
Research Article
Compactness on Soft Topological Ordered Spaces and Its
Application on the Information System

T. M. Al-shami

Department of Mathematics, Sana’a University, Sana’a, Yemen

Correspondence should be addressed to T. M. Al-shami; tareqalshami83@gmail.com

Received 28 October 2020; Accepted 17 December 2020; Published 18 January 2021

Academic Editor: Ching-Feng Wen

Copyright © 2021 T. M. Al-shami. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is well known every soft topological space induced from soft information system is soft compact. In this study, we integrate
between soft compactness and partially ordered set to introduce new types of soft compactness on the finite spaces and investigate
their application on the information system. First, we initiate a notion of monotonic soft sets and establish its main properties.
Second, we introduce the concepts of monotonic soft compact and ordered soft compact spaces and show the relationships
between them with the help of examples. We give a complete description for each one of them by making use of the finite
intersection property. Also, we study some properties associated with some soft ordered spaces and finite product spaces.
Furthermore, we investigate the conditions under which these concepts are preserved between the soft topological ordered space
and its parametric topological ordered spaces. In the end, we provide an algorithm for expecting the missing values of objects on
the information system depending on the concept of ordered soft compact spaces.

1. Introduction

Compactness is a property that generalizes the notion of a
closed and bounded subset of Euclidean space. It has been
described by using the finite intersection property for closed
sets. +e important motivations beyond studying com-
pactness have been given in [1]. Without doubt, the concept
of compactness occupied a wide area of topologists’ atten-
tion. Many relevant ideas to this concept have been intro-
duced and studied. Generalizations of compactness have
been formulated in many directions, one of them given by
using generalized open sets; see, for example, [2].

In 1965, Nachbin [3] combined a partial order relation
with a topological space to define a new mathematical
structure, namely, a topological ordered space. +en,
McCartan [4] formulated ordered separation axioms with
respect to open sets and neighbourhoods which were de-
scribed by increasing or decreasing operators. Shabir and
Gupta [5] extended these ordered separation axioms in the
cases of T1-ordered and T2-ordered spaces using semiopen
sets. Recently, Al-Shami and Abo-Elhamayel [6] introduced
new types of ordered separation axioms.

In 1999, Molotdsov [7] came up with the idea of soft sets
for dealing with uncertainties and vagueness. Shabir and Naz
[8], in 2011, exploited soft sets to introduce the concept of
soft topological spaces and study soft separation axioms.
+en, researchers started working to generalize topological
notions on the soft topological frame. In this regard,
compactness was one of the topics that received much at-
tention. It was presented and explored firstly by Molodtsov
Ayg..unoğlu and Ayg

..
un, and Zorlutuna et al. [9, 10]. +en,

Hida [11] compared between two types of soft compactness.
After that, Al-Shami et al. [12] defined almost soft compact
and mildly soft compact spaces and investigated the main
properties. Lack of consideration in the privacy of soft sets
by some authors causes emerging some alleged results, es-
pecially those related to the properties of soft compactness.
+erefore, the authors of [13–17] carried out some corrective
studies in this regard.

In 2019, Al-Shami et al. [18] defined topological ordered
spaces on soft setting. +ey studied monotonic soft sets and
then utilized them to present p-soft Ti-ordered spaces. Also,
they [19] presented soft I(D, B)-continuous mappings and
established several generalizations of them using generalized
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soft open sets. Moreover, Al-Shami and El-Shafei [20] ini-
tiated two types of ordered separation axioms, namely, soft
Ti-ordered and strong soft Ti-ordered spaces. Recently, the
concept of supra soft topological ordered spaces has been
explored and discussed in [21].

+is paper is organized as follows: Section 2 gives some
main notions of monotonic soft sets and soft topological
ordered spaces. In Section 3, we introduce the concept of
monotonic soft sets and show some properties with the help
of examples. Section 4 defines and explores a concept of
monotonic soft compact spaces. By using a convenient
technique, we show that many well-known results of soft
compactness are valid on monotonic soft compact spaces.
We divide Section 5 into two parts: the first one studies a
concept of ordered soft compact spaces, and the second one
makes use of it to present a practical application on the
information system. Section 6 concludes the paper with
summary and further works.

2. Preliminaries

To make this work self-contained, we mention some defi-
nitions and results that were introduced in soft set theory,
soft topology, and ordered soft topology.

2.1. Soft Set

Definition 1 (see [7]). A soft set over X≠∅ is a mapping G

from a parameter set E to the power set 2X of X. It is denoted
by (G, E).

Usually, we write a soft set (G, E) as a set of ordered
pairs. In other words, (G, E) � (e, G(e)):{ e ∈ E andG(e)

∈ 2X}.
Sometimes, we use some symbols such as A, B in place of

E and F, H in place of G.

Definition 2 (G, E) over X is said to be

(i) a null soft set (resp. an absolute soft set) [22] if
G(e) � ∅ (resp. G(e) � X) for each e ∈ E; and it is
denoted by Φ (resp. X).

(ii) soft point [23, 24] if there are e ∈ E and x ∈ X such
that G(e) � x{ } and G(b) � ∅ for each b ∈ E∖ e{ }. It
is denoted by Px

e .
(iii) finite (resp. countable) soft set [23] if G(e) is finite

(resp. countable) for each e ∈ E. Otherwise, it is
called infinite (resp. uncountable).

Definition 3 (see [25]). +e relative complement of (G, E),
denoted by (G, E)c, is a mapping Gc: E⟶ 2X defined by
Gc(e) � X∖G(e) for each e ∈ E.

Definition 4 (see [26]). (G, A) is a subset of (F, B) if A⊆B
and G(a)⊆F(a) for all a ∈ A.

Definition 5 (see [22]).+e union of two soft sets (G, A) and
(F, B) over X, denoted by (G, A)∪ (F, B), is the soft set

(V, D), where D � A∪B, and a mapping V: D⟶ 2X is
defined as follows:

V(d) �

G(d): d ∈ A − B,

F(d): d ∈ B − A,

G(d)∪F(d): d ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Definition 6 (see [25]). +e intersection of soft sets (G, A)

and (F, B) over X, denoted by (G, A)∩ (F, B), is the soft set
VD, where D � A∩B≠∅, and a mapping V: D⟶ 2X is
defined by V(d) � G(d)∩F(d) for all d ∈ D.

Definition 7 (see [9, 10]). Let (G, A) and (F, B) be two soft
sets over X and Y, respectively. +en, the Cartesian product
of (G, A) and (F, B) is a soft set (G × F, A × B) such that
(G × F)(a, b) � G(a) × F(b) for each a ∈ A and b ∈ B.

Definition 8 (see [8, 27]). For a soft set (G, A) over X and
x ∈ X, we say that

(i) x ∈ (G, E) if x ∈ G(e) for each e ∈ E, and x ∉ (G, E)

if x ∉ G(e) for some e ∈ E

(ii) x⋐(G, E) if x ∈ G(e) for some e ∈ E, and x⋐(G, E) if
x ∉ G(e) for each e ∈ E

Proposition 1 (see [10, 24]). For a soft mapping
fϕ: S(XA)⟶ S(YB), we have the following results:

(i) (G, A) ⊆f−1
ϕ fϕ(G, A) for each (G, A) ∈ S(XA), and

fϕf−1
ϕ (F, B) ⊆ (F, B) for each (F, B) ∈ S(YB)

(ii) If fϕ is injective (resp. surjective), then
(G, A) � f−1

ϕ fϕ(G, A) (resp. fϕf−1
ϕ (F, B) � (F, B))

Definition 9 (see [28]). A binary relation ≺ is called a partial
order relation if it is reflexive, antisymmetric, and transitive.
+e pair (X,≺ ) is called a partially ordered set.

+e relation on a nonempty set X which is given by
(x, x): x ∈ X{ } is called the equality relation and is denoted
by △.

Definition 10 (see [18]). (X, E,≺ ) is said to be a partially
ordered soft set on X≠∅ if (X,≺ ) is a partially ordered set.
For two soft points Px

α and P
y
α in (X, E,≺ ), we say that

Px
α ≺P

y
α if x≺y.

Definition 11 (see [18]). Increasing operator i and de-
creasing operator d are two maps of (S(XE),≺ ) into
(S(XE),≺ ) defined as follows: for each soft subset (G, E) of
S(XE),

(i) i(G, E) � (iG, E), where iG is a mapping of E into
P(X) given by iG(e) � i(G(e)) � x ∈ X: b≺ x{ for
some b ∈ G(e)}

(ii) d(G, E) � (dG , E), where dG is a mapping of E into
P(X) given by dG(e) � d(G(e)) � x ∈ X: x≺ b{ for
some b ∈ G(e)}
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Definition 12. Let (X, E,≺ 1) and (Y, E,≺ 2) be two partially
ordered soft sets. +e product relation ≺ of ≺ 1 and ≺ 2 on
X × Y is defined as follows: ≺ � (a, b): a �{

(a1, a2), b � (b1, b2) ∈ X × Y such that (aj, bj) ∈ ≺ j for
every j � 1, 2}.

Definition 13 (see [18]). A soft subset (G, E) of (X, E,≺ ) is
said to be increasing (resp. decreasing) provided that
(G, E) � i(G, E) (resp. (G, E) � d(G, E)).

Theorem 1 (see [18]). İe finite product of increasing (resp.
decreasing) soft sets is increasing (resp. decreasing).

Definition 14 (see [18]). A soft map
fϕ: (S(XA),≺ 1)⟶ (S(YB),≺ 2) is said to be a subjective
ordered embedding provided that Px

α≺ 1P
y
α if and only if

fϕ(Px
α)≺ 2fϕ(P

y
α).

Theorem 2 (see [18]). Let
fϕ: (S(XA),≺ 1)⟶ (S(YB),≺ 2) be a subjective ordered
embedding soft mapping. 5en, the image of each increasing
(resp. decreasing) soft set is increasing (resp. decreasing).

Proposition 2 (see [18])

(i) 5e union of increasing (resp. decreasing) soft sets is
increasing (resp. decreasing)

(ii) 5e intersection of increasing (resp. decreasing) soft
sets is increasing (resp. decreasing)

2.2. Soft Topological Space

Definition 15 (see [8]).+e family τ of soft sets over X under
a fixed parameter set E is said to be a soft topology on X if it
contains X and Φ and is closed under a finite intersection
and an arbitrary union.

+e triple (X, τ, E) is said to be a soft topological space.
Every member of τ is called soft open, and its relative
complement is called soft closed.

Definition 16 (see [8]). A soft subset (W, E) of (X, τ, E) is
called soft neighborhood of x ∈ X if there exists a soft open
set (G, E) such that x ∈ (G, E) ⊆ (W, E).

Definition 17 (see [10, 24]). A soft mapping
fϕ: (X, τ, A)⟶ (Y, θ, B) is said to be

(i) soft continuous if the inverse image of each soft
open set is soft open

(ii) soft open (resp. soft closed) if the image of each soft
open (resp. soft closed) set is soft open (resp. soft
closed)

(iii) soft bicontinuous if it is soft continuous and soft
open

(iv) soft homeomorphism if it is bijective soft
bicontinuous

Theorem 3 (see [9]). Let (X, τ, A) and (Y, θ, B) be two soft
topological spaces. Let Ω � (G, A) × (F, B): (G, A) ∈ τ{ and
(F, B) ∈ θ}. 5en, the family of all arbitrary union of elements
of Ω is a soft topology on X × Y.

Definition 18 (see [29]). Let (X, τ, E) be a soft topological
space. +en,

τ⋆ � (G, E): G(e) ∈ τe, for each e ∈ E , (2)

is called an extended soft topology on X.
Many properties of extended soft topologies which help

us to show the relationships between soft topology and its
parametric topologies were studied in [30].

2.3. Soft Topological Ordered Space

Definition 19 (see [18]). A quadrable system (X, τ, E,≺ ) is
said to be a soft topological ordered space if (X, τ, E) is a soft
topological space and (X,≺ ) is a partially ordered set.

Definition 20 (see [18]). A soft subset (W, E) of (X, τ, E,≺ )

is said to be increasing (resp. decreasing) soft neighborhood
of x ∈ X if (W, E) is increasing (resp. decreasing) and a soft
neighborhood of x.

Proposition 3 (see [18]). In (X, τ, E,≺ ), we find that, for
each e ∈ E, the family τe � G(e): (G, E) ∈ τ{ } with a partial
order relation ≺ forms an ordered topology on X.

(X, τe,≺ ) is said to be a parametric topological ordered
space.

Definition 21 (see [18]). Let Y⊆X. +en, (Y, τY,≺ Y, E) is
called a soft ordered subspace of (X, τ,≺ , E) if (Y, τY, E) is a
soft subspace of (X, τ, E) and ≺ Y � ≺ ∩Y × Y.

Lemma 1 (see [18]). If (U, E) is an increasing (resp. a de-
creasing) soft subset of (X, τ,≺ , E), then (U, E)∩ Y is an
increasing (resp. a decreasing) soft subset of a soft ordered
subspace (Y, τY,≺ Y, E).

Definition 22 (see [18]). +e product of a finite family of soft
topological ordered spaces (Xi, τi,≺ i, Ei): i ∈ 1, 2, . . . , n{ }} is
a soft topological ordered space (X, τ,≺ , E), where
X � 

n
i�1 Xi, τ is the product soft topology on X, E � 

n
i�1 Ei,

and ≺ � (x, y): x, y ∈ X such that (xi, yi) ∈ ≺ i for every i.

Definition 23 (see [18]). A soft ordered subspace
(Y, τY,≺ Y, E) of (X, τ, E,≺ ) is called soft compatibly or-
dered if for each increasing (resp. decreasing) soft closed
subset (H, E) of (Y, τY,≺ Y, E), there exists an increasing
(resp. a decreasing) soft closed subset (H⋆, E) of (X, τ, E,≺ )

such that (H, E) � Y∩ (H⋆, E).

Definition 24 (see [18]). (X, τ, E,≺ ) is said to be

(i) p-soft T2-ordered if for every distinct points x⋠y in
X, there exist disjoint soft neighborhoods (V, E)

and (W, E) of x and y, respectively, such that (V, E)

is increasing and (W, E) is decreasing
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(ii) lower (upper) p-soft regularly ordered if for each
decreasing (increasing) soft closed set (H, E) and
x ∈ X such that x⋐(H, E), there exist disjoint soft
neighbourhoods (V, E) of (H, E) and (W, E) of x

such that (V, E) is decreasing (increasing) and
(W, E) is increasing (decreasing)

(iii) p-soft regularly ordered if it is both lower p-soft
regularly ordered and upper p-soft regularly
ordered

(iv) p-soft T3-ordered if it is both lower p-soft T3-or-
dered and upper p-soft T3-ordered

If the phrase “soft neighborhoods” is replaced by “soft
open sets,” then the above soft axioms are called strong p-
soft regularly ordered and strong p-soft Ti-ordered spaces,
i � 2, 3.

3. Monotonically Soft Sets

In this section, we introduce a concept of monotonic soft sets
and study the main properties with the help of illustrative
examples.

Definition 25. A subset (G, E) of (X, E,≺ ) is called a
monotonic soft set if (G, E) is increasing or decreasing. In
other words, (G, E) � i(G, E) or (G, E) � d(G, E).

+e following example shows that the union and in-
tersection of monotonic soft sets are not always monotonic.

Example 1. Let ≺ � △∪ (1, 3), (3, 5), (1, 5), (2, 4){ } be a
partial order relation onX � 1, 2, 3, 4, 5{ }, and letE � e1, e2 

be a set of parameters. We define the following three subsets
(F, E), (G, E), and (H, E) of (X, E,≺ ) as follows:

(F, E) � e1, 1, 3{ }( , e2, X(  ,

(G, E) � e1, 3, 5{ }( , e2,∅(  ,

(H, E) � e1, 4{ }( , e2, 4{ }(  .

(3)

Since d(F, E) � (F, E), i(G, E) � (G, E), and
i(H, E) � (H, E), (F, E), (G, E), and (H, E) are monotonic
soft sets. Now, (F, E)∩ (G, E) � (e1, 3{ }), (e2,∅)  and
(F, E)∪ (H, E) � (e1, 1, 3, 4{ }), (e2, X) . It is clear that
i((F, E)∩ (G, E)) � (e1, 3, 5{ }), (e2,∅)}≠d((F, E)∩
(G, E)) � (e1, 1, 3{ }), (e2,∅ )}≠ (F, E)∩ (G, E) and
i((F, E)∪ (H, E)) � (e1, 1, 3, 4, 5{ }), (e2, X)}≠d((F,

E)∪ (H, E)) � (e1, 1, 2, 3, 4{ }), (e2, X)}≠ (F, E)∪ (H, E).
Hence, (F, E)∩ (G, E) and (F, E)∪ (H, E) are not mono-
tonic soft sets.

+e following result demonstrates under what condi-
tions the union (intersection) of monotonic soft sets is
monotonic.

Proposition 4. Let (F, E) and (G, E) be two subsets of
(X, E,≺ 1) and (Y, E,≺ 2), respectively. If (F, E) and (G, E)

are both increasing (decreasing), then the union and inter-
section of (F, E) and (G, E) are monotonic soft sets.

Proof. It follows immediately from Proposition 2. □

Corollary 1. Let (F, E) and (G, E) be two monotonic subsets
of (X, E,≺ 1) and (Y, E,≺ 2), respectively. 5en, we have the
following two results:

(i) (F, E)∪ (G, E) and (F, E)c∪ (G, E)c are monotonic
or (F, E)c∪ (G, E) and (F, E)∪ (G, E)c are
monotonic

(ii) (F, E)∩ (G, E) and (F, E)c∩ (G, E)c are monotonic
or (F, E)c∩ (G, E) and (F, E)∩ (G, E)c are
monotonic

Proposition 5. Let (F, E) and (G, E) be two soft subsets of
(X, E,≺ 1) and (Y, E,≺ 2), respectively. We have the following
two results:

(i) i≺ ((F, E) × (G, E)) � i≺ 1(F, E) × i≺ 2(G, E)

(ii) d≺ ((F, E) × (G, E)) � d≺ 1(F, E) × d≺ 2(G, E)

Proof. We only prove (i), and one can prove (ii) similarly.
i≺ ((F, E) × (G, E)) � i≺ (F × G, E × E) � P

(x,y)

(e,e′) ∈ (X×

Y, E × E,≺ ): there exists P
(a,b)

(e,e′) ∈ (F, E) × (G, E) such that
(a, b)≺ (x, y)}.

(i) � Px
e ∈ (X, E,≺ 1) and P

y

e′ ∈ (Y, E,≺ 2): there exist
Pa

e ∈ (F, E) and Pb
e′ ∈ (G, E) such that a≺ 1x and

b≺ 2y}

(ii) � Px
e ∈ (X, E,≺ 1) : there exist Pa

e ∈ (F, E) such that
a≺ 1x} and P

y

e′ ∈ (Y, E,≺ 2) : there existPb
e′ ∈ (G, E)

such that b≺ 2y}

(iii) � i≺ 1(F, E) × i≺ 2(G, E) □

+e next example illustrates that the product of two
monotonic soft sets need not be a monotonic soft set.

Example 2. Let ≺ 1 � △∪ (a, b){ } and ≺ 2 � △∪ (1, 2){ } be
the partial order relations on X � a, b{ } and Y � 1, 2{ }, re-
spectively. From Definition 12, the partial order relation ≺
on X × Y � (a, 1), (a, 2), (b, 1), (b, 2){ } is given as follows:
≺ � △∪ ((a, 1), (a, 2)), ((a, 1), (b, 1)), ((a, 1), (b,{ 2)), ((a,

2), (b, 2))}. Take E � e1, e2  as a set of parameters. Now,
(F, E) � (e1, a{ }), (e2,∅)  is a monotonic subset of
(X, E,≺ 1) because d≺ 1(F, E) � (e1, a{ }), (e2,∅)  � (F, E);
and (G, E) � (e1, 2{ }), (e2, Y)  is a monotonic subset of
(Y, E,≺ 2) because i≤ 2(G, E) � (e1, 2{ }), (e2, Y)  � (G, E).
On the contrary, their product (F × G, E × E) �

((e1, e1), (a, 2){ }), ((e1, e2), (a, 1), (a, 2){ }) , ((e2, e1),∅),

((e2, e2),∅)} is not a monotonic subset of (X × Y, E × E,≺ )

because i≺ (F × G, E × E) � ((e1, e1), (a, 2), (b, 2){ }), ((e1,

e2), X × Y), ((e2, e1),∅), ((e2, e2),∅)}≠ (F × G, E × E) and
d≺ (F × G, E × E) � ((e1, e1), (a, 1), (a, 2)), ((e1, e2), (a,{

1), (a, 2)}), ((e2, e1),∅), ((e2, e2),∅)}≠ (F × G, E × E).
+e following result demonstrates under what condi-

tions the product of two monotonic soft sets is a monotonic
soft set.

Proposition 6. Let (F, E) and (G, E) be two subsets of
(X, E,≺ 1) and (Y, E,≺ 2), respectively, such that (F, E) and
(G, E) are both increasing (decreasing). 5en, (F, E) and
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(G, E) are monotonic soft sets iff (F, E) × (G, E) is a
monotonic soft set.

Proof. It follows immediately from Proposition 5.
In view of+eorem 2, we obtain the following result. □

Theorem 4. If g: (X, E,≺ 1)⟶ (Y, E,≺ 2) is an order
embedding map, then

(i) 5e image of each monotonic soft set is monotonic
(ii) 5e inverse image of each monotonic soft set is

monotonic

4. Monotonically Soft Compact Spaces

In this section, we introduce a concept of monotonic soft
compact spaces and study their main properties. Also, we
characterize them and demonstrate their relationships with
STi-ordered spaces (i � 2, 3, 4). Finally, we investigate some
results that associated the concept of monotonic compact
spaces with monotonic limit points and some types of
monotonic maps.

Definition 26. +e collection (Gj, E): j ∈ J  of soft open
subsets of (X, τ, E,≺ ) is called a monotonic soft open cover
for (F, E) ⊆ X provided that (F, E) ⊆∪ j∈J(Gj, E) and all
(Gj, E) are monotonic.

Definition 27. (X, τ, E,≺ ) is said to be monotonic soft
compact provided that every monotonic soft open cover of
X has a finite subcover.

One can easily prove the following result.

Proposition 7. Every soft compact space is monotonic soft
compact.

+e next example elucidates that the converse of the
above proposition is not always true.

Example 3. Let τ � ∅ , (G, E)⊆ N such that 1 ∈ (G, E)} be
the particular point soft topology on the set of natural
numbers N, E � e1, e2  be a set of parameters, and ≺ �

△∪ (x, y): x is smaller than y} be a partial order relation on
N. Obviously, (N, τ, E,≺ ) is not soft compact. On the
contrary, the only increasing open subsets of (N, τ,≺ ) are
∅ and N. +e decreasing open subsets of (N, τ, E,≺ ) are
given in the form (Gn, E) � (ei, 1, 2, . . . , n{ }) for each
i � 1, 2. Hence, (N, τ, E,≺ ) is monotonic soft compact.

In the following, we establish the main properties of a
monotonic soft compact space which are similar to their
counterparts on a soft compact space.

Proposition 8. Every monotonic soft closed subset (F, E) of a
monotonic soft compact space (X, τ, E,≺ ) is monotonic soft
compact.

Proof. Let (Gj, E): j ∈ J  be a monotonic soft open cover
of a monotonic soft closed subset (F, E) of (X, τ, E,≺ ). Since
(F, E)c is monotonic soft open, ∪

j∈J
(Gj, E)⋃ (F, E)c is a

monotonic soft open cover of X. +erefore,
X � ∪ n

j�1(Gj, E)∪ (F, E)c. +us, (F, E) ⊆∪ n

j�1(Gj, E).
Hence, (F, E) is monotonic soft compact. □

Corollary 2. 5e intersection of monotonic soft closed and
monotonic soft compact sets is monotonic soft compact.

Theorem 5. Let (F, E) be a monotonic soft compact subset of
a strong p-soft T2-ordered space (X, τ, E,≺ ). If x⋐(F, E),
then there exist disjoint monotonic soft open sets (W, E) and
(V, E) containing x and (F, E), respectively.

Proof. Let (F, E) be a monotonic soft closed set such that
x⋐(F, E) and y⋐(F, E). Without loss of generality, suppose
that (F, E) is increasing. +en, y≺ x. Since (X, τ, E,≺ ) is
strong p-soft T2-ordered, there are an increasing soft open
set (Wi, E) containing y and a decreasing soft open set
(Vi, E) containing x such that (Wi, E) and (Vi, E) are
disjoint. +erefore, (Wi, E)  forms an increasing soft open
cover of (F, E). +us, (F, E)⊆∪ i�n

i�1WiE
. Obviously, the two

disjoint soft open sets ∪ i�n

i�1(Wi, E) and ∩ i�n
i�1(Vi, E) are

increasing and decreasing, respectively. Hence, the proof is
completed. □

Theorem 6. Every monotonic soft compact and strong p-soft
T2-ordered space (X, τ, E,≺ ) is strongly p-soft regular
ordered.

Proof. Let (F, E) be a monotonic soft closed subset of
(X, τ, E,≺ ) such that x⋐(F, E). Since (X, τ, E,≺ ) is
monotonic soft compact, (F, E) is monotonic soft compact.
Since (X, τ, E,≺ ) is strong p-soft T2-ordered, it follows from
+eorem 5 that there are two disjoint monotonic soft open
sets (U, E) and (V, E) containing x and (F, E), respectively.
Hence, (X, τ, E,≺ ) is strongly p-soft regular ordered. □

Corollary 3. Every monotonic soft compact and strong p-soft
T2-ordered space (X, τ, E,≺ ) is strong p-soft T3-ordered.

Definition 28 (see [28]). For a nonempty set X, a subcol-
lection Λ of 2X is said to have the finite intersection property
(for short, FIP) if any finite subcollection of Λ has a non-
empty intersection.

Theorem 7. (X, τ, E,≺ ) is a monotonic soft compact space
iff every collection of monotonic soft closed subsets of X,
satisfying the FIP, has a nonempty soft intersection.

Proof. Necessity: letΩ � (Fj, E): j ∈ J  be the collection of
monotonic soft closed subsets of X which has the FIP.
Suppose that ∩ j∈J(Fj, E) � ∅ . +en, X � ∪ j∈J(Fj, E)c.
Since X is monotonic soft compact, X � ∪ n

j�1(Fj, E)c.
+erefore, ∩ n

j�1(Fj, E) � ∅ , but this contradicts that Ω has
the FIP. Hence, Ω has a nonempty soft intersection.

Sufficiency: let (Gj, E): j ∈ J  be a monotonic soft open
cover of X. Suppose that (Gj, E): j ∈ J  has no finitely
monotonic subcover. +en, X\∪ n

j�1(Gj, E)≠ ∅ for each
n ∈N. +erefore, ∩ n

j�1(Gj, E)c ≠ ∅ . +is implies that
(Gj, E)c: j ∈ J  is the collection of monotonic soft closed
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subsets of X which has the FIP. By hypothesis,
∩ j∈J(Gj, E)c ≠ ∅ . +us, X≠∪ j∈J(Gj, E), but this contra-
dicts thatΩ is a monotonic soft open cover of X. Hence, X is
monotonic soft compact. □

Theorem 8. 5e subspace (Y, τY, E,≺ Y) of (X, τ, E,≺ ) is
monotonic soft compact iff Y is a monotonic soft compact set
in (X, τ, E,≺ ).

Proof. Necessity: let Ω � (Gj, E): j ∈ J  be the collection
of monotonic soft open subsets of (X, τ, E,≺ ) which cover
Y. +en, Ω′ � (Gj, E)∩ Y: j ∈ J} is the collection of
monotonic soft open subsets of (Y, τY, E,≺ Y) which cover
Y. By hypothesis, we have Y � ∪ n

j�1((Gj, E)∩ Y). +us,
Y � ∪ n

j�1(Gj, E). Hence, Y is a monotonic soft compact set.
Sufficiency: let (Hj, E): j ∈ J  be the collection of

monotonic soft open subsets of (Y, τY, E,≺ Y) which cover
Y. Since (Hj, E) � Y∩ (Gj, E) for some (Gj, E) ∈ τ,
(Gj, E): j ∈ J  is a monotonic soft open cover of Y. By
hypothesis, we have Y � ∪ n

j�1(Gj, E). +us,
Y � ∪ n

j�1((Gj, E)∩ Y). Hence, (Y, τY, E,≺ Y) is monotonic
soft compact. □

Definition 29. Let (H, E) be a soft subset of (X, τ, E,≺ ) and
Px

e ∈ X. A soft point Px
e is said to be a monotonic soft limit

point of (H, E) if [(G, E)∖Px
e ]∩ (H, E)≠ ∅ for every

monotonic soft open set (G, E) containing Px
e .

+e soft set of all monotonic soft limit points of(H, E) is
denoted by (H, E)ml.

It is clear that the limit points of a set (H, E) are a subset
of the monotonic limit point of (H, E). +e next example
shows that the converse need not be true in general.

Example 4. Consider τ � ∅, X, b{ }, a, c{ }{ } is a topology on
X � a, b, c{ }, and let ≺ � △∪ (a, b), (b, c), (a, c){ } be a partial
order relation on X. Let A � b, c{ }. +en, Al � a{ } and
Aml � X. Hence, Al is a proper subset of Aml.

Theorem 9. Let (H, E) be a subset of (X, τ, E,≺ ). 5en, the
following results hold:

(i) (H, E) is monotonic soft closed iff (H, E)ml ⊆A

(ii) (H, E)∪ (H, E)ml is monotonic soft closed

Proof. We only prove (i), and one can prove (ii) similarly.
Necessity: assume that (H, E) is a monotonic soft closed

set and Px
e ∉ (H, E). +en, Px

e ∈ (H, E)c. Since (H, E)c is
monotonic soft open and (H, E)c ∩ (H, E) � ∅ ,
Px

e ∉ (H, E)ml. +erefore, (H, E)ml⊆(H, E).
Sufficiency: let Px

e ∈ (H, E)c and (H, E)ml⊆(H, E). +en,
Px

e ∉ (H, E)ml. +erefore, there is a monotonic soft open set
(Gxe, E) such that (Gxe, E)∖ Px

e ∩ (H, E) � ∅ . Since
Px

e ∈ (H, E)c, (Gxe, E)∩ (H, E) � ∅. Now, (Gxe, E)⊆
(H, E)c. +erefore, (H, E)c � ∪ (Gxe, E): Px

e ∈ (H, E)c
 .

+us, (H, E)c is a monotonic soft open set. Hence, (H, E) is
monotonic soft closed. □

Corollary 4. If (H, E) is a soft subset of a monotonic soft
compact space (X, τ, E,≺ ), then (H, E)∪ (H, E)ml is
monotonic soft compact.

Theorem 10. Every infinite soft subset of a monotonic soft
compact space (X, τ, E,≺ ) has a monotonic soft limit point.

Proof. Suppose that (H, E) is an infinite soft subset of a
monotonic soft compact space (X, τ, E,≺ ). Suppose that
(H, E) does not have a monotonic soft limit point. +en, for
each Px

e ∈ X, we have a monotonic soft open set (Gxe, E)

containing Px
e such that (Gxe, E)∩ (H, E)⊆ Px

e . Now, the
collection Ω � (Gxe, E): Px

e ∈ X  forms a monotonic soft
open cover of X. Since X is monotonic soft compact,
X � ∪ n

j�1(Gxe, E). +erefore, X has at most n soft points of
(H, E). +is implies that (H, E) is finite, but this contradicts
the infinity of (H, E). +us, (H, E) has a monotonic soft
limit point. □

Definition 30. A soft map g: (X, τ, E,≺ 1)⟶ (Y, θ, E,≺ 2)
is said to be

(i) monotonic soft continuous if the preimage of every
monotonic soft open set is a monotonic soft open
set

(ii) monotonic soft open (resp. monotonic soft closed)
if the image of every monotonic soft open (resp.
monotonic soft closed) set is a monotonic soft open
(resp. monotonic soft closed) set

(iii) monotonic soft homeomorphism if it is bijective,
monotonic soft continuous, and monotonic soft
open

Proposition 9. 5e property of being a monotonic soft
compact set is preserved under a monotonic soft continuous
map.

Proof. Let g: (X, τ, E,≺ 1)⟶ (Y, θ, E,≺ 2) be a mono-
tonic soft continuous map, and let (F, E) be a monotonic
soft compact subset of X. Suppose that (Hj, E): j ∈ J  is a
monotonic soft open cover of g(F, E). +en,
(F, E)⊆∪ j∈Jg− 1(Hj, E). Since g is monotonic soft con-
tinuous, g− 1(Hj, E) is a monotonic soft open set for all j ∈ J.
Since (F, E) is monotonic soft compact,
g(F, E)⊆∪ n

j�1(Hj, E). Hence, g(F, E) is monotonic soft
compact.

+e following is still an open problem. □

Problem 1. Is the product of monotonic soft compact spaces
a monotonic soft compact space?

Definition 31 (see [3]). A triple (X, τ,≺ ) is said to be a
topological ordered space if (X,≺ ) is a partially ordered set
and (X, τ) is a topological space.

Recall that (X, τ,≺ ) is said to be monotonic compact if
every monotonic open cover of X has a finite subcover.
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Theorem 11. Let (X, τe,≺ ) be monotonic compact for each
e ∈ E. 5en, (X, τ, E,≺ ) is a monotonic soft compact space if
E is finite.

Proof. Let (Gj, E): j ∈ J  be a monotonic soft open cover
of (X, τ, E,≺ ). Without loss of generality, suppose that
E � e1, e2 . +en, the collections Gj(e1): j ∈ J  and
Gj(e2): j ∈ J  are monotonic open covers of (X, τe1

,≺ )

and (X, τe2
,≺ ), respectively. By hypothesis, there exist fi-

nitely two subsets M and N of J such that X � ∪ j∈MGj(e1)

and X � ∪ j∈NGj(e1). +erefore, X � ∪ j∈M∪N(Gj, E).
+us, (X, τ, E,≺ ) is monotonic soft compact.

To show that a finite condition of E is necessary, we give
the following example. □

Example 5. Let a set of parameters be the set of natural
numbers N, and let τ be a soft discrete topology on
X � 1, 2{ }. If ≺ � △∪ (1, 2){ } is a partial order relation on X,
then the collection Λ of all soft points of X is a monotonic
soft open cover of X. Obviously, Λ has no finite subcover.
+erefore, (X, τ,N,≺ ) is not monotonic soft compact. On
the contrary, (X, τen

,≺ ) is soft compact for each n ∈N.

Theorem 12. Let (X, τ, E,≺ ) be an extended soft topological
space. If (X, τ, E,≺ ) is a monotonic soft compact space, then
(X, τe,≺ ) is monotonic compact for each e ∈ E.

Proof. Let Hj(e): j ∈ J  be a monotonic open cover of
(X, τe). Since (X, τ, E,≺ ) is extended, we choose all
monotonic soft open sets (Fj, E) such that Fj(e) � Hj(e)

and Fj(ei) � X for all ei ≠ e. Obviously, (Fj, E): j ∈ J  is a
monotonic soft open cover of (X, τ, E,≺ ). By hypothesis, it
follows that X � ∪ n

j�1(Fj, E). +us,
X � ∪ n

j�1Fj(e) � ∪ n
j�1Hj(e). Hence, (X, τe,≺ ) is mono-

tonic compact.
Now, we give a condition which guarantees the converse

of the above theorem holds. □

Proposition 10. Let (X, τ, E,≺ ) be an extended soft topo-
logical space such that E is finite. 5en, (X, τ, E,≺ ) is a
monotonic soft compact space iff (X, τe,≺ ) is monotonic
compact for some e ∈ E.

Proof. +e proof follows from +eorems 11 and 12. □

5. Ordered Soft Compact Spaces and
Applications on the Information System

+is section presents a concept of ordered compact spaces
and shows their relationships with monotonic compact and
compact spaces. Also, it investigates their relationships with
Ti-ordered spaces (i � 2, 3, 4) and bicontinuous maps and
shows that the product of ordered compact spaces need not
be ordered compact. Finally, it gives an interesting appli-
cation of ordered compact spaces on the information system.

5.1. Ordered Soft Compact Spaces

Definition 32. (X, τ, E,≺ ) is said to be ordered soft compact
if every soft open cover of X has a finitely monotonic
subcover.

Proposition 11. Every ordered soft compact space is soft
compact.

Proof. Straightforward. □

Corollary 5. Every ordered soft compact space is monotonic
soft compact.

To see that the converse of the above two results need not
be true, we give the next example.

Example 6. Consider τ is the discrete topology on
X � a, b, c, d{ }, and let ≺ � △∪ (a, b)(c, d){ } be a partial
order relation on X. +en, (X, τ, E,≺ ) is compact because X

is finite. Moreover, it is monotonic compact. On the con-
trary, the collection a{ }, b, c{ }, d{ }{ } is an open cover of X.
Since this collection has no finitely monotonic subcover,
(X, τ, E,≺ ) is not ordered compact.

+e above example also shows that a finite topological
space need not be ordered compact.

Definition 33. +e collection Λ � (Fj, E): j ∈ J  of S(XE)

is said to be minimal if every member of Λ covers some soft
points of X which do not cover by any other members of Λ.
In other words, removing any member (Fj0

, E) of Λ implies
that Λ∖(Fj0

, E) is not a cover of X.

Definition 34. +e collection Λ � (Fj, E): j ∈ J  of P(X) is
said to have the finite monotone property (FMP, in short) if
all the minimal subcollections of Λ which covers X are
monotonic.

Example 7. Consider τ is the discrete topology on the set of
real numbers R. +en, the two collections
R∖ 1{ },R∖ 2{ },R∖ 3{ }{ } and x, y : x, y ∈R  are not
minimal. On thecontrary, the two collections
R∖ 1{ },R∖ 2{ }{ } and x{ }: x ∈R{ } are minimal.

Proposition 12. If every collection of the soft open cover of
(X, τ, E,≺ ) satisfies the FMP, then (X, τ, E,≺ ) is ordered soft
compact iff it is soft compact.

Proof. Necessity: it follows from Proposition 11.
Sufficiency: let (Gj, E): j ∈ J  be a soft open cover of

(X, τ, E,≺ ). By compactness, we have X � ∪ n

j�1(Gj, E).
Now, (Gj, E): j � 1, 2, . . . , n  is a minimal collection cov-
ering X. Since (X, τ, E,≺ ) has the FMP, (Gj, E) is mono-
tonic for each j � 1, 2, . . . , n. Hence, (X, τ, E,≺ ) is ordered
soft compact. □

Proposition 13. Every soft closed subset F of an ordered soft
compact space (X, τ, E,≺ ) is ordered soft compact.
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Proof. Let (Gj, E): j ∈ J  be a soft open cover of a soft
closed subset (F, E) of X. +en, Fc, E is soft open. +erefore,
∪ j∈J(Gj, E)∪ (Fc, E) is a soft open cover of X. By hy-
pothesis, X is ordered soft compact; then,
X � ∪ n

j�1(Gj, E)∪ (Fc, E), where (Gj, E) is a monotonic
soft open set for each j � 1, 2, . . . , n. +us,
(F, E)⊆∪ n

j�1(Gj, E). Hence, (F, E) is ordered soft
compact. □

Corollary 6. 5e intersection of soft closed and ordered soft
compact sets is ordered soft compact.

Corollary 7. Let (F, E) be a soft closed subset of an ordered
soft compact space (X, τ, E,≺ ) such that (F, E) is not
monotonic. 5en, every monotonic cover of (F, E) is also a
monotonic cover of X.

Lemma 2. Let (F, E) be a monotonic and ordered soft
compact subset of a p-soft T2-ordered space (X, τ, E,≺ ). If
x⋐(F, E), then there are two monotonic soft neighbourhoods
(U, E) and (V, E) of x and (F, E), respectively, such that
(U, E)∩ (V, E) � ∅ .

Proof. Let (F, E) be a monotonic ordered soft compact set
such that x⋐(F, E) and y⋐(F, E). Without loss of generality,
suppose that (F, E) is increasing. +en, y≺ x. Since
(X, τ, E,≺ ) is p-soft T2-ordered, there are an increasing soft
neighbourhood (Wi, E) of y and a decreasing soft neigh-
bourhood (Vi, E) of x such that (Wi, E) and (Vi, E) are
disjoint. +erefore, there is a soft open set (Mj, E) con-
taining y such that (Mj, E)⊆(Wj, E). Now, (Mj, E): j ∈ J 

is a soft open cover of (F, E). By hypothesis,
(F, E)⊆∪ n

j�1(Mj, E), where (Mj, E) is a monotonic soft
open set for each j � 1, 2, . . . , n. +us, (F, E)⊆∪ n

j�1(Wj, E).
Obviously, ∪ n

j�1(Wj, E) is a decreasing neighbourhood of
(F, E), and ∩ n

j�1(Vj, E) is an increasing neighbourhood of
x such that ∪ n

j�1(Wj, E) and ∩ n

j�1(Vj, E) are disjoint.
Hence, the proof is completed. □

Theorem 13. Every ordered soft compact and p-soft
T2-ordered space (X, τ, E,≺ ) is p-soft regularly ordered.

Proof. +e proof is similar to that of +eorem 6. □

Corollary 9. Every ordered soft compact and p-soft T2-or-
dered space (X, τ, E,≺ ) is p-soft T3-ordered.

Theorem 14. (X, τ, E,≺ ) is an ordered soft compact space iff
every collection of soft closed subsets of X, satisfying the FIP
for the monotonic soft sets in this collection, has a nonempty
intersection.

Proof. Necessity: letΩ � (Fj, E): j ∈ J  be the collection of
soft closed subsets X which has the FIP for the monotonic
soft sets in this collection. Suppose that ∩ j∈J(Fj, E) � ∅ .
+en, X � ∪ j∈J(Fj, E)c. Since X is ordered soft compact,
X � ∪ n

j�1(Fj, E)c, where (Fj, E)c is a monotonic soft set for
each j � 1, 2, . . . , n. +erefore, ∩ n

j�1(Fj, E) � ∅ , but this

contradicts thatΩ has the FIP for everymonotonic soft set in
this collection. Hence, Ω has a nonempty intersection.

Sufficiency: let (Gj, E): j ∈ J  be a soft open cover of X.
Suppose that (Gj, E): j ∈ J  has no finitely monotonic
subcover. +en, X\∪ n

j�1(Gj, E)≠ ∅ for each n ∈N, where
(Gj, E) is a monotonic soft set for j � 1, 2, . . . , n. +erefore,
∩ n

j�1(Gj, E)c ≠ ∅ . +is implies that (Gj, E)c: j ∈ J  is the
collection of monotonic soft closed subsets of X which has
the FIP. +us, ∩ j∈J(Gj, E)c ≠ ∅ . +us, X≠∪ j∈J(Gj, E),
but this contradicts that Ω is a soft open cover of X. Hence,
X is ordered soft compact. □

Proposition 14. If Y is an ordered soft compact set in
(X, τ, E,≺ ), then a subspace (Y, τY,≺ Y) of (X, τ, E,≺ ) is
ordered soft compact.

Proof. Let (Hj, E): j ∈ J  be the collection of soft open
subsets of (Y, τY,≺ Y) which covers Y. Since
(Hj, E) � Y∩ (Gj, E) for some (Gj, E) ∈ τ, (Gj, E): j ∈ J 

is a soft open cover of Y in (X, τ, E,≺ ). By hypothesis, we
have Y � ∪ n

j�1(Gj, E), where (Gj, E) is a monotonic soft set
for j � 1, 2, . . . , n. +us, Y � ∪ n

j�1((Gj, E)∩ Y), where
(Gj, E)∩ Y is a monotonic soft set for j � 1, 2, . . . , n in
(Y, τY,≺ Y). Hence, (Y, τY,≺ Y) is ordered soft compact.

+e converse of the above proposition fails as illustrated
in the following example. □

Example 8. Let (X, τ, E,≺ ) be the same as in Example 6. If
Y � a, b, c{ }, then τY is the discrete topology on Y, and ≺ Y �

△∪ (a, b){ } is a partial order relation on Y. It is clear that
(Y, τY,≺ Y) is an ordered compact space. On the contrary,
the collection a{ }, b, c{ }{ } is an open cover of Y in X. Since
i( b, c{ }) � b, c, d{ } and d( b, c{ }) � a, b, c{ }, this collection has
no finitely monotonic subcover of Y. Hence, Y is not an
ordered compact subset of (X, τ, E,≺ ).

Theorem 15. Every infinite subset of an ordered soft compact
space has a soft limit point.

Proof. +e proof is similar to that of +eorem 10. □

Theorem 16. 5e property of being an ordered soft compact
set is preserved under a soft bicontinuous surjective and soft
ordered embedding map.

Proof. Let g: (X, τ,≺ 1)⟶ (Y, θ,≺ 2) be a soft bicontin-
uous map, and let (F, E) be an ordered soft compact subset
of X. Suppose that (Hj, E): j ∈ J  is a soft open cover of
g(F, E). +en, (F, E)⊆∪ j∈Jg− 1(Hj, E). Since g is soft
continuous, g− 1(Hj, E) is a soft open set for all j ∈ J. By
hypothesis, (F, E) is ordered soft compact; then,
(F, E)⊆∪ n

j�1g
− 1(Hj, E), where g− 1(Hj, E) is a monotonic

soft set for each j � 1, 2, . . . , n. Since g is soft open and soft
ordered embedding, g[g− 1(Hj, E)] is a monotonic soft open
set for each j � 1, 2, . . . , n. Now,
g(F, E)⊆∪ n

j�1g[g− 1(Hj, E)]. Since g is surjective,
g[g− 1(Hj, E) � (Hj, E) for each j ∈ J. +us,
g(F, E)⊆∪ n

j�1(Hj, E) where (Hj, E) is a monotonic soft
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open set for each j � 1, 2, . . . , n. Hence, g(F, E) is an or-
dered soft compact set.

We complete this section with the next example which
shows that the product of ordered compact spaces need not
be ordered compact. □

Example 9. Let τ and θ be the discrete topologies on X �

a, b{ } and Y � 1, 2{ }, respectively. Let ≺ 1 � △∪ (a, b){ } and
≺ 2 � △∪ (1, 2){ } be the partial order relations on X and Y,
respectively. One can check that (X, τ,≺ 1) and (Y, θ,≺ 2) are
ordered compact spaces. Now, the product topology T on
X × Y � (a, 1), (a, 2), (b, 1), (b, 2){ } is the discrete topology.
From Definition 12, the partial order relation ≺ on X × Y is
given as follows: ≺ � △∪ ((a, 1), (a, 2)), ((a,{ 1), (b, 1)),

((a, 1), (b, 2)), ((a, 2), (b, 2))}. It is clear that the collection
Ω � (a, 1){ }, (a, 2){ }, (b, 1){ }, (b, 2){ }{ } forms an open cover of
X × Y. Since i( (a, 2){ }) � (a, 2), (b, 2){ } and d( (a, 2){ }) �

(a, 1), (a, 2){ }, (a, 2){ } is not a monotonic subset of X × Y.
SinceΩ is minimal, (X × Y, T,≺ ) is not an ordered compact
space.

Recall that (X, τ,≺ ) is said to be ordered compact if
every open cover of X has a finitely monotonic subcover.

Theorem 17. Let (X, τ, E,≺ ) be an extended soft topological
space. If (X, τ, E,≺ ) is an ordered soft compact space, then
(X, τe,≺ ) is ordered compact for each e ∈ E.

Proof. Let Hj(e): j ∈ J  be an open cover of (X, τe). Since
(X, τ, E,≺ ) is extended, we choose all soft open sets (Fj, E)

such that Fj(e) � Hj(e) and Fj(ei) � X for all ei ≠ e. Ob-
viously, (Fj, E): j ∈ J  is a soft open cover of (X, τ, E,≺ ).
By hypothesis, it follows that X � ∪ n

j�1(Fj, E), where
(Fj, E) is monotonic for each j � 1, 2, . . . , n. +us,
X � ∪ n

j�1Fj(e) � ∪ n
j�1Hj(e) such that Hj(e) is monotonic

for each j � 1, 2, . . . , n. Hence, (X, τe,≺ ) is ordered
compact. □

5.2. An Application of Ordered Compactness on the Infor-
mation System. In this part, we investigate an application of
ordered compact spaces on the information system. It is well
known that study compactness on the information system is
meaningless because it is defined on a finite set so that this
study is the first attempt of discussing a new type of
compactness on the information system.

Definition 35 (see [31]). +e information system is a pair of
two nonempty sets (X, A) such thatX is a finite set of objects
and A is a finite set of attributes.

To start this part, consider Table 1 which represents a
decision system.

It is well known that the equivalence classes form a soft
basis for a soft topology on the universe set X such that every
member of this basis is a soft clopen set.

We refer to a soft topology which was generated by the
attributes ai and ai,j by τai

and τai,j
, respectively; and we refer

to a soft topology which was generated by an attribute of
decision d by τd.

From Table 1, we generate a soft topology on X with
respect to an attribute a2 as follows.

First, we find the basis: B � (G6, E) , (G1, E), (G3,

E)}, (G2, E), (G4, E), (G5, E)}}.
Second, we find a soft topology on X from this soft basis:

τa2
� ∅ , X, (G6, E)  , (G1, E) , (G3, E)}, (G2, E), (G4,

E), (G5, E)}, (G1, E), (G3, E), (G6, E) , (G2, E), (G4, E),

(G5, E), (G6, E)},(G5, E), (G6, E)}, (G1, E), (G2, E), (G3, E),

(G4, E), (G5, E)}.
In a similar way, one can generate soft topologies on X

with respect to the attributes a1, a3, and d.

Theorem 18. If (X, τai
, E,≺ ) is an ordered soft compact

space, then its soft basis βai
is monotonic.

Proof. From the definition of a soft basis βai
, we find that the

members of it are disjoint soft clopen sets such that
X � ∪ j∈J(Bj, E). Since X is finite, J must be finite, and since
(X, τai

,≺ ) is an ordered soft compact space, all (Bj, E) are
monotonic soft sets.

+e converse of the above theorem is not always true as
illustrated in the following example. □

Example 10. From Table 1, a soft basis with respect to an
attribute a3 is B � (G1, E)  , (G3, E) , (G2, E), (G4, E)},

(G5, E), (G6, E) }. A soft topology on X from this soft basis
is τa3

� ∅ , X, (G1, E)}, (G3, E) , (G1, E), (G3, E)}, (G2,

E), (G4, E)}, (G1, E), (G2, E), (G4, E) , (G2, E), (G3, E),

(G4, E)}, (G1, E), (G2, E), (G3, E), (G4, E)}, (G1, E), (G5,

E), (G6, E)}, (G3, E) , (G5, E), (G6, E)}, (G1, E), (G3, E),

(G5, E), (G6, E)}, (G2, E), (G4, E), (G5, E), (G6, E)},

(G1, E) , (G2, E), (G4, E), (G5, E), (G6, E)}, (G2, E) ,
(G3, E), (G4, E), (G5, E), (G6, E)}}.

Let ≺ � △⋃ (x1, x5), (x2, x3)  be a partial order rela-
tion on X. +en, the basis
B � (G1, E) , (G3, E) , (G2, E), (G4, E) , (G5, E), (G6,

E)}} is monotonic. On the contrary, the collection
(G1, E),(G3, E) , (G2, E), (G4, E) , (G5, E), (G6, E) } is a
soft open cover of (X, τa3

, E,≺ ). Since this a soft open cover
does not have a finitely monotonic subcover, (X, τa3

, E,≺ ) is
not ordered soft compact.

Theorem 19. Let ai: i � 1, 2, . . . , n be superfluous attributes.
5en, a soft topology generated by other attributes, which are
not superfluous, is ordered soft compact iff a soft topology
generated by a decision attribute is ordered soft compact.

Table 1: Information system.

X
A

a1 a2 a3 Decision

(G1, E) 2 2 4 Accept
(G2, E) 3 1 3 Accept
(G3, E) 2 2 1 Reject
(G4, E) 3 1 3 Accept
(G5, E) 1 1 2 Reject
(G6, E) 4 3 2 Accept
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Proof. Without loss of generality, suppose that a1 is a
superfluous attribute. +en, a soft topology generated by all
attributes aj such that j≠ 1 is identical with a soft topology
generated by a decision attribute. Hence, the desired result is
proved.

In the rest of this part, we study the importance of ordered
soft compactness to expect the missing values of the table of
the information system. To this end, we present an algorithm
for expecting the missing values on the information system,
and then we provide two illustrative examples.

An algorithm for expecting the missing values on the
information system is given.

(1) Determine the objects (which are soft sets here) with
a missing value with respect to the given attribute.
Say, these objects are (Gj, E): j ∈ 1, 2, . . . , m{ } ,
where m< |X|}.

(2) Classify these objects in terms of increasing and
decreasing with respect to the given partial order
relation ≺ in the following three cases:

(i) Neither increasing nor decreasing
(ii) Increasing, but not decreasing, or decreasing,

but not increasing
(iii) Increasing and decreasing

(3) Write the soft basis B which generated a soft to-
pology τ ∖ (Gj, E): j ∈ 1, 2, . . . , m{ } , where
m< |X|}.

(4) If there is a nonmonotonic member of B, then add
the sufficient objects with the missing value to make
it monotonic. Otherwise, go to the next step.

(5) Examine the objects with the missing value
according to the order of them in Step 2.

(6) Write the expected values for each missing value
object.

+e following two examples are the application of car-
rying out this algorithm. □

Example 11. Consider (X, τ, E,≺ ) is an ordered compact
space, where τ is a topology generated by an attribute a,
which is illustrated in Table 2, on the universe set
X � (G1, E), (G2, E), (G3, E), (G4, E), (G5, E), (G6, E) , and
let ≺ � △⋃ ((G1, E), (G3, E)), ((G3, E), (G4, E)), ((G1, E),

(G4, E)), ((G5, E), (G6, E))} be a partial order relation on X.
According to Table 2, the basis of a soft topology on

X∖ (G3, E)  is (G1, E), (G4, E)  , (G2, E), (G6, E) , (G5,

E)}, (G7, E) }. It is clear that the only object with the missing
value is (G3, E). +is object is neither increasing nor de-
creasing. Now, the ordered soft compactness of (X, τ, E,≺ )

implies that a basis must be monotonic. However, a member
(G1, E), (G4, E)  of B is nonmonotonic. +us, (G3, E) must
belong to the member (G1, E), (G4, E) . In other words, the
expected value of (G3, E) is 3. Hence, Table 2 shall take the
following form.

Example 12. Consider (X, τ, E,≺ ) is an ordered soft
compact space, where τ is a soft topology generated by an
attribute a, which is illustrated in Table 3, on the universe set
X � (G1, E), (G2, E), (G3, E), (G4, E), (G5, E), (G6, E), (G7,

E), (G8, E), (G9, E), (G10, E)}, and let ≺ � △⋃ ((G2, E),

(G4, E)), ((G4, E),(G5, E)), ((G2, E),(G5, E)), ((G5, E),

(G6, E)), ((G2, E), (G6, E)), ((G4, E),(G6, E)), ((G8,

E), (G7, E))} be a partial order relation on X.
According to Table 3, the basis B of a soft topology on

X∖ (G2, E), (G5, E), (G10, E)  is (G1, E), (G3, E) , (G4,

E), (G6, E)}, (G7, E) , (G8, E), (G9, E) }. Since (X, τ, E,≺ )

is ordered soft compact, a basis must be monotonic, but a
member (G4, E), (G6, E)  of B is neither increasing nor de-
creasing so that we add (G5, E) to (G4, E), (G6, E) . +us, the
expected value of (G5, E) is 3. Hence, we have a new basis
B′ � (G1, E), (G3, E)  , (G4, E), (G5, E),(G6, E) , (G7,

E)}, (G8, E), (G9, E) } on X∖ (G2, E), (G10, E) .
Now, we process the remaining two missing values

separately. Since (G2, E) is a decreasing singleton, but not
increasing, and (G10, E) is an increasing and decreasing
singleton, we choose (G2, E) secondly according to item 2 of
the algorithm given above. It is clear that if we add (G2, E) to
any decreasing member of B′, we obtain a monotonic basis
so that we have the following three cases for the new basis
B″:

(i) (G1, E), (G2, E), (G3, E) , (G4, E), (G5, E),

(G6, E)}, (G7, E) , (G8, E), (G9, E) }

(ii) (G1, E), (G3, E) , (G2, E), (G4, E), (G5, E), (G6,

E)}, { (G7, E)}, (G8, E), (G9, E) }

(iii) (G1, E), (G3, E) , (G4, E), (G5, E), (G6, E)}, (G7,

E)}, (G2, E), (G8, E), (G9, E) }

Hence, the expected values of (G2, E) are 1, 2, or 3.
Finally, (G10, E) is a decreasing and an increasing sin-

gleton; it can be added to any member of B′′∖ (G10, E)  so
that we have the following cases for the new basis:

(i) (G1, E), (G2, E), (G3, E) , (G4, E), (G5, E), (G6,

E)}, (G7, E) , (G8, E), (G9, E)}, (G10, E) }

(ii) (G1, E), (G3, E) , (G2, E), (G4, E), (G5, E), (G6,

E)}, (G7, E)}, (G8, E), (G9, E) , (G10, E) }

(iii) (G1, E), (G3, E)}, (G4, E), (G5, E), (G6, E) , (G2,

E), (G7, E)}, (G8, E), (G9, E) , (G10, E) }

(iv) (G1, E), (G2, E), (G3, E), (G10, E)}, (G4, E), ( G5,

E), (G6, E)}, (G7, E) , (G8, E), (G9, E) }

(v) (G1, E), (G3, E), (G10, E) , (G2, E), (G4, E), (G5,

E), (G6, E)}, (G7, E) , (G8, E), (G9, E) }

Table 2:+e value of (Gi, E): i �1, 2, . . ., 7 with respect to attribute a.

X (G1, E) (G2, E) (G3, E) (G4, E) (G5, E) (G6, E) (G7, E)

a 3 2 × 3 4 2 1

X (G1, E) (G2, E) (G3, E) (G4, E) (G5, E) (G6, E) (G7, E)

a 3 2 3 3 4 2 1

10 Journal of Mathematics



(vi) (G1, E), (G3, E), (G10, E) , (G4, E), (G5, E), (G6,

E)}, (G2, E), (G7, E) , (G8, E), (G9, E) }

(vii) (G1, E), (G2, E), (G3, E) , (G4, E), (G5, E), (G6,

E), (G10, E)}, (G7, E) , (G8, E), (G9, E) }

(viii) (G1, E), (G3, E) , (G2, E), (G4, E), (G5, E), (G6,

E), (G10, E)}, (G7, E) , (G8, E), (G9, E) }

(ix) (G1, E), (G3, E) , (G4, E), (G5, E), (G6, E), (G10,

E)}, (G2, E), (G7, E) , (G8, E), (G9, E) }

(x) (G1, E), (G2, E), (G3, E)}, (G4, E), (G5, E), (G6,

E)}, (G7, E), (G10, E) , (G8, E), (G9, E) }

(xi) (G1, E), (G3, E) , (G2, E), (G4, E), (G5, E), (G6,

E)}, (G7, E), (G10, E) , (G8, E), (G9, E)}}

(xii) (G1, E), (G3, E) , (G4, E), (G5, E), (G6, E)}, (G2,

E), (G7, E), (G10, E)}, (G8, E), (G9, E)}}

(xiii) (G1, E), (G2, E), (G3, E) , (G4, E), (G5, E),

(G6, E)}, (G7, E) , (G8, E), (G9, E), (G10, E)}}

(xiv) (G1, E), (G3, E)}, (G2, E), (G4, E), (G5, E), (G6,

E)}, (G7, E)}, (G8, E), (G9, E), (G10, E)}}

(xv) (G1, E), (G3, E) , (G4, E), (G5, E), (G6, E)}, (G2,

E), (G7, E)}, (G8, E), (G9, E), (G10, E)}}

Hence, the expected values of (G10, E) are 1, 2, 3, or 5, or
any value different than them.

6. Conclusion

+is research paper has studied the concepts of mono-
tonic soft compact and ordered soft compact spaces
using monotonic soft sets. +ese two concepts are
considered as an extension of soft compact spaces. We
have described them using the finite intersection prop-
erty and have showed the relationship between them with
the help of examples. Also, we have established some
results related to soft ordered separation axioms and the
finite product space. Furthermore, we have discussed
preserving these concepts between the soft topological
ordered space and its parametric soft topological ordered
spaces. Finally, we give an interesting application of
ordered soft compact spaces on the information system.
In the upcoming works, we plan to investigate the fol-
lowing schemes:

(i) Study the concepts of almost soft compact and
mildly soft compact spaces on ordered setting

(ii) Establish the concepts introduced in this work on
some generalizations of soft topological ordered
spaces such as soft bitopological ordered and supra
soft topological spaces

(iii) Carry out further studies concerning the applica-
tions of ordered soft compactness on the infor-
mation system by making use of the application
presented in [32, 33]
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