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In this paper, we consider the split feasibility problem in Banach spaces. By applying the shrinking projection method, we propose
an iterative method for solving this problem. It is shown that the algorithm under two different choices of the stepsizes is strongly
convergent to a solution of the problem.

1. Introduction

In this paper, we consider the split feasibility problem [1]. It
is very useful in dealing with problems arising from various
applied disciplines (see, e.g., [2–6]). More precisely, the split
feasibility problem requires to find a point 􏽢x ∈ Rn satisfying
the following property:

􏽢x ∈ C,

A􏽢x ∈ Q,
(1)

where C and Q are nonempty closed convex subsets of Rn

and Rm, respectively, and A is a linear operator.
,e split feasibility problem was first treated in Eu-

clidean spaces and recently was extended to more general
framework including Hilbert spaces and Banach spaces. In
Hilbert spaces, Byrne [7] introduced the CQ algorithm:

xn+1 � PC xn − rnA
∗

I − PQ􏼐 􏼑Axn􏼐 􏼑, (2)

where rn > 0 is a properly chosen stepsize, A∗ is the con-
jugate of A, I is the identity operator, and PC, PQ denote the
metric projections onto the respective sets. By using Polyak’s
gradient method, Wang [8] recently proposed another it-
erative algorithm:

xn+1 � xn − rn I − PC( 􏼁xn + A
∗

I − PQ􏼐 􏼑Axn􏽨 􏽩, (3)

where rn > 0 is a properly chosen stepsize (see also [4, 7–13]
for some related works). In the framework of Banach spaces,
Schöpfer et al. [14] extended the CQ method as

xn+1 � ΠCJ
− 1
X JXxn − rnA

∗
JY I − PQ􏼐 􏼑Axn􏽨 􏽩, (4)

where rn is a positive parameter, JX, JY are, respectively, the
duality mappings on X and Y, ΠC denotes the Bregman
projection, and PC denotes the metric projection. ,e weak
convergence of (4) is guaranteed if X is p-uniformly convex
and uniformly smooth and JX is sequentially weak-to-weak
continuous. Recently, Takahashi [15] suggested a novel way
for the split feasibility problem:

zn � xn − rnJX∗A
∗
JY I − PQ􏼐 􏼑Axn,

Cn � z ∈ C: 〈zn − z, JX xn − zn( 􏼁〉≥ 0􏼈 􏼉,

Qn � z ∈ C: 〈xn − z, JX x0 − xn( 􏼁〉 ≥ 0􏼈 􏼉,

xn+1 � PCn ∩Qn
x0( 􏼁, ∀n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

By applying the shrinking projection method, he [16]
also proposed another method:
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zn � xn − rnJX∗A
∗
JY I − PQ􏼐 􏼑Axn,

Qn+1 � z ∈ Qn: 〈zn − z, JX xn − zn( 􏼁〉 ≥ 0􏼈 􏼉,

xn+1 � PQn+1
x0( 􏼁, ∀n ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Instead of weak convergence, Takahashi proved the
strong convergence of both methods, under the assumption
that X is uniformly convex and smooth, which is clearly
weaker than that used in [14]. Following the above works,
Wang [10] recently proposed a new method, which gen-
erates a sequence as

zn � xn − rnJX∗ JX I − PC( 􏼁xn + A
∗
JY I − PQ􏼐 􏼑Axn􏽨 􏽩,

Cn � z ∈ X: 〈zn − z, JX xn − zn( 􏼁〉 ≥ 0􏼈 􏼉,

Qn � z ∈ X: 〈xn − z, JX x0 − xn( 􏼁〉≥ 0􏼈 􏼉,

xn+1 � PCn ∩Qn
x0( 􏼁, ∀n ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

Our aim of this paper is to continue the above works by
constructing new iterative methods in Banach spaces. By
applying ideas (6) and (7), we introduce a new iterative
algorithm and propose two different choices of the stepsize.
We show that if the spaces involved are smooth and uni-
formly convex, then the algorithm converges strongly under
both choices of the stepsize. It is also worth noting that one
choice of the stepsize does not need any a priori knowledge
of the operator norm.

2. Preliminaries

In what follows, we shall assume that the split feasibility
problem is consistent, that is, its solution set denoted byS is
nonempty. ,e notation “⟶ ” stands for strong conver-
gence, “⇀” represents weak convergence, and ωw xn􏼈 􏼉 is the
set of weak cluster points of a sequence xn􏼈 􏼉. Let
SX � x ∈ X: ‖x‖ � 1{ } and BX � x ∈ X: ‖x‖≤ 1{ }, respec-
tively, be the unit sphere and unit ball of X.
T− 1(0) � x ∈ X: Tx � 0{ } denotes the null-point set of an
operator T defined on X. For x ∈ X, we let JX(I − PC)x �

JX(x − PCx) and A∗JY I − tPQ↼Ax �􏼐 A∗↼JYAx − PQ

Ax( (↼.

Definition 1. Let X be a real Banach space.

(1) ,e modulus of convexity δX(ε): [0, 2]⟶ [0, 1] is
defined as

δX(ε) � inf 1 −
‖x + y‖

2
: x, y ∈ BX, ‖x − y‖≥ ε􏼨 􏼩.

(8)

(2) ,e modulus of smoothness ρX τ( (: 0,∞⟶ 0,∞
is defined by

ρX(τ) � sup
‖x + τy‖ +‖x − τy‖

2
− 1: x, y ∈ SX􏼨 􏼩.

(9)

(3) ,e duality mapping JX: X⟶ 2X∗ is defined by

JXx � x
∗ ∈ X

∗
: 〈x, x

∗〉 � ‖x‖
2

� x
∗����
����
2

􏼚 􏼛. (10)

Definition 2. Let X be a real Banach space.

(1) X is called strictly convex if δX(2) � 1.
(2) X is called smooth if limt⟶0(‖x + ty‖ − ‖x‖/t) exists

for each x, y ∈ SX.
(3) X is called uniformly convex if δX(ε)> 0 for any

ε ∈↼0, 2↼.
(4) X is called uniformly smooth if limτ⟶0ρX(τ)/τ � 0.
(5) X is called p-uniformly convex if there exist p≥ 2

and a constant c> 0 such that
δX ε( (≥ cεp, ∀ε ∈↼0, 2↼.

Lemma 1 (see [17–19]). If X is uniformly convex, then X∗ is
uniformly smooth; X is strictly convex and reflexive.

Lemma 2 (see [17–19]). Let xn􏼈 􏼉 be a sequence inX such that
xn⇀x and ‖xn‖⟶ ‖x‖ as n⟶∞. If X is uniformly
convex, then limnxn � x.

Lemma 3 (see [17–19]). Let M> 0 and xn􏼈 􏼉, yn􏼈 􏼉 be two
sequences in X such that ‖xn‖⟶M, ‖yn‖⟶M and ‖xn +

yn‖⟶ 2M as n⟶∞. If X is uniformly convex, then
limn‖xn − yn‖ � 0.

Lemma 4 (see [17–19]). Let JX be the duality mapping on X.

(1) JX is surjective if and only if X is reflexive.
(2) JX is injective if and only if X is strictly convex.
(3) JX is single-valued if and only if X is smooth.
(4) If X is smooth, then JX is monotone, that is,

〈x − y, JXx − JXy〉 ≥ 0, ∀x, y ∈ X. (11)

Moreover, if X is further strictly convex, then JX is
strictly monotone, that is,

〈x − y, JXx − JXy〉 � 0⇒x � y. (12)

(5) If X is reflexive, smooth, and strictly convex, then JX is
one-to-one single-valued and J− 1

X � JX∗ , where JX∗ is
the duality mapping of X∗.

,e Bregman distance with respect to ‖ · ‖ is given by

Δ(x, y) �
1
2
‖x‖

2
− 〈JXx, y〉 +

1
2
‖y‖

2
. (13)

,is notion goes back to Bregman [20] and now is
successfully used in various optimization problems in
Banach spaces (see, e.g., [21, 22]). In general, the Bregman
distance is not a metric due to the absence of symmetry, but
it has some distance-like properties.

2 Journal of Mathematics



Definition 3. Let C be a nonempty closed convex subset of
X.

(1) ,e metric projection PC: X⟶ C is defined as

PCx :� argmin
y∈C

‖x − y‖, x ∈ X. (14)

(2) ,e Bregman projection ΠC: X⟶ C is defined as

ΠCx � argmin
y∈C
△(x, y), x ∈ X. (15)

In Hilbert spaces, the metric and Bregman projections
are the same, but in general they are completely different.
More importantly, the metric projection cannot share the
descent property as the Bregman projection in Banach
spaces. We now collect some properties of metric
projections.

Lemma 5 (see [14]). Let xn􏼈 􏼉 be a sequence in X and C⊆X be
a nonempty closed convex subset. 9en, for x ∈ X, the fol-
lowing holds.

(1) 〈z − PCx, JX(x − PCx)〉≤ 0, ∀z ∈ C.
(2) ‖x − PCx‖2 ≤ 〈x − z, JX(x − PCx)〉, ∀z ∈ C.
(3) If xn⇀x and ‖xn − PCxn‖⟶ 0, then x ∈ C.

3. Convergence Analysis

To construct our algorithm, we need the following lemma. It
converts the split feasibility problem to an equivalent null-point
problem, which indeed amounts to a fixed point problem.

Lemma 6 (see [10]). Let T: � JX∗[JX(I − PC)+A∗JY(I − PQ)

A]. 9en, S� T− 1(0).

By applying idea (5) to Lemma 6, we thus can propose
the following algorithm for solving the split feasibility
problem in Banach spaces. Choose x0 ∈ X and Q0 � X.
Given xn, update xn+1 by the iteration formula:

zn � xn − rnJX∗ JX I − PC( 􏼁xn + A
∗
JY I − PQ􏼐 􏼑Axn􏽨 􏽩,

Qn+1 � z ∈ Qn: 〈zn − z, JX xn − zn( 􏼁〉 ≥ 0􏼈 􏼉,

xn+1 � PQn+1
x0( 􏼁, ∀n ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

Lemma 7. Assume that both X and Y are reflexive, smooth,
and strictly convex. If rn is chosen so that
0< a≤ rn ≤ (1/1 + ‖A‖2), then for each n ∈ N, the set Qn is
nonempty, closed, and convex. Hence, the proposed algorithm
is well defined.

Proof. It suffices to show that Qn is nonempty since it is
clearly closed and convex. To this end, we now show by
induction thatS⊆Qn for all n ∈ N and thatS⊆Q1 is obvious.
Suppose that S⊆Qk for some k ∈ N. Take any z ∈ S. ,en,
we have z ∈ Qk. Furthermore, we have

〈xk − z, JX xk − zk( 􏼁〉

� rk〈xk − z, JX I − PC( 􏼁xk + A
∗
JY I − PQ􏼐 􏼑Axk〉

� rk〈xk − z, JX I − PC( 􏼁xk〉 + rk〈Axk − Az, JY I − PQ􏼐 􏼑Axk〉,

(17)

which from Lemma 5 yields

〈xk − z, JX xk − zk( 􏼁〉 ≥ rk I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓.

(18)

By a simple calculation, we have

xk − zk

����
����
2

� r
2
k JX I − PC( 􏼁xk + A

∗
JY I − PQ􏼐 􏼑Axk􏼐 􏼑

�����

�����
2

≤ r
2
k I − PC( 􏼁xk

����
���� +‖A‖ I − PQ􏼐 􏼑Axk

�����

�����􏼒 􏼓
2

� r
2
k I − PC( 􏼁xk

����
����
2

+‖A‖
2

I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓

+ 2r
2
k‖A‖ I − PC( 􏼁xk

����
���� I − PQ􏼐 􏼑Axk

�����

�����

≤ r
2
k I − PC( 􏼁xk

����
����
2

+‖A‖
2

I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓

+ r
2
k ‖A‖

2
I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓.

(19)

Hence, we have

xk − zk

����
����
2 ≤ r

2
k 1 +‖A‖

2
􏼐 􏼑 I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓.

(20)

It then follows from (18) that

〈zk − z, JX xk − zk( 􏼁〉 �〈zk − xk, JX xk − zk( 􏼁〉

+〈xk − z, JX xk − zk( 􏼁〉

� − zk − xk

����
����
2

+〈xk − z, JX xk − zk( 􏼁〉

≥ rk I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓

− xk − zk

����
����
2
.

(21)

Substituting (20) into the above inequality, we have

〈zk − z, JX xk − zk( 􏼁〉

≥ rk 1 − rk 1 +‖A‖
2

􏼐 􏼑􏼐 􏼑 I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓.

(22)

By our choice of rk, we see that

〈zk − z, JX xk − zk( 􏼁〉 ≥ 0. (23)

,is implies that z ∈ Qk+1. Since z is chosen in S ar-
bitrarily, we conclude that S⊆Qk+1. Consequently, S⊆Qn

for all n ∈ N. Now it is clear that the set Qn is nonempty,
closed, and convex. ,us, the proposed algorithm is well
defined.
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Now let us state the convergence of the proposed
algorithm. □

Theorem 1. Assume that X is uniformly convex and smooth
and Y is reflexive, smooth, and strictly convex. If rn is chosen
so that 0< a≤ rn ≤ (1/1 + ‖A‖2), then the sequence xn􏼈 􏼉

generated by (16) converges strongly to 􏽢z ∈ S, where
􏽢z � PS(x0).

Proof. We first show the following equality:

lim
n⟶∞

xn − zn

����
���� � 0. (24)

To this end, let z ∈ S. From the previous lemma, it is clear
that z ∈ Qn, xn+1 ∈ Qn+1⊆Qn. ,us, we have for each n ∈ N,

x0 − xn

����
���� � x0 − PQn

x0( 􏼁
�����

�����≤min x0 − z
����

����, x0 − xn+1
����

����􏼐 􏼑.

(25)

,is indicates that ‖x0 − xn‖􏼈 􏼉 is nondecreasing and
bounded above; thus, the limit of ‖x0 − xn‖􏼈 􏼉 exists. Now set
M: � limn‖x0 − xn‖. We have

limsup
n⟶∞

xn − x0( 􏼁 + xn+1 − x0( 􏼁
����

����≤ lim
n⟶∞

xn − x0
����

���� + xn+1 − x0
����

����􏼐 􏼑

� 2M.

(26)

On the other hand, we have

liminf
n⟶∞

xn − x0( 􏼁 + xn+1 − x0( 􏼁
����

���� � liminf
n⟶∞

2
xn + xn+1

2
− x0

������

������

≥ lim
n⟶∞

2 xn − x0
����

����

� 2M,

(27)

where the inequality follows from the fact
(xn + xn+1)/2 ∈ Qn. Altogether, we have limn‖(xn− x0)+

(xn+1 − x0)‖ � 2M. Since X is uniformly convex, this yields
that

lim
n⟶∞

xn − xn+1
����

���� � lim
n⟶∞

xn − x0( 􏼁 − xn+1 − x0( 􏼁
����

���� � 0.

(28)

Furthermore, since xn+1 ∈ Qn+1, we have

〈zn − xn+1, JX xn − zn( 􏼁〉≥ 0, (29)

which clearly implies that

xn − zn

����
����
2

�〈xn − zn, JX xn − zn( 􏼁〉

≤ 〈xn − xn+1, JX xn − zn( 􏼁〉

≤ xn − xn+1
����

���� xn − zn

����
����.

(30)

Hence, we have ‖xn − zn‖≤ ‖xn − xn+1‖⟶ 0, which
yields (24).

We next show that every weak cluster point of xn􏼈 􏼉 is a
solution of the split feasibility problem. To this end, let x be
any weak cluster point of xn􏼈 􏼉 and take a subsequence xnk

􏽮 􏽯

of xn􏼈 􏼉 converging weakly to x. In view of (18) and (24), we
have

lim
n⟶∞

I − PC( 􏼁xn

����
���� � lim

n⟶∞
I − PQ􏼐 􏼑Axn

�����

����� � 0. (31)

By Lemma 5, x ∈ C. On the other hand, for any x∗ ∈ X∗,
it follows that

lim
k⟶∞
〈Axnk

, x
∗〉 � lim

k⟶∞
〈xnk

, A
∗
x
∗〉 �〈x, A

∗
x
∗〉 �〈Ax, x

∗〉,

(32)

implying Axnk
⇀Ax. By Lemma 5, Ax ∈ Q. Altogether,

x ∈ S. Since x is arbitrary, we obtain the desired conclusion.
Finally, we prove that xn􏼈 􏼉 converges strongly to 􏽢z. Now

take any x ∈ ωw(xn). ,en, x ∈ S, and there exists a sub-
sequence xnk

􏽮 􏽯 of xn􏼈 􏼉 converging weakly to x. It then
follows that

x0 − 􏽢z
����

���� � x0 − PS x0( 􏼁
����

����≤ x0 − x
����

����≤ lim
k⟶∞

x0 − xnk

�����

�����

� lim
k⟶∞

x0 − PQnk

x0

������

������≤ x0 − 􏽢z
����

����,

(33)

where the first and the last inequalities follow from the
property of metric projections and the second one follows
from the weak lower semicontinuity of the norm. Hence,

􏽢z � x, lim
k⟶∞

x0 − xnk

�����

����� � x0 − 􏽢z
����

����. (34)

Since x is chosen arbitrarily, this implies that ωw(xn) is
exactly a single-point set, that is, xn􏼈 􏼉 converges weakly to 􏽢z.
Note that x0 − xnk

⇀x0 − 􏽢z. By Lemma 2, the uniform
convexity implies limkxnk

� 􏽢z. Since xn􏼈 􏼉 converges weakly,
this yields limnxn � 􏽢z as desired.

As we see from the previous theorem, the choice of rn is
related to ‖A‖. ,us, to implement this algorithm, one has to
compute the norm ‖A‖, which is generally not easy in
practice. In what follows, we introduce another choice of rn,
which ultimately has no relation with ‖A‖. By applying an
idea in [4], we can propose another choice of the parameter
rn as follows:

rn �
I − PC( 􏼁xn

����
����
2

+ I − PQ􏼐 􏼑Axn

�����

�����
2

JX I − PC( 􏼁xn + A
∗
JY I − PQ􏼐 􏼑Axn

�����

�����
2. (35)

Now let us state the convergence of xn􏼈 􏼉 under this
choice of rn. □

Theorem 2. Assume that X is uniformly convex and smooth
and Y is reflexive, smooth, and strictly convex. 9en, the
proposed algorithm with (35) is well defined. Moreover, the
sequence xn􏼈 􏼉 generated by (16) converges strongly to 􏽢z ∈ S,
where 􏽢z � PS(x0).

Proof. We first show that the algorithm under (35) is well
defined. To this end, it suffices to show that for each n ∈ N,
Qn is nonempty. We now prove this by induction. Suppose
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that S⊆Qk for some k ∈ N. Take any z ∈ S. ,en, we have
z ∈ Qk. Furthermore, by Lemma 5, we have

〈xk − z, JX xk − zk( 􏼁〉 � rk〈xk − z, JX I − PC( 􏼁xk

+ A
∗
JY I − PQ􏼐 􏼑Axk〉

� rk〈xk − z, JX I − PC( 􏼁xk〉

+ rk〈Axk − Az, JY I − PQ􏼐 􏼑Axk〉

≥ rk I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓,

(36)

and

xk − zk

����
����
2

� r
2
k JX I − PC( 􏼁xk + A

∗
JY I − PQ􏼐 􏼑Axk

�����

�����
2

� rk I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓.

(37)

Consequently, we have

〈zk − z, JX xk − zk( 􏼁〉 �〈zk − xk, JX xk − zk( 􏼁〉

+〈xk − z, JX xk − zk( 􏼁〉

≥ rk I − PC( 􏼁xk

����
����
2

+ I − PQ􏼐 􏼑Axk

�����

�����
2

􏼒 􏼓

− zk − xk

����
����
2

� 0.

(38)

,is implies that z ∈ Qk+1. Since z is chosen in S

arbitrarily, we conclude that S⊆Qk+1. Consequently,
S⊆Qn for all n ∈ N. Now it is clear that the set Qn is
nonempty, closed, and convex. ,us, the proposed al-
gorithm is well defined.

We now prove that the sequence xn􏼈 􏼉 generated by (16)
converges strongly to 􏽢z ∈ S. From the proof of the previous
theorem, it suffices to verify that (31) still holds. Similarly, we
obtain limn‖xn − zn‖ � 0. From (37), we have

lim
n⟶∞

rn I − PC( 􏼁xn

����
����
2

+ I − PQ􏼐 􏼑Axn

�����

�����
2

􏼒 􏼓 � 0. (39)

On the other hand, we see that

rn �
I − tPC( ( xn

����
����
2

+ I − tPQ􏼐 􏼐Axn

�����

�����
2

JX I − tPC( ( xn + A
∗
JYI − PQAxn

����
����
2

≥
I − PCxn

����
����
2

+ I − PQAxn

����
����
2

JXI − PCxn

����
���� +‖A‖ JYI − PQAxn

����
����􏼐 􏼑

2

≥
I − PCxn

����
����
2

+ I − PQAxn

����
����
2

1 +‖A‖
2

I − PCxn

����
����
2

+ I − PQAxn

����
����
2

􏼒 􏼓

�
1

1 +‖A‖
2 > 0.

(40)

,is together with (39) yields (31) as desired. Hence, the
proof is complete. □

Remark 1. It is worth noting that our algorithm is new even
in Hilbert spaces. Indeed, in Hilbert spaces, our algorithm is
reduced to

zn � xn − rn I − PC( 􏼁xn + A
∗

I − PQ􏼐 􏼑Axn􏽨 􏽩,

Qn+1 � z ∈ Qn: 〈zn − z, xn − zn〉 ≥ 0􏼈 􏼉,

xn+1 � PQn+1
x0( 􏼁, ∀n ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)
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