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Considering the environmental effects, a Holling–Leslie predator-prey system with impulsive and stochastic disturbance is
proposed in this paper. Firstly, we prove that existence of periodic solution, the mean time boundness of variables is found by
integral inequality, and we establish some sufficient conditions assuring the existencle of periodic Markovian process. Secondly,
for periodic impulsive differential equation and system, it is different from previous researchmethods, by defining three restrictive
conditions, we study the extinction and permanence in the mean of all species. /irdly, by stochastic analysis method, we
investigate the stochastic permanence of the system. Finally, some numerical simulations are given to illustrate the main results.

1. Introduction

Predator-prey phenomenon is very popular in natural world,
and recently more and more researchers pay attention to
investigate the complicated dynamical behaviors between
predator and prey species, which has been and is long to be
one of the most important hot topics in the future [1]. Hsu
and Huang [2] proposed the following Holling–Tanner
model:

dx(t) � x(t) a1 − b1x(t) −
ay(t)

b + x(t)
 dt,

dy(t) � y(t) a2 − b2
y(t)

x(t)
 dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x(t) andy(t) are the densities of prey and predator at
time t, respectively; ai(i � 1, 2) is the intrinsic growth rate of
prey or predator; and b1 is the density-dependent coefficient;
( ay(t)/b + x(t) ) represents Holling type II functional re-
sponse, where a, b> 0 denote the capturing rate and half
capturing saturation constant, respectively. Function

( b2y(t)/x(t) ) is the Leslie–Gower term, which measures
the loss in the predator population due to rarity of its favorite
food, where (a2x/b2) is the carrying capacity. For more
biological meanings of this model, see [3–5].

Moreover, in natural world, there are many kinds of
functional responses. If the functional response is Holling
type IV, then the model reads

dx(t) � x(t) a1 − b1x(t) −
ay(t)

b + x
2
(t)

 dt,

dy(t) � y(t) a2 − b2
y(t)

x(t)
 dt.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Its dynamics has been sufficiently studied, and many
better results have been obtained by Li and Xiao [6].

On the contrary, in practice, the environmental white
noise almost exists everywhere. For ecological system, the
growth rate of population is inevitably affected by the white
noise. In order to reveal the effect of white noise, random
disturbance is introduced in many mathematical models
[7–12]. Meanwhile, due to the individual life cycle and
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seasonal variation and so on, the birth rate, death rate,
carrying capacity of species, and other parameters always

exhibit cycle changes [13–15]. /erefore, Jiang et al. [16]
proposed the following nonautonomous stochastic model:

dx(t) � x(t) a1(t) − b1(t)x(t) −
a(t)y(t)

b(t) + x
n
(t)

 dt + σ1(t)x(t)dB1(t),

dy(t) � y(t) a2(t) − b2(t)
y(t)

x(t)
 dt + σ2(t)y(t)dB2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where ai(t), bi(t), σi(t)(i � 1, 2), a(t), and b(t) are all pos-
itive T-periodic functions; B1(t) and B2(t) are independent
standard Brownian motions defined on the probability space
(Ω, F, Ft t≥ 0, P) with a filtration Ft t≥ 0 satisfying the usual
conditions (i.e., it is right continuous, and F0 contains all
p-null set); and σ2i (i � 1, 2) denotes the density of white
noise. Parameter n � 1 or n � 2 means Holling type II or
Holling type IV functional response, respectively.

However, for population system, the effect from natural
or man-made factors is very popular, and hence, the growth

of species will have to suffer from some discrete changes of
relatively short time interval at some periodic times, such as
stocking and harvesting. /ese effects are often modeled by
impulsive parameters. In the last decades, many impulsive
dynamical systems have been proposed and many better
results have been reported, see, [17–23] and references
therein. For example, the authors Zuo and Jiang [23] in-
vestigated the periodic solution and boundary periodic
solution of the following impulsive model:

dx(t) � x(t) a1(t) − b1(t)x(t) −
a(t)y(t)

b(t) + x(t)
 dt + σ1(t)x(t)dB1(t)

dy(t) � y(t) a2(t) − b2(t)
y(t)

x(t)
 dt + σ2(t)y(t)dB2(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, t≠ tk,

x1 t
+
k(  � 1 + ξ1k( x1 tk( 

x2 t
+
k(  � 1 + ξ2k( x2 tk( 

⎫⎪⎪⎬

⎪⎪⎭
, t � tk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Inspired by the above discussion, considering some
natural or man-made impulsive factors, we propose the
following stochastic predator-prey model:

dx(t) � x(t) a1(t) − b1(t)x(t) −
a(t)y(t)

b(t) + x
n
(t)

 dt + σ1(t)x(t)dB1(t)

dy(t) � y(t) a2(t) − b2(t)
y(t)

x(t)
 dt + σ2(t)y(t)dB2(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, t≠ tk,

x1 t
+
k(  � 1 + ξ1k( x1 tk( 

x2 t
+
k(  � 1 + ξ2k( x2 tk( 

⎫⎪⎪⎬

⎪⎪⎭
, t � tk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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where all coefficients a1(t), a2(t), b1(t), b2(t),

a(t), b(t), σ1(t), and σ2(t) are bounded, continuous, and
periodic with period T. /e impulsive points satisfy
0< t1 < t2 < · · ·, limk⟶∞tk � +∞, and there exists an integer
p such that tk+p � tk + T, λi,k+p � λik, i � 1, 2. Furthermore,
by the biological meanings, we assume ξik > − 1 for i � 1, 2.
For the biological meanings of all parameters, refer to
[2, 6, 16, 23].

Our main aim of this paper is as follows: firstly, for
determinate system, the existence of equilibrium or periodic
solution is an important topic for the dynamics of biological
system [24–27]. Similarly, for stochastic system, it is very
interesting to study whether there exists a periodic Mar-
kovian process or not.

Secondly, for predator-prey system, the dynamical be-
haviors are another important topic [28–30]. By the com-
parison method, we establish some sufficient conditions
assuring the extinction, permanence in the mean of all
species, and the stochastic permanence of system (5).

/e rest of the work of this paper is organized as follows:
Section 2 begins with some notations, definitions, and
important lemmas. Section 3 is devoted to the existence and
uniqueness of the periodic Markovian process. Section 4
focuses on the extinction and permanence in the mean of
species. Section 5 focuses on the stochastic permanence of
system (5). Some numerical simulations are given to verify
our main results in Section 6. Finally, we conclude this paper
with a brief conclusion and discussion in Section 7.

2. Preliminaries

For an n-dimensional stochastic differential equation [13],

dx(t) � f(x(t), t)dt + g(x(t), t)dB(t), t≥ t0, (6)

with initial value x(t0) � x0 ∈ Rn, where B(t) is an n-di-
mensional standard Brownian motion. /e differential
operator L associated (6) is defined by

L �
z

zt
+ 

n

k�1
fk(x, t)

z

zxk

+
1
2



n

k,j�1
g

T
(x, t)g(x, t) 

kj

z
2

zxkzxj

.

(7)

For bounded and continuous function f(t), set

f
u

� sup
t≥0

f(t),

f
l

� inf
t≥0

f(t),

f
∗

� lim sup
t⟶+∞

f(t),

f∗ � lim inf
t⟶+∞

f(t),

(8)

and if f(t) is integrable, then define

〈f〉 �
1
t


t

0
f(s)ds,

〈f〉T �
1
T


T

0
f(s)ds.

(9)

To investigate the dynamics of (5), we consider the
following nonimpulsive system:

dX(t) � X(t) a1(t) +
1
T



p

j�1
ln 1 + ξ1k(  − b1(t)A1(t)X(t) −

a(t)A2(t)Y(t)

b(t) + A1(t)X(t)( 
n

⎛⎝ ⎞⎠dt + σ1(t)X(t)dB1(t),

dY(t) � Y(t) a2(t) +
1
T



p

j�1
ln 1 + ξ2k(  − b2(t)

A2(t)Y(t)

A1(t)X(t)
⎛⎝ ⎞⎠dt + σ2(t)Y(t)dB2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where

A1(t) � 

p

j�1
1 + ξ1j ⎡⎢⎢⎣ ⎤⎥⎥⎦

− (t/T)


0≤tk<t

1 + ξ1k( ,

A2(t) � 

p

j�1
1 + ξ2j ⎡⎢⎢⎣ ⎤⎥⎥⎦

− (t/T)


0≤tk<t

1 + ξ2k( .

(11)

It is easy to show that A1(t) andA2(t) both are periodic
functions with periodT (for details, see [27]).We assume the
product equals unity if the number of factors is zero and ε
stands for a sufficiently small positive constant whose value
may be different at different places.

Now we present the definitions of periodic Markovian
process and the solution of impulsive stochastic differential

equation, and some auxiliary results of the existence of
periodic Markovian process.

Definition 1 (see [13, 27]). A stochastic process
ξ(t) � ξ(t,ω)(− ∞< t<∞) is said to be periodic with pe-
riodic T if for every finite sequence of numbers t1, t2, . . . , tn,
the joint distribution of random variables
ξ(t1 + h), . . . , ξ(tn + h) is independent of h, where
h � kT, k � ±1, ±2, . . ..

Definition 2 (see [22, 27]). System (5) is stochastically
permanent if for every ε ∈ (0, 1), there is a pair of constants
α> 0 and β> 0 such that for any initial data
(x(0), y(0)) ∈ R2

+, the solution (x(t), y(t)) of (5) has the
property that
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lim inf
t⟶+∞

P |(x(t), y(t))|≥ α ≥ 1 − ε,

lim sup
t⟶+∞

P |(x(t), y(t))|≤ β ≥ 1 − ε,
(12)

where P represents the probability of the events.

Definition 3 (see [20, 22]). For the following impulsive
stochastic differential equation

dx(t) � f(t, x(t))dt + g(t, x(t))dB(t), t≠ tk,

x t
+
k(  � 1 + λk( x tk( , k ∈ N,

 (13)

with initial value x(0) � x0, a stochastic process
x(t) � (x1(t), x2(t), . . . , xn(t))T, t ∈ R+, is said to be a
solution of the above system, if

(i) x(t) is ft adapted and is continuous on (0, t1) and
each interval (tk, tk+1) ⊂ R+, k ∈ N, f(t, x(t))

∈ L(R+, Rn), andg(t, x(t)) ∈ L2(R+, Rn), where
Lp(R+, Rn) is all Rn-valued measurable ft-adapted
processesf(t) satisfying 

T

0 |f(t)|pdt< +∞ almost
surely for all T> 0, p � 1, 2.

(ii) For every tk, k ∈ N, x(t+
k ) � limt⟶t+

k
x(t) and

x(t−
k ) � limt⟶t−

k
x(t) exist, and x(tk) � x(t−

k ) with
probability one.

(iii) For all t ∈ [0, t1], x(t) obeys the integral equation

x(t) � x(0) + 
t

0
f(s, x(s))ds + 

t

0
g(s, x(s))dB(s),

(14)
and for all t ∈ [tk, tk+1], k ∈ N, x(t) obeys the following
integral equation:

x(t) � x t
+
k(  + 

t

tk

f(s, x(s))ds + 
t

tk

g(s, x(s))dB(s).

(15)

Lemma 1 (see [13, 27]). For the following Itô’s differential
equation

dx(t) � b(t, x(t))dt + σ(t, x(t))dB(t), (16)

if all the coefficients are T− periodic in t and satisfy the linear
growing condition and the Lipschitz condition in every
cylinder Ul × R+ for l> 0, where Ul � x: ‖x‖≤ l{ } and there
exists a function v � v(t, x) which is twice continuously
differentiable with respect to x and once continuously
differentiable with respect to t in Rn × R+, T is periodic in t

and satisfies the following conditions:

inf
‖x‖>l

v(t, x)⟶ +∞, as l⟶ +∞,

Lv(t, x)≤ − 1 outside some compact set,
(17)

then there exists a solution of (16) which is T-periodic
Markovian process.

Lemma 2 (see [20]). Suppose that Z( t ) ∈
C[Ω × [ 0, +∞ ), R+ ] and limt⟶+∞F(t)/t � 0, a.s.

(a) If there exist two positive constants T> 0, λ0 > 0 such
that, for all t>T,

lnZ(t)≤ λt − λ0 
t

0
z(s)ds + F(t), a.s, (18)

then

〈Z〉
∗ ≤

λ
λ0

, a.s. if λ≥ 0,

lim
t⟶+∞

Z( t ) � 0, a.s. if λ< 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

(b) If there exist some constants T> 0, λ0 > 0, λ such that,
for all t>T,

lnZ(t)≥ λt − λ0 
t

0
z(s)ds + F(t), a.s, (20)

then
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〈Z〉∗ ≥
λ
λ0

, a.s. (21)

Lemma 3. Let x(t) � A1(t)X(t), y(t) � A2(t)Y(t); then

(1) if (x(t), y(t)) is the solution of (5), then (X(t), Y(t))

is the solution of (10).
(2) if (X(t), Y(t)) is the solution of (10), then

(x(t), y(t)) is the solution of (5).

Remark 1. /e proof is similar with that of [20] and is
omitted. Lemma 3 shows that the dynamics of (5) is
equivalent to that of (10). Hence, in the later, we mainly
consider (10) to reveal the dynamical properties of (5).

As to the existence of nontrivial positive solution of (5),
we have Lemma 4.

Lemma 4. For any given initial value (x(0), y(0)) ∈ R2
+,

system (5) has a unique solution (x(t), y(t)) on t≥ 0, and the
solution remains in R2

+ with probability one.

Remark 2. Lemma 3 implies that the existence of solution
(x(t), y(t)) of (5) on t≥ 0 is equivalent to the existence of
the solution (X(t), Y(t)) of (10). /e proof of the existence
of (X(t), Y(t)) of (10) is similar with that of [23] and is
omitted here.

3. Existence of Periodic Solution

In this section, we focus on the existence of periodic
Markovian process of (5). Above all, we give the following
assumption.

Theorem 1. Suppose the following condition holds,

H1( ζ ≔ 〈a1(t) − σ21(t)〉T +
1
T



p

j�1
ln 1 + ξ1k( > 0,

η ≔ 〈a2(t) − σ22(t)〉T +
1
T



p

j�1
ln 1 + ξ2k( > 0,

(22)

then there exists a solution for system (5), which is a T-pe-
riodic Markovian process.

Proof. According to the equivalent property and existence of
solutions (Lemmas 3 and 4), we only need to prove that,
under (H1), the solution of system (10) is a periodic
Markovian process. Lemma 1 shows that it suffices to find a
C2-function V(t, X, Y) and a closed set U ∈ R2

+ such that all
conditions of Lemma 1 hold. Define

V1(t, X) �
e
μ1(t)

X
+ lnX,

V2(t, Y) �
qe

μ2(t)

Y
+ c lnY,

(23)

where q and c are two constants defined later and μ1(t) and
μ2(t) are the positive continuous function such that

μ1′(t) � a1(t) − σ21(t) − 〈a1(t) − σ21(t)〉T,

μ2′(t) � a2(t) − σ22(t) − 〈a2(t) − σ22(t)〉T.
(24)

It is not difficult to verify that μi(t)(i � 1, 2) isT-periodic
on [0,∞), and

liminf
(X,Y)∈R2

+/Uk

V(t, X, Y)⟶∞, as k⟶∞, (25)

where Uk � (X, Y): (X, Y) ∈ ((1/k), k) × ((1/k), k){ }. Hence
V(t, X, Y) is T-periodic and satisfies the first condition of
Lemma 1. Applying the Itô’s formula to V1(t, X) and
V2(t, Y), then
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LV1( t, X ) �
e
μ1( t )

X
μ1′( t ) − a1( t ) −

1
T



p

j�1
ln( 1 + ξ1k ) + σ21( t )⎛⎝ ⎞⎠

+ a1( t ) +
1
T



p

j�1
ln( 1 + ξ1k ) − b1( t )A1( t )X −

a( t ) )A2( t )Y

b( t ) + A1( t )X( 
n

+ e
μ1( t )

b1( t )A1( t ) +
e
μ1( t )

X

a( t )A2( t )Y

b( t ) + A1( t )X( 
n −

σ21( t )

2

� a1( t ) +
1
T



p

j�1
ln( 1 + ξ1k ) −

σ21( t )

2
+ e

μ1( t )
b1( t )A1( t ) − b1( t )A1( t )X

+
e
μ1( t )

X
μ1′( t ) − a1( t ) −

1
T



p

j�1
ln( 1 + ξ1k ) + σ21( t )⎛⎝ ⎞⎠

+
e
μ1( t )

X

a( t )A2( t )Y

b( t ) + A1( t )X( 
n −

a( t )A2( t )Y

b( t ) + A1( t )X( 
n

≤ a
u
1 +

1
T



p

j�1
ln( 1 + ξ1k ) −

σ21 
l

2
+ e

μu
1| |b

u
1A

u
1 − b

l
1A

l
1X

−
e
μ1( t )

X
〈a1( t ) − σ21( t )〉T +

1
T



p

j�1
ln( 1 + ξ1k )⎛⎝ ⎞⎠

+
a

u
A

u
2e

μu
1| |Y

b
l
X

−
a

l
A

l
2Y

b
u

+ A
u
1( 

n
X

n,

LV2 �
qe

μ2( t )

Y
μ2′( t ) − a2( t ) −

1
T



p

j�1
ln( 1 + ξ2k ) + σ22( t )⎛⎝ ⎞⎠ + c a2( t ) +

1
T



p

j�1
ln( 1 + ξ2k )⎛⎝ ⎞⎠

− cb2( t )
A2( t )Y

A1( t )X
+ qb2( t )e

μ2( t ) A2( t )

A1( t )X
−

cσ22( t )

2

≤ −
qe

μ2( t )

Y
〈a2( t ) − σ22( t )〉T +

1
T



p

j�1
ln( 1 + ξ2k )⎛⎝ ⎞⎠ +

qb
u
2e

μu
2| |A

u
2

A
l
1X

− cb
l
2
A

l
2Y

A
u
1X

+ c a
u
2 +

1
T



p

j�1
ln( 1 + ξ2k ) −

σ22 
l

2
⎛⎝ ⎞⎠.

(26)

Let c � (auAu
1Au

2e|μu
1 |/blbl

2A
l
2), then we have

LV(t, X, Y)≤ ϑ − b
l
1A

l
1X −

A
l
1e

μl
1ζ − qe

μu
2| |b

u
2A

u
2

A
l
1X

−
qe

μl
2

Y
η

−
a

l
A

l
2Y

b
u
1 + A

u
1( 

n
X

n,

(27)
where ζ and η are defined as above, and

ϑ ≔ e
μu
1| |b

u
1A

u
1 + a

u
1 +

1
T



p

j�1
ln 1 + ξ1k(  −

σ21(t) 
l

2

+
a

u
A

u
1A

u
2e

μu
1| |

b
l
b

l
2A

l
2

a
u
2 +

1
T



p

j�1
ln 1 + ξ2k(  −

σ22(t) 
l

2
⎛⎝ ⎞⎠.

(28)

Take q � (Al
1e

μl
1ζ/2e|μu

2 |bu
2Au

2), then
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LV(t, X, Y)≤ ϑ − b
l
1A

l
1X −

e
μl
1ζ

2X
−

A
l
1e

μl
1+μl

2− μu
2| |

2b
u
2A

u
2Y

ζη

−
a

l
A

l
2Y

b
u
1 + A

u
1( 

n
X

n ≔ Φ(X, Y).

(29)

Choose any small positive ε1 and ε2 such that

0< ε1 <min
b

l
1A

l
1

ϑ + 1
,

e
μl
1ζ

2( ϑ + 1 )

⎧⎨

⎩

⎫⎬

⎭,

0< ε2 <
A

l
1e

μl
1+μl

2− μu
2| |

2b
u
2A

u
2( ϑ + 1 )

,

ϑ + 1<
a

l
A

l
2 A

u
1ε1( 

n

ε2( b
u
1 A

l
1ε1 

n
+ 1 )

.

(30)

Define an open subset as follows:

Dε1,2
� (X, Y): (X, Y) ∈ ε1,

1
ε1

  × ε2,
1
ε2

  . (31)

Obviously, Dε1,2
is compact and its component

DC
ε � R2

+/Dε � ∪ 4i�1Di
ε, where

D
1
ε � (X, Y)|0<X< ε1 ,

D
2
ε � (X, Y)|0<Y< ε2 ,

D
3
ε � (X, Y)|X>

1
ε1

 ,

D
4
ε � (X, Y)|Y>

1
ε2

 .

(32)

It is easy to verify that Φ(X, Y)⟶ − ∞ when
X⟶ 0+, or Y⟶ 0+, or X⟶∞, or Y⟶∞. /ere-
fore, LV(X, Y)≤ − 1 holds for any (X, Y) ∈ R2

+/Dε, which
means the second condition of Lemma 1 holds. Using
Lemma 1, then the existence of periodic solution of (10) is
obtained. /is completes the proof. □

Remark 3. For system (5), if there is no impulsive effect, i.e.,
ξik � 0(i � 1, 2), by /eorem 1, we can obtain the sufficient
conditions assuring the existence of T-periodic solution,
which is in accordance with /eorem 3 in Reference [16].
And if n � 1, i.e., the case of Holling type II functional
response,/eorem 1 yields the same result as/eorem 3.3 in
reference [23]. It is in this sense that we improved or
generalized the main results in [16, 23].

4. Extinction and Permanence in the Mean

In this section, we discuss the extinction and permanence in
the mean of system (5). Firstly, we provide a lemma on the
presentation of the solution for an impulsive stochastic
differential equation.

Lemma 5. For the following periodic impulsive differential
equation

dx(t) � x(t) a1(t) − b1(t)x(t)( dt + σ1(t)x(t)dB(t), t≠ tk,

x t
+
k(  � 1 + ξ1k( x tk( ,



(33)

let x(t) be a solution with any given initial data x(0)> 0.
Cen x(t) is a unique positive T-periodic solution such that
limt⟶+∞|x(t) − x(t)| � 0, a.s, where

x(t) �
0<tk < t 1 + ξ1k( exp 

t

0 a1(s) − σ21(s)/2  ds + 
t

0 σ1(s)dB(s) 

( 1/x(0) ) + 
t

0 0<tk < s 1 + ξ1k( b1(s)exp 
s

0 a1(θ) − σ21(θ)/2  dθ + 
s

0 σ1(θ)dB(θ) ds.
(34)

Remark 4. /e existence of T-periodic solution can be
obtained by /eorem 1. /e presentation of x(t) and the
global attractivity are referred to [21].

Lemma 6. For the solution (x(t), y(t)) of system (5), we
have

limsup
t⟶+∞

P x(t)< β1 > 1 − ε,

limsup
t⟶+∞

P y(t)< β2 > 1 − ε,
(35)

that is, the solution of (5) is stochastically ultimately bounded.

Proof. From the first equation of (5), we have

dx(t)≤x(t) a1(t) − b1(t)x(t)( dt + σ1(t)x(t)dB1(t).

(36)

Consider the following comparison system:

du(t) � u(t) a1(t) − b1u(t)( dt + σ1(t)u(t)dB1(t), t≠ tk,

u t
+
k(  � 1 + ξ1k( u tk( .



(37)

By Lemma 5, the solution u(t) of (37) is positive and
T-periodic, right continuous, and globally attractive.
/erefore, u(t) has maximum value and minimum value.
Define u∗ � maxt⟶+∞u(t), then by comparison theorem
for stochastic equation, for any sufficiently small positive
ε> 0, we have
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x(t)≤ u(t)≤ u
∗

+ ε ≔ β1. (38)

/erefore, limsupt⟶+∞P x(t)< β1 > 1 − ε is
established.

On the contrary, using x(t)≤ β1, we can obtain from (5)
that

dy(t)≤y(t) a2(t) − b2(t)
y(t)

β1
 dt + σ2(t)y(t)dB2(t).

(39)

In the same manner, we have

y(t) ≤ v(t)≤ v
∗

+ ε ≔ β2, (40)

where v(t) is the solution of the following stochastic
comparison system:

dv(t) � v(t) a2(t) − b2(t)
y(t)

β1
 dt + σ2(t)v(t)dB2(t), t≠ tk,

v t
+
k(  � 1 + ξ2k( v tk( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

and v∗ � maxt⟶+∞v(t). /erefore,
limsupt⟶+∞P y(t)< β2 > 1 − ε. /is completes the proof.

For convenience, denote

ζ ≔ 〈a1(t) −
σ21(t)

2
〉T +

1
T



p

j�1
ln 1 + ξ1k( ,

η ≔ 〈a2(t) −
σ22(t)

2
〉T +

1
T



p

j�1
ln 1 + ξ2k( ,

ζ ≔ 〈a1(t) −
σ21(t)

2
−

a(t)A2(t)β2
b(t)

〉T +
1
T



p

j�1
ln 1 + ξ1k( .

(42)□
Theorem 2. For system (5), the following results hold:

(i) If ζ > 0, then 〈x〉∗ ≤M1, that is, species x(t) is
bounded in the mean.

(ii) If η> 0, then 〈y〉∗ ≤M2 and 〈y〉∗ ≥m2, that is,
species y(t) is permanent in the mean.

(iii) If ζ < 0, then limt⟶+∞x(t) � 0, that is, species x(t)

is extinct, and if η< 0, then limt⟶+∞y(t) � 0, that
is, species y(t) is extinct.

(iv) If ζ > 0, η< 0, then 〈x〉∗ ≤M1 and 〈x〉∗ ≥ m1. If
ζ > 0, η> 0, then 〈x〉∗ ≤M1 and 〈x〉∗ ≥m1, that is,
species x(t) is permanent in the mean, where
m1, mi, Mi(i � 1, 2) are constants defined later in the
proof.

Proof. Make use of Lemma 3, we only need to prove these
conclusions hold for (10) for some constants
m1′, mi
′, Mi
′(i � 1, 2). For system (10), by applying the Itô’s

formula to lnX and lnY, we have

d lnX � a1(t) +
1
T



p

j�1
ln 1 + ξ2k(  − b1(t)A1(t)X −

a(t)A2(t)Y(t)

b(t) + A1(t)X(t)( 
n −

σ21(t)

2
⎛⎝ ⎞⎠dt + σ1(t)dB1(t), (43)

d lnY � a2(t) +
1
T



p

j�1
ln 1 + ξ2k(  − b2(t)

A2(t)Y(t)

A1(t)X(t)
−
σ22(t)

2
⎛⎝ ⎞⎠dt + σ2(t)dB2(t). (44)

(i) If ζ > 0, then integrating both sides of (43) from 0 to t

yields

ln
X(t)

X(0)
≤
1
t


t

0
a1(s) −

σ21(s)

2
+
1
T



p

j�1
ln 1 + ξ1k( ⎛⎝ ⎞⎠ds

− b
u
1A

u
1 

t

0
X(s)ds +

1
t


t

0
σ1(s)dB1(s).

(45)
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Since limt⟶+∞(1/T) 
t

0 σ1(s)dB1(s) � 0, then we ob-
tain from Lemma 2 that

〈X〉
∗ ≤
〈a1(t) − σ21/2 〉T +(1/T) 

p
j�1 ln 1 + ξ1k( 

b
u
1A

u
1

≔M1′.

(46)

(ii) Lemma 4 implies the solution of (10) satisfies X> 0,
and hence there exists a positive constant ε> 0 such
that x(t)> ε. From (44), we have

d lnY≥ a2(t) −
σ22(t)

2
+
1
T



p

j�1
ln 1 + ξ2k( ⎛⎝

−
b2(t)A2(t)

A1(t)ε
Ydt + σ2(t)dB2(t),

(47)

which leads to

ln
Y(t)

Y(0)
≥ 

t

0
a2(s) −

σ22(s)

2
+
1
T



p

j�1
ln 1 + ξ1k( ⎛⎝ ⎞⎠ds

−
b

u
2A

u
2

A
l
1ε


t

0
Y(s)ds +

1
t


t

0
σ2(s)dB2(s).

(48)

Under the condition η> 0, we obtain from Lemma 2
that

〈Y〉∗ ≥
A

l
1ε 〈a2(t) − σ22(t)/2 〉T +(1/T) 

p

j�1 ln 1 + ξ1k(  

b
u
2A

u
2

≔ m2′.

(49)

On the contrary, combining Lemma 6, we have

d lnY≤ a2(t) −
σ22(t)

2
+
1
T



p

j�1
ln 1 + ξ1k( ⎛⎝

−
b

l
2A

l
2

A
u
1β1

Ydt + σ2(t)dB2(t).

(50)

Integrating both sides of above inequality yields

ln
Y(t)

Y(0)
≤
1
t


t

0
a2(s) −

σ22(s)

2
+
1
T



p

j�1
ln 1 + ξ1k( ⎛⎝ ⎞⎠ds

−
b

l
2A

l
2

A
u
1β1


t

0
Y(s)ds +

1
t


t

0
σ2(t)dB2(t).

(51)

If η> 0, using Lemma 2 again, then

〈Y〉
∗ ≤

A
u
1β1 〈a2(t) − σ22(t)/2 〉T +(1/T) 

p
j�1 ln 1 + ξ1k(  

b
l
2A

l
2

≔M2′.

(52)

/erefore, species Y(t) is permanent in the mean.
(iii) If ζ < 0, by Case (i), obviously limt⟶+∞X(t) � 0. If

η< 0, similarly, by the proof of Case (ii), we have
limt⟶+∞Y(t) � 0.

(iv) If ζ > 0, then Case (i) indicates 〈X〉∗ ≤M1′. If η< 0,
by use of Case (ii), we have limt⟶+∞Y(t) � 0, then
(43) reads

d lnX � a1(t) +
1
T



p

j�1
ln 1 + ξ1k(  − b1(t)A1(t)X −

σ21(t)

2
⎛⎝ ⎞⎠dt + σ1(t)dB1(t), (53)

and hence,

d lnX≥ a1(t) +
1
T



p

j�1
ln 1 + ξ1k( ⎛⎝

− b
u
1A

u
1X −

σ21(t)

2
dt + σ1(t)dB1(t).

(54)

According to Lemma 2, then

〈X〉∗ ≥
〈a1(t) − σ21(t)/2 〉T +(1/T) 

p
j�1 ln 1 + ξ1k( 

b
u
1A

u
1

≔ m1′.

(55)

If ζ > 0, then obviously ζ > 0, and hence 〈X〉∗ ≤M1′.
/erefore,
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m1′ ≤ 〈X〉≤M1′. (56) Furthermore, if η> 0, then from (33) and Lemma 6, we
have

d ln X≥ a1(t) +
1
T



p

j�1
ln 1 + ξ1k(  − b

u
1A

u
1X −

a(t)A2(t)β2
b(t)

−
σ21(t)

2
⎛⎝ ⎞⎠dt + σ1(t)dB1(t), (57)

and hence,

ln
X(t)

X(0)
≥
1
t


t

0
a1(s) −

σ21(s)

2
+
1
T



p

j�1
ln 1 + ξ1k(  −

a(s)A2(s)β2
b(s)

⎛⎝ ⎞⎠ds − b
u
1A

u
1 

t

0
X(s)ds +

1
t


t

0
σ1(t)dB1(t). (58)

/en

〈X〉∗ ≥
〈a1(t) − σ21(t)/2(  − a(t)A2(t)β2/b(t))( 〉T +(1/T) 

p
j�1 ln 1 + ξ1k( 

b
u
1A

u
1 ≔ m1′.

(59)

Combining 〈X〉∗ ≤M1′, then species X(t) is permanent
in the mean.

To summarize, the above conclusions hold for system
(10). Using Lemma 3, the required assertion is directly
obtained. /e proof is completed. □

Remark 5. For system (5), if the impulsive is absent, then
/eorem 2 implies the sufficient conditions of the extinction
of species x(t) or y(t), which is accordance with /eorem 2
in [16].

5. Stochastic Permanence

In this section, we consider the stochastic permanence of (5).

Theorem 3. If ζ > 0, η> 0, then system (5) is stochastically
permanent.

Proof. /is proof is motivated by Reference [21]. Let
Ωεt � ω ∈ Ω, X(t)< β1, Y(t)< β2 , Ωε∞ � ω ∈ Ω,{

limsupt⟶+∞P Ωεt > 1 − ε}, then Lemma 6 implies that
P Ωε∞ > 1 − ε. Hence, for anyω ∈ Ωε∞, there exists k1 > 0 such
that X(t) < β1, Y(t)< β2 for any t≥ k1T.

On the contrary, by the assumption ζ > 0, we can choose
a positive constant ε> 0 such that

ζ − b
u
1A

u
1ε −

a
u
A

u
1A

u
2ε

b
l
b

l
2A

l
2

> 0. (60)

Firstly, we prove that there exists ς1 > 0, for any ω ∈ Ωε∞,
we have

liminf
t⟶+∞

P X(t)> ς1 > 1 − ε. (61)

Suppose it is not true, i.e., there exist a solution (X, Y)

with initial data X(0)> 0, Y(0)> 0, a positive integer k2 > k1,
and a nonempty set Ω1 ⊂ Ωεt with P(Ω1)> 0 such that
X(t,ω)< ς1 for any ω ∈ Ω1 and t≥ k2T. From (44), we have

d lnY � a2(t) +
1
T



p

j�1
ln 1 + ξ2k(  − b2(t)

A2(t)Y(t)

A1(t)X(t)
−
σ22(t)

2
⎛⎝ ⎞⎠dt + σ2(t)dB2(t)

≤ a2(t) −
σ22(t)

2
+
1
T



p

j�1
ln 1 + ξ2k( ⎛⎝ ⎞⎠ − b

l
2
A

l
2Y(t)

A
u
1ς1

+ σ2(t)dB2(t).

(62)
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/en Lemma 2 implies

〈Y〉
∗ ≤

A
u
1 〈a2(t) − σ22/2 〉 +(1/T) 

p

j�1 ln 1 + ξ2k(  ς1
b

l
2A

l
2

≔ κ.

(63)

On the contrary,

d lnX � a1(t) +
1
T



p

j�1
ln 1 + ξ2k(  − 2b1(t)A1(t)X −

a(t)A2(t)Y(t)

b(t) + A1(t)X(t)( 
n −

σ21(t)

2
⎛⎝ ⎞⎠dt + σ1(t)dB1(t). (64)

Integrating (64) from k2T to t yields

lnX(t) � lnX k2T(  + 
t

k2T
a1(s) +

1
T



p

j�1
ln 1 + ξ2k(  −

σ21(s)

2
⎛⎝ ⎞⎠ds − 

t

k2T
2b1(s)A1(s)Xds

− 
t

k2T

a(s)A2(s)Y(s)

b(s) + A1(s)X(s)( 
n ds + 

t

k2T
σ1(s)dB1(s).

(65)

/en we derive from (65) that

lim inf
t⟶+∞

lnX

t
≥ lim inf

t⟶+∞
〈a1(t) −

σ21(t)

2
〉T +

1
T



p

j�1
ln 1 + ξ1k( 

− b
u
1A

u
1ς1 −

a
u
A

u
2κ

b
l
> 0.

(66)

/en we conclude X(t)⟶ +∞ as t⟶ +∞, which
contradicts with the boudedness of X(t). Hence we have
lim inf t⟶+∞P X(t)> ς1 > 1 − ε for any ω ∈ Ωε∞.

Secondly, we prove there exists a constant α1(ε)> 0 such
that

lim inf
t⟶+∞

P ω ∈ Ωε∞: α1(ε)≤X(t,ω)≤ β1(ε) ≥ 1 − ε. (67)

We claim that liminf t⟶+∞P x(t)> α1 > 1 − ε holds for
all ω ∈ Ωε∞. If not, then there exists a sequence ]n  ⊂ R+ and
a nonempty set Ω2 ⊂ Ωεt with P(Ω2)> 0, and a positive
integer k3(k3 > k1) such that supt>k3TX(t, ]n,ω)

< (α1(ε)/n + 1) for all ω ∈ Ω2, where (X(t, ]n), Y(t, ]n)) is
the solution of (10) with initial data ]n. Using (64), for all
t≥ k3T, we have

d E lnX t, ]n( IΩ2 

dt
≥ a1(t) +

1
T



p

j�1
ln 1 + ξ1k(  −

σ21(t)

2
⎛⎝ ⎞⎠ − 2b1(t)A1(t)β1(ε) −

a(t)A2(t)β2(ε)
b(t)

⎡⎢⎢⎣ ⎤⎥⎥⎦P Ω2( . (68)

According to the previous proof, there is a nonempty set
Ω3 ⊆Ω2 where P(Ω3)> 0, and two positive integers k4 and
k5 with k5 > k4 > k3 such that

X k4T, ]n( ≥ α1(ε),

X k5T, ]n( ≤
α1(ε)
n + 1

(69)

hold for all ω ∈ Ω3. Define

τ∗ � inf t: X t, ]n( >
α1(ε)
n + 1

,ω ∈ Ω3, t> k5T ,

τ∗ � sup t< τ∗: X t, ]n( < α1(ε),ω ∈ Ω3, t> k4T .

(70)

/en X(τ∗, ]n) � (α1(ε)/n + 1), X(τ∗, ]n) � α1(ε), and
for any t ∈ (τ∗, τ∗) and ω ∈ Ω3, we have

α1(ε)
n + 1
<X t, ]n( < α1(ε). (71)

Integrating both sides of (65) from τ∗ to τ∗ yields

Journal of Mathematics 11




τ∗

τ∗

σ21(t)

2
− a1(t) −

1
T



p

j�1
ln 1 + ξ1k(  + 2b1(t)A(t)β1(ε) +

a(t)B(t)β2(ε)
b(t)

⎡⎢⎢⎣ ⎤⎥⎥⎦dt

≥ − E lnX τ∗, ]n( IΩ3  + E lnX τ∗, ]n( IΩ3 

� ln(n + 1)P Ω3( ,

(72)

which leads to τ∗ − τ∗ ⟶ +∞ as n⟶ +∞. □

On the contrary, by the given condition, there exist two
constants τ0 and c such that for all t≥ τ0 and l> 0, we have

η1(l + t) − 
l+t

l
b

u
1A

u
1ε +

a
u
A

u
1A

u
2ε

b
l
b

l
2A

l
2

⎛⎝ ⎞⎠ds> c, a.s. (73)

Proof. where η1(t) � (1/T) 
t

0(a1(s) − (σ21(s)/2))ds

+(1/T) 
p
j�1 ln(1 + ξ2k).

For any t ∈ [τ∗, τ∗] and ω ∈ Ω3, we have

d lnY≤ a2(t) −
σ22(t)

2
+
1
T



p

j�1
ln 1 + ξ2k( ⎛⎝ ⎞⎠ −

b
l
2A

l
2Y(t)

A
u
1α1

+ σ2(t)dB2(t).

(74)

/e previous proof shows that there exists a positive
integer k6 > t0/T such that 〈Y〉∗ ≤ κ for any t> k6T + τ∗ and
ω ∈ Ω3. Due to T∗ − T∗ ⟶∞, then there exists a positive
integer n0 > 0 such that τ∗ > k6T + τ∗ for any n≥ n0, and
hence

〈Y〉
∗ ≤

A
u
1 〈a2(t) − σ22(t)/2 〉T +(1/T) 

p
j�1 ln 1 + ξ2k(  α1

b
l
2A

l
2

≔ κ,

(75)

for any t ∈ [k6T + τ∗, τ∗] and ω ∈ Ω3. Using (65) again, we
have

E ln( X( tn, ]n ) )IΩ3 ≥E lnX( k6T + τ∗ ), ]n ∗ ∗ ∗ IΩ3  + E[ η1( τ
∗

) − 
τ∗

k6T+τ∗
( b

u
1A

u
1α1 + κ )ds )IΩ3 ], (76)

which leads to

α1( ε )

n + 1
≥
α1( ε )

n + 1
exp

1
P(Ω3 )

E[ η1( τ
∗

) − 
τ∗

k6T+τ∗
( b

u
1A

u
1α1 + κ )ds )IΩ3 ] ≥

α1( ε )

n + 1
e

c
. (77)

Obviously it implies a contradiction, and our claim is
obtained. /erefore

liminf
t⟶+∞

P ω ∈ Ωε∞: α1(ε)≤X(t,ω)≤ β1(ε) ≥ 1 − ε holds.

(78)

In a similar way, we can derive that
liminf t⟶+∞P ω ∈ Ωε∞: α2(ε)≤Y(t,ω)≤ β2(ε) ≥ 1 − ε.

Finally, making use of Lemma 3 yielding the required as-
sertion. /e proof is completed. □

6. Examples and Simulations

In this section, we give some examples and apply the
Melstein method [31] to illustrate our theoretical results and
reveal the effects of random disturbance and impulsive
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Figure 1: PeriodicMarkov process of (5) with n � 1 and x(0) � y(0) � 0.02. (a)/e time series graph of x. (b)/e time series graph of y. (c)
/e phase graph of deterministic system (ξik � 0, σi(t) � 0, i � 1, 2). (d) /e phase graph of impulsive system (σi(t) � 0, i � 1, 2). (e) /e
phase graph of stochastic system (σi(t) � 0, i � 1, 2). (f ) /e phase graph of stochastic impulsive system with
σ1(t) � 0.02 + 0.02 sin(t/2), σ2(t) � 0.01 + 0.01 sin(t/2), ξ1k � 0.01 + 0.01 sin(t/2), ξ2k � 0.01 + 0.01 sin(t/2), tk � 0.1k, k ∈ N.
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factors. For system (5), except some special mentions later,
we always take

a1(t) � 1 + 0.2 sin
t

2
 ,

b(t) � 0.8 + 0.5 cos
t

2
 ,

σ1(t) � 0.02 + 0.02 sin
t

2
 ,

ξ2k � 0.01 + 0.01 sin
t

2
 ,

b1(t) � 0.8 + 0.1 cos
t

2
 ,

a2(t) � 0.6 + 0.1 sin
t

2
 ,

σ2(t) � 0.01 + 0.01 sin
t

2
 ,

tk � 0.1kT, k ∈ N, p � 10.

a(t) � 1 + 0.3 cos
t

2
 ,

b2(t) � 0.3 + 0.05 sin
t

2
 ,

ξ1k � 0.01 + 0.01 sin
t

2
 .

(79)

For system (5), if n � 1, then we get the stochastic
Holling–Tanner system. By computation,

ζ ≔ 〈a1(t) − σ21(t)〉T +
1
T



p

j�1
ln 1 + ξ1k(  � 0.9994> 0,

η ≔ 〈a2(t) − σ22(t)〉T +
1
T



p

j�1
ln 1 + ξ2k(  � 0.5998> 0.

(80)
/en condition (H1) holds, and/eorem 1 implies that the

solution of the stochastic Holling–Tanner system is a 4π-pe-
riodic Markovian process (Figure 1). Figures 1(a) and 1(b) are
the time series graphs of x and y, respectively. Under the
condition (H1) holding, Figures 1(c)–1(f) are the phase graphs
of periodic solution of deterministic system
(σi(t) � 0, ξik � 0, i � 1, 2), impulsive system (σi(t) � 0, ξik ≠
0, i � 1, 2), stochastic system (σi(t)≠ 0, ξik � 0, i � 1, 2), and
stochastic impulsive system (σi(t)≠ 0, ξik ≠ 0, i � 1, 2), re-
spectively. Similarly, the conditions of Case (iv) of /eorems 2
and 3 hold, and the system is permanent in the mean and
stochastically permanent, see Figures 2(a), 2(b), and 3, re-
spectively. On the contrary, let all parameters are as before
except σ1( t ) � 1.5 + 0.02 sin( t/2 ), σ2( t ) � 1.2 + 0.01
sin( t/2 ) or ξ1k � − 0.1 + 0.01 sin(tk/2), ξ2k � − 0.1 + 0.01
sin(tk/2), tk � 0.1k, k ∈ N, then an easy computing yields
ζ < 0, η< 0; therefore, x and y are both extinct, illustrated in
Figures 4(a) and 4(b), respectively. If σ1( t ) � 1 + 0.02
sin( t/2 ), σ2( t ) � 0.01 + 0.01 sin( t/2 ), then /eorem 2 in-
dicates y is always permanent (Figure 5(a)). If σ1( t ) � 0.02 +

0.02 sin( t/2 ), σ2( t ) � 1 + 0.01 sin( t/2 ), then /eorem 2
implies that x is permanent, but y is extinct (Figure 5(b)). For
system (5), if n � 2, then we get a stochastic periodic Holling
type IV predator-prey system. It is clear that/eorem 1 implies
that the solution is a periodic Markovian process (Figure 6).
Figures 6(a)–6(d) are the phase graphs of periodic solution of
deterministic system (σi(t) � 0, ξik � 0, i � 1, 2), impulsive
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Figure 2: Permanence in the mean of (5) with n � 1 and x(0) � y(0) � 0.02. (a) /e permanence in the mean of x. (b) /e permanence in
the mean of y.
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system (σi(t) � 0, ξik ≠ 0, i � 1, 2), stochastic system
(σi(t)≠ 0, ξik � 0, i � 1, 2), and stochastic impulsive system
(σi(t)≠ 0, ξik ≠ 0, i � 1, 2), respectively. Similarly, the

conditions of Case (iv) of/eorems 2 and 3 hold, and the system
is permanent in the mean and stochastically permanent, see
Figures 7(a), 7(b), and 8, respectively.
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Figure 4: /e extinction of all species of system (5) with n � 1 and x(0) � y(0) � 0.02. (a) /e extinction of x and y with
σ1( t ) � 1.5 + 0.02 sin( t/2 ), σ2( t ) � 1.2 + 0.01 sin( t/2 ). (b) /e extinction of x and y with ξ1k � − 0.1 + 0.01 sin(tk/2), ξ2k � − 0.1
+0.01 sin(tk/2), tk � 0.1k, k ∈ N.
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Figure 3: Stochastic persistence of (5) with n � 1 and x(0) � y(0) � 0.02.
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Figure 5: /e dynamics of x and y of (5) with n � 1 and x(0) � y(0) � 0.02. (a) /e permanence in the mean of y with
σ1( t ) � 1 + 0.02 sin( t/2 ), σ2( t ) � 0.01 + 0.01 sin( t/2 ). (b) /e permanence in the mean of x and extinction of y with
σ1( t ) � 0.02 + 0.02 sin( t/2 ), σ2( t ) � 1 + 0.01 sin( t/2 ).
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Figure 6: Periodic Markovian process of (5) with n � 2 and x(0) � y(0) � 0.02. (a) /e phase graph of deterministic system
(ξik � 0, σi(t) � 0, i � 1, 2). (b) /e phase graph of impulsive system (σi(t) � 0, i � 1, 2). (c) /e phase graph of stochastic system
(σi(t) � 0, i � 1, 2). (d) /e phase graph of stochastic impulsive system with σ1(t) � 0.02 + 0.02 sin(t/2), σ2(t) � 0.01
+0.01 sin(t/2), ξ1k � 0.01 + 0.01 sin(t/2), ξ2k � 0.01 + 0.01 sin(t/2), tk � 0.1k, k ∈ N.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t-axis

St
at

e-
ax

is

x (t)
t–1∫t

0x(s)ds

(a)

0 100 200 300 400 500
t-axis

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

St
at

e-
ax

is

y (t)
t–1∫t

0y(s)ds

(b)

Figure 7: Permanence in the mean of (5) with n � 2 and x(0) � y(0) � 0.02. (a) /e permanence in the mean of x. (b) /e permanence in
the mean of y.
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7. Conclusions and Discussion

In this paper, we study a stochastic predator-prey system
with impulsive effects and Holling type II or Holling type IV
functional responses, which contains many models such as
those in [16, 23]./eorem 1 gives the sufficient conditions of
the existence of periodic Markovian process. /eorem 2
represents the extinction and permanence in the mean of
predator and prey species. /eorem 3 shows the stochastic
permanence of this system. Finally, by writing Matlab codes,
some simulations (Figures 1 and 8) are provided to verify the
main results. Our numerical examples reveal that impulsive
and stochastic factors bring much influence to the dynamics
of this system.

By comparison analysis, we give Remarks 3 and 5 to
show that our main results improve or generalize the cor-
responding results in [16, 23]. We apply stochastic analysis
techniques instead of constructing some suitable functionals
to study the stochastic permanence, which is less applied and
relatively new in some sense. In the process of our analysis,
Holling-type functional responses bring some difficulties,
and we apply inequality techniques to overcome them. In
view of too many kinds of functional responses, then how to
deal with other functional response such as Beddington-
DeAngelis type? Further, time delays often appear in bio-
logical models, and how to discuss the effect of time delays?
All these are necessary and very interesting for us to study in
the future.
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