sin(θ)f(x))]

� sin(θ) Bϑ(x)B− θf(x) − ϑ(x)Bπ/2− θf(x)􏼂 􏼃.

(21)
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Next, we discuss fractional Boas transform of product of
analytic functions (or signals). □

Proposition 3. For analytic functions f1(x) � g1(x)+

ih1(x) and f2(x) � g2(x) + ih2(x), we have

Bθ f1(x)f2(x)􏼈 􏼉 � f1f2 ∗ e
− iθδ − i sin(θ)g􏼐 􏼑􏼐 􏼑(x).

(22)

Proof. We compute

Bθ f1(x)f2(x)􏼈 􏼉 � cos(θ)f1(x)f2(x) + sin(θ) H f1(x)f2(x)􏼈 􏼉 − H f1(x)f2(x)􏼈 􏼉∗g(x)( 􏼁

� cos(θ)f1(x)f2(x) + sin(θ) − if1(x)f2(x) − i f1f2 ∗g( 􏼁(x)( 􏼁

� f1(x)f2(x)e
− iθ

− i sin(θ) f1f2 ∗g( 􏼁(x)

� f1f2 ∗ e
− iθδ − i sin(θ)g􏼐 􏼑􏼐 􏼑(x).

(23)

In particular, if f1 � f2 � f, then

Bθ f
2
(x)􏽮 􏽯 � f

2 ∗ e
− iθδ − i sin(θ)g􏼐 􏼑􏼐 􏼑(x). (24)

)e generalization to arbitrary powers is

Bθ f
n
(x)􏼈 􏼉 � f

n ∗ e
− iθδ − i sin(θ)g􏼐 􏼑􏼐 􏼑(x). (25)

In the following result, we give a relationship between
fractional Hilbert transform and fractional Boas
transform. □

Proposition 4. Let f, 􏽢f ∈ L1(R) and let 􏽢f(0) � 0. 4en,

Hθf(x) � Bθf(x) + 􏽘
∞

j�1
Bθf − cos(θ)f( 􏼁∗gj􏼐 􏼑(x),

(26)

where g1 � g and gj � gj− 1 ∗g, for j � 2, 3, 4, . . ..

Proof. We have

􏽤Bθf(η) � cos(θ)􏽢f(η) + sin(θ) 􏽣Hf(η)(1 − 􏽢g(η))

� 􏽤Bθf(η) − cos(θ)􏽢f(η)􏼐 􏼑 􏽘

∞

j�0
(􏽢g(η))

j

� Bθf(x) − cos(θ)f(x)( 􏼁
∧
(η) + 􏽘

∞

j�1
Bθf − cos(θ)f( 􏼁∗gj􏼐 􏼑

∧
(η).

(27)

Taking inverse Fourier transform, we have

Hθf(x) � Bθf(x) + 􏽘
∞

j�1
Bθf − cos(θ)f( 􏼁∗gj􏼐 􏼑(x).

(28)

Note that, for any M>N> 0, we have

􏽘

M

j�N

Bθf − cos(θ)f( 􏼁∗gj􏼐 􏼑

����������

����������2

� 􏽘
M

j�N

􏽤Bθf − cos(θ)􏽢f􏼐 􏼑(􏽢g)
j

����������

����������2

≤ 􏽘
∞

j�N

􏽤Bθf − cos(θ)􏽢f
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(􏽢g)
j

����������

����������2

� (􏽢g)
j

􏽘

∞

j�0

􏽤Bθf − cos(θ)􏽢f
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(􏽢g)
j

����������

����������2

.

(29)

Since 􏽐
∞
j�0 | 􏽤Bθf − cos(θ)􏽢f|(􏽢g)j ∈ L2(R), it follows by

Lebesgue convergence theorem that
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lim
N⟶∞

(􏽢g)
N

􏽘

∞

j�0

􏽤Bθf − tcosn(θ)q􏽢f|(􏽢g)
j

􏼌􏼌􏼌􏼌􏼌

�����2
� 0.

����������
(30)

)us, the series in (26) converges in L2 norm.
Next, we discuss the inversion of the fractional Boas

transform. □

Proposition 5. If f ∈ L2(R), then f can be retrieved from its
fractional Boas transform by means of the formula

f(x) � −
1
2πi

􏽚
R

Bθf − B− θf( 􏼁(x − z)φ(z)dz, (31)

where φ(x) � 􏽐
∞
j�0((− 1)jx2j− 1/(2j)!) + Si(x) with sine in-

tegral Si(·).

Proof. Let τθ(x) � ((Bθf − B− θf)∗φ)(x), where

φ(x) � 􏽘
∞

j�0

(− 1)
j
x
2j− 1

(2j)!
+ Si(x). (32)

)en, we have

􏽢τθ(η) � 􏽤Bθf(η) − 􏽤B− θf(η)􏼐 􏼑􏽢φ(η)

� 2 sin(θ) 􏽣Bf(η)􏽢φ(η).
(33)

Now, observe that

􏽢φ(η) � 􏽚
R

e
− iηx

􏽘

∞

j�0

(− 1)
j
x
2j− 1

(2j)!
+ Si(x)⎛⎝ ⎞⎠dx

� −
πi

2
􏽚
R

sin((η + 1)x) + sin((η − 1)x)

x
dx − πi􏽚

R

(δ(x − η) − δ(x + η))

x
dx

�
0, if |η|< 1

− π i sgn(η), if |η|> 1
+

− π i p.v.
1
η

, if |η|< 1,

0, if |η|> 1,

�

− π i p.v.
1
η

, if |η|< 1,

− π i sgn(η), if |η|> 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

)erefore, 􏽢τθ(η) � − 2πi􏽢f(η). Also, ( 􏽤Bθf(η) − 􏽤B− θf(η)
􏽢φ(η)) � − 2πi􏽢f(η).

Taking the inverse Fourier transform, we obtain

f(x) � −
1
2πi

􏽚
R

Bθf − B− θf( 􏼁(x − z)φ(z)dz. (35)

Towards the end, we give fractional Boas transform
product theorem. □

Proposition 6. Let f, ϑ be functions such that

(i) f, ϑ, 􏽢f1,
􏽢f2 ∈ L1(R),

(ii) 􏽢f1(η) vanishes for |η|> 1 and 􏽢f2(η) vanishes for
|η|≤ 1.

4en Bθ f1(x)f2(x)􏼈 􏼉 � f1(x)Bθf2(x).

Proof. In view of )eorem 3.1 in [31], we have

Bθ f1(x)f2(x)􏼈 􏼉 � cos(θ)f1(x)f2(x)

+ sin(θ)f1(x)Bf2(x)

� f1(x)Bθ f2􏼈 􏼉(x).

(36)

□

3. Fractional Boas Transforms of Wavelets

)e wavelet theory operates with the general properties of
the wavelets and the wavelet transform. A wavelet function is
chosen according to the application; for example, for space-
frequency analysis, a wavelet that is localized in terms of
both spatial width and frequency bandwidth is preferred,
whereas a smooth wavelet is more appropriate in dealing
with smooth signals. In case of analysis of a signal with
certain discontinuities, wavelets with good spatial localiza-
tion to scrupulously track swift changes in the signal are
required. For more details on wavelets, one may read
[41–45].

Now, we give a sufficient condition under which frac-
tional Boas transform of a wavelet is again a wavelet.

Theorem 1. Let ψ ∈ L1(R) be a wavelet such that 􏽢ψ ∈ L1(R)

and 􏽢ψ(0) � 0. 4en, Bθψ is again a wavelet.

Proof. In view of )eorem 2.1 in [30], Bθψ ∈ L2(R). To
verify the admissibility condition, we have

􏽚
R

􏽤Bθψ(η)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

|η|
dη≤ |cos(θ)|

2
􏽚
R

|􏽢ψ(η)|
2

|η|
dη +|sin(θ)|

2
􏽚
R

| 􏽣Bψ(η)|
2

|η|
dη +|sin(2θ)|􏽚

R

|􏽢ψ(η) 􏽣Bψ(η)|

|η|
dη. (37)
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Now, since

􏽚
R

|􏽢ψ(η) 􏽣Bψ(η)|

|η|
dη � 􏽚

|η|≤1

|􏽢ψ(η)(− isgn(η)|η|)􏽢ψ(η)|

|η|
dη + 􏽚

|η|>1

|􏽢ψ(η)(− isgn(η))􏽢ψ(η)|

|η|
dη

≤􏽚
|η|≤1

|􏽢ψ(η)|
2

|η|
dη + 􏽚

|η|>1

|􏽢ψ(η)|
2

|η|
dη

� 􏽚
R

|􏽢ψ(η)|
2

|η|
dη,

(38)

we deduce that

􏽚
R

􏽤Bθψ(η)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

|η|
dη< +∞. (39)

□

Remark 1. )e condition that ψ, 􏽢ψ ∈ L1(R) such that
􏽢ψ(0) � 0 is not necessary forBθψ to be a wavelet. Indeed, let
ψ be a Haar wavelet defined by

ψ(x) �

1, if 0≤x<
1
2
,

− 1, if
1
2
≤x< 1,

0, if otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Since ‖Bθψ‖2≤ l‖ψ‖2 < +∞, where l � |cos(θ)| + |sin
(θ)| +

���
2π

√
and 􏽒

R
(|􏽤Bθψ(η)|2/|η|)dη< +∞, we conclude

that Bθψ is a wavelet. However, 􏽢ψ ∉ L1(R).
In the next result, we give a relationship between two

wavelets in terms of (Bθ − Hθ) operator.

Theorem 2. Let ψ be a wavelet such that ψ, 􏽢ψ ∈ L1(R) and
let ρ be a function such that ρ, ρ(1), 􏽢ρ(1) ∈ L1(R). If 􏽢ψ(0) � 0
and 􏽢ψ(η) � (􏽢g(η)t + n|η|)􏽢ρ(η), then ρ is a wavelet such that

Bθ − Hθ( 􏼁ψ􏼈 􏼉(x) � Bθ − Hθ( 􏼁ρ􏼈 􏼉(x). (41)

Proof. Note that (Bθ − Hθ)ψ􏼈 􏼉(x) � sin(θ) (B − H)ψ􏼈 􏼉(x).
)us, in view of )eorem 2.3 in [30], ρ is a wavelet such that
(Bθ − Hθ)ψ􏼈 􏼉(x) � (Bθ − Hθ)ρ􏼈 􏼉(x).

)e following result gives a necessary and sufficient
condition under which fractional Boas transform of a given
wavelet is multiple of the first-order derivative of the given
wavelet. □

Theorem 3. Let ψ(x) be a wavelet such that ψ, 􏽢ψ ∈ L1(R)

and 􏽢ψ(0) � 0. 4en Bθψ(x) � cos(θ)ψ(1)(x) if and only if
􏽢ψ(η) � 0 for every |η|> 1.

Proof. Let Bθψ(x) � cos(θ)ψ(1)(x). )en, taking Fourier
transform on both sides, we have

􏽢ψ(η)(cos(θ)(1 + iη) − i sin(θ)sgn(η)(1 − 􏽢g(η))) � 0.

(42)

If |η|> 1, then 􏽢ψ(η)Sϕ(η) � 0, where

Sϕ(η) �
e

− iϕ
+ iη cos(ϕ), if η> 1,

e
iϕ

+ iη cos(ϕ), if η< − 1.

⎧⎨

⎩ (43)

Since Sϕ(x)≠ 0, we get 􏽢ψ(η) � 0.
)e proof of the converse part is straightforward.
A wavelet ψ(x) is said to have n vanishing moments if

􏽒
R

xqψ(x)dx � 0, for 0≤ q≤ n − 1. )is property actually
represents the regularity of the wavelet function and ability
of wavelet transform to capture the localized information. If
a wavelet with large number of vanishing moments is
employed, then the corresponding wavelet series of a smooth
function will converge very rapidly to the function. )us,
only few wavelet coefficients are required in order to obtain a
good approximation. During image compression, it requires
only to keep a few wavelet coefficients, where the image is
smooth and, in contrary to this, more coefficients are needed
at the edges. For more details, see [33–40].

Next, we define the notion of G-function of order n. □

Definition 1. Let f be a function such that
f, f(1), 􏽢f ∈ L1(R). )en, f is said to be a G-function of
order n if 􏽒

R
xqG(x)dx � 0, for 0≤ q≤ n, where

G(x) � 􏽒
1
− 1(1 − (1/|η|))e− 2πiηx􏽤f(1)(− η)dη.

Recall from [44] that a function f is said to have fast
decay with decay rate l ∈ N, if there exists a constant Cl such
that |f(x)|≤ (Cl/1 + |x|l), for all x ∈ R.

In the following result, we give a sufficient condition for
the higher vanishing moments of fractional Boas transform
of wavelets.

Theorem 4. If ψj,k􏽮 􏽯
j,k∈Z is an orthonormal system on R,

then

􏽚
R

x
s
Bθψ(x)dx � 0, for all s � 0, 1, 2, . . . , p; s + 1< l,

(44)

where ψ such that ψ, 􏽢ψ,ψ(1) ∈ L1(R) is a G-function of order
p, and ψ ∈ Cp(R) has fast decay with decay exponent l ∈ N
such that ψ(s) ∈ L∞(R), s � 1, 2, . . . , p.
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Proof. We have

􏽚
R

x
s
Bθψ(x)dx � 􏽚

R
x

s
(cos(θ)ψ(x) + sin(θ)Bψ(x))dx

� cos(θ)􏽚
R

x
sψ(x)dx + sin(θ)􏽚

R
x

s
Bψ(x)dx

� cos(θ)􏽚
R

x
sψ(x)dx + sin(θ)􏽚

R
x

s
Hψ(x)dx

−
1
2π

􏽚
R

x
s
􏽚
1

− 1
1 −

1
|η|

􏼠 􏼡e
− 2πiηx􏽤ψ(1)

(− η)dηdx ∵ψ,ψ(1)
, 􏽢ψ∈ L

1
(R)􏼐 􏼑

� cos(θ)􏽚
R

x
sψ(x)dx + sin(θ) 􏽚

R
x

s
Hψ(x)dx􏼒 􏼓 −

1
2π

􏽚
R

x
s
G(x)dx

� cos(θ)􏽚
R

x
sψ(x)dx + sin(θ)􏽚

R
x

s
Hψ(x)dx,

(45)

where G(x) � 􏽒
1
− 1(1 − (1/|x|))e− 2πiηx􏽤ψ(1)(− η)dη.

In view of )eorem 3.1 in [30], we have
􏽒
R

xsψ(x)dx � 0, for all s � 0, 1, . . . , p.

Also, since ψ(x), xpψ(x) ∈ L2(R) and xsψ(x) ∈ L2(R)

for s � 0, 1, . . . , p, using the moment formula for the Hilbert
transform, we have

􏽚
R

x
s
Bθψ(x)dx � sin θ 􏽚

R
H x

sψ(x)􏼈 􏼉dx +
1
π

􏽘

s− 1

j�0
􏽚
R

x
j
􏽚
R

z
s− 1− jψ(z)dzdx⎛⎝ ⎞⎠. (46)

Now xsψ(x) ∈ L2(R), for s � 0, 1, . . . , p. Hence, it fol-
lows that 􏽒

R
xsBθψ(x)dx � 0 for s � 0, 1, . . . , p. □

Recall from [46] that a two-dimensional function
Ψ ∈ L2(R2) is called an admissible wavelet if it satisfies the
admissibility condition

CΨ � (2π)
2
􏽚
R2

| 􏽢Ψ(η)|
2

|η|
2 dη<∞, (47)

where |η|2 � η21 + η22.
In the following result, we give a sufficient condition on

two wavelets ψ1 and ψ2 such that the product
cos(θ)ψ(1)

i (u)ψi(v), i � 1, 2 forms a two-dimensional
wavelet. □

Theorem 5. Let ψ1,ψ2 be wavelets such that

(i) ψi,ψ
(1)
i , 􏽢ψi ∈ L1(R)

(ii) 􏽢ψi(0) � 0 and 􏽢ψi(η) � 0, i � 1, 2 for |η|> 1

4en, Ψi(u, v) � cos(θ)ψ(1)
i (u)ψi(v), i � 1, 2 are admis-

sible wavelets in L2(R2).

Proof. Note that

Ψi(u, v) � Bθψi(u)ψi(v), i � 1, 2

� cos(θ)ψi(u)ψi(v) + sin(θ)Bψi(u)ψi(v).
(48)

Since 􏽢ψi ∈ L1(R), for i ∈ 1, 2, it follows that ψi is
bounded. Also, ψi ∈ L1(R), i � 1, 2 is bounded and so it
must be in L2(R). )us, clearly Ψi ∈ L2(R2) for i � 1, 2.

Also, we have

CΨi
� (2π)

2
􏽚
R2

􏽢Ψi(η)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

|η|
2 dη

≤ (2π)
2
|cos(θ)|

2
􏽚
R

􏽢ψi η1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

η1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dη1􏽚

R

􏽢ψi η2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

η2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dη2

+(2π)
2
|sin(θ)|

2
􏽚
R

􏽤Bψi η1( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

η1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dη1􏽚

R

􏽢ψi η2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

η2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dη2

+(2π)
2
|sin(2θ)|􏽚

R

􏽢ψi η1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

η1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dη1􏽚

R

􏽢ψi η2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

η2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
dη2

<∞.

(49)

)en, for i � 1, 2, Ψi is an admissible wavelet in L2(R2).
Next, we give a sufficient condition on two wavelets ψ1

and ψ2 such that the convolution of two-dimensional
wavelets Ψi, i � 1, 2 again forms a wavelet with (4p − 2)

vanishing moments. □
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Theorem 6. Let ψ1,ψ2 be wavelets as defined in 4eorem 5
such that

(i) upψi(u) ∈ L2(R), i � 1, 2, and
[((ψ1 ∗ψ2)∗g)∗ (2δ − g)](x) � 0, where δ is Dirac
delta function and g is given by (3)

(ii) ψi, i � 1, 2 are G-function of order p

(iii) ( 􏽤ψ1 ∗ψ2)(0) � 0, and ψi, i � 1, 2 have p vanishing
moments

4en, Ψi(u, v) � cos(θ)ψ(1)
i (u)ψi(v), i � 1, 2 have 2p

vanishing moments. Further, if Ψ3(u, v) � (Ψ1 ∗Ψ2)(u, v),
then Ψ3 is admissible wavelet with (4p − 2) vanishing
moments.

Proof. We have

􏽚
R2

u
r
v

sΨi(u, v)dudv � cos(θ)MrMn− r + sin(θ) 􏽦MrMn− r(r + s � n),

(50)

where Mr � 􏽒
R

zrψi(z)dz and 􏽦Mr � 􏽒
R

zrBψi(z)dz.
Since ψi, i � 1, 2 have p vanishing moments, using the

arguments given in )eorem 3.1 in [30], we conclude that
Bψi, i � 1, 2 have (p + 1) vanishing moments.

Assume that n≤ 2p − 1. If n − r≤p − 1, then Mn− r � 0;
otherwise, r≤p, which gives Mr � 􏽥Mr � 0. )us, the
number of vanishing moments of Ψi, i � 1, 2 is 2p.

Also, we compute

Ψ3(u, v) � Ψ1(u, v)∗Ψ2(u, v)

� 􏽚
R

􏽚
R
Ψ1 t1, t2( 􏼁Ψ2 u − t1, v − t2( 􏼁dt1dt2

� 􏽚
R

􏽚
R

cos(θψ1 t1( 􏼁ψ1 t2( 􏼁 + sin(θ)Bψ1 t1( 􏼁ψ1 t2( 􏼁( 􏼁

· cos(θ)ψ2 u − t1( 􏼁ψ2 v − t2( 􏼁 + sin(θ)Bψ2 u − t1( 􏼁ψ2 v − t2( 􏼁( 􏼁dt1dt2

� cos2(θ)􏽚
R

􏽚
R
ψ1 t1( 􏼁ψ2 u − t1( 􏼁ψ1 t2( 􏼁ψ2 v − t2( 􏼁dt1dt2

+ cos(θ)sin(θ)􏽚
R

􏽚
R
ψ1 t1( 􏼁Bψ2 u − t1( 􏼁ψ1 t2( 􏼁ψ2 v − t2( 􏼁dt1dt2

+ cos(θ)sin(θ)􏽚
R

􏽚
R
Bψ1 t1( 􏼁ψ2 u − t1( 􏼁ψ1 t2( 􏼁ψ2 v − t2( 􏼁dt1dt2

+ sin2(θ)􏽚
R

􏽚
R
Bψ1 t1( 􏼁Bψ2 u − t1( 􏼁ψ1 t2( 􏼁ψ2 v − t2( 􏼁dt1dt2

� cos2(θ) ψ1 ∗ψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v) + cos(θ)sin(θ) ψ1 ∗Bψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v)

+ cos(θ)sin(θ) Bψ1 ∗ψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v) + sin2(θ) Bψ1 ∗Bψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v)

� cos(2θ) ψ1 ∗ψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v) + sin(2θ) ψ1 ∗Bψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v).

(51)

Further, note that

􏽚
R2
Ψ3(u, v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dudv

� 􏽚
R

􏽚
R
cos(2θ) ψ1 ∗ψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v) + sin(2θ) ψ1 ∗Bψ2( 􏼁(u) ψ1 ∗ψ2( 􏼁(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dudv

≤ |cos(2θ)|
2
􏽚
R

ψ1 ∗ψ2( 􏼁(u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2du􏽚

R
ψ1 ∗ψ2( 􏼁(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dv +|sin(2θ)|

2
􏽚
R

ψ1 ∗Bψ2( 􏼁(u)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2du

· 􏽚
R

ψ1 ∗ψ2( 􏼁(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2dv +|sin(4θ)|􏽚

R
ψ1 ∗ψ2( 􏼁(u) ψ1 ∗Bψ2( 􏼁(u)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌du􏽚

R
ψ1 ∗ψ2( 􏼁(v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dv.

(52)
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Now, since ψ1, 􏽢ψ1,ψ2 ∈ L1(R) and ( 􏽤ψ1 ∗ψ2)(0) � 0, it
follows that 􏽒

R2 |Ψ3(u, v)|2dudv<∞.
Again, since Ψi ∈ L1(R2) for i� 1, 2, we have

􏽢Ψ3 η1, η2( 􏼁 � 􏽢Ψ1 η1, η2( 􏼁 􏽢Ψ2 η1, η2( 􏼁

� cos(θ)􏽢ψ1 η1( 􏼁􏽢ψ1 η2( 􏼁 + sin(θ) 􏽣Bψ1 η1( 􏼁􏽢ψ1 η2( 􏼁􏼐 􏼑 cos(θ)􏽢ψ2 η1( 􏼁􏽢ψ2 η2( 􏼁 + sin(θ) 􏽣Bψ2 η1( 􏼁􏽢ψ2 η2( 􏼁􏼐 􏼑
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)erefore, we obtain
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Figure 1: HTof Daubechies wavelet and FRBTs of Daubechies wavelet at θ � 0, π/6, π/4, π/3, π/2. (a) HTof Daubechies wavelet. (b) FRBTof
Daubechies wavelet with θ � 0. (c) FRBT of Daubechies wavelet with θ � π/6. (d) FRBT of Daubechies wavelet with θ � π/4. (e) FRBT of
Daubechies wavelet with θ � π/3. (f ) FRBT of Daubechies wavelet with θ � π/2.
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Figure 2: HT of Mexican Hat wavelet and FRBTs of Mexican Hat wavelet at θ � 0, π/6, π/4, π/3, π/2. (a) HT of Mexican Hat wavelet. (b)
FRBTof Mexican Hat wavelet with θ � 0. (c) FRBTof Mexican Hat wavelet with θ � π/6. (d) FRBTof Mexican Hat wavelet with θ � π/4. (e)
FRBT of Mexican Hat wavelet with θ � π/3. (f ) FRBT of Mexican Hat wavelet with θ � π/2.

12 Journal of Mathematics



Since ψ2 ∈ L1(R) and 􏽢ψ2(0) � 0, it follows that 􏽢ψ2,
􏽤Bψ2

are bounded. )us, we have

I1 � 􏽚
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(55)

where K1 and K2 are constants. A similar argument works
for I2 and I3. )erefore, we have CΨ3 < +∞. Now, observe
that
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(56)

where M∗i � 􏽒
R

zi(ψ1 ∗ψ2)(z)dz and 􏽥M
∗
i � 􏽒

R
zi

(ψ1 ∗Bψ2)(z)dz.
Taking r + s � t, we obtain

􏽚
R2

u
r
v

sΨ3(u, v)dudv � cos(2θ)M
∗
r M
∗
t− r + sin(2θ) 􏽥M

∗
r M
∗
t− r.

(57)

)us, in view of )eorem 4.3 in [33], (ψ1 ∗ψ2) and
(ψ1 ∗Bψ2) have, respectively, 2p − 1 and 2p vanishing
moments.

If r≤ 2p − 1, then M∗r � 0 and 􏽦Mr

∗
� 0. If not, then

t − r≤ 2p − 2. )us, M∗t− r � 0.
)erefore, M∗r , 􏽦Mr

∗, and M∗t− r all vanish if r + s≤ 4p − 3.
Hence, the number of vanishing moments of Ψ3(u, v) is

4p − 2. □

4. Conclusion

In this paper, we define and study the notion of fractional
Boas transforms (FRBT) with the aim of obtaining better
comparative results. Various properties of FRBT are dis-
cussed, and several results are obtained. A comparative study
is done to show that the FRBTof wavelets gives better results
as compared to the usual wavelets of the classical Boas
transform. We illustrate this study by considering the HT
and the FRBTs of Daubechies wavelet and Mexican Hat
wavelet, respectively, through Figures 1 and 2 and show that
the FRBT of wavelet at θ � 0 is the wavelet itself, and the
FRBT of wavelet at θ � π/2 is the BT of wavelet. It is easy to
conclude that, after applying FRBT on a wavelet, the
resulting wavelet is approximately equal to the original
wavelet. Hence, it is better to employ FRBT of the wavelet
instead of using BT of the wavelet, or HT of the wavelet.
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