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In this paper, some variants of strongly normal closure spaces obtained by using binary relation are introduced, and examples in
support of existence of the variants are provided by using graphs. *e relationships that exist between variants of strongly normal
closure spaces and covering axioms in absence/presence of lower separation axioms are investigated. Further, closure subspaces
and preservation of the properties studied under mapping are also discussed.

1. Introduction and Preliminaries

In 1960, the theory of digital topology arose for the study of
geometric and topological properties which in turn can be
used in computer graphics, image processing, etc. Digital
image processing is a rapidly growing discipline and has
many applications in allied branches of mathematics.
Rosenfeld [1] in 1979 studied connectedness, thinning, and
algorithm for border. To compare digital topology and
general topology, the generalized topological structure was
introduced in [2] by Smyth. *e topological structure that
arises from the directed graph is used in digital topology,
while Šlapal [3] in 2003 studied closure operations for digital
topology. He studied the closure space that arises from α-ary
relation and also studied connectedness in digital spaces via
closure operators on graphs [4]. Closure spaces defined
through binary relations were introduced in 2006 [5] by
Allam et al., and in 2008 [6], the same authors generated
topologies by using relations. *ey proved that topology
generated from aftersets and foresets is dual if the relation is
preorder. *ey also introduced lower separation axioms in
terms of relation and studied these closure spaces in digital
topology. Šlapal and Pfaltz [7] utilized binary relations in
networks and studied closure operators associated with

networks. B. M. R. Stadler and P. F. Stadler [8] studied some
higher separation axioms in closure spaces, and recently,
Gupta and Das [9] investigated variants of normality in
closure setting by using cannonically closed sets. In 2018,
Gupta and Das [10] introduced higher separation axioms
such as strongly normal and strongly regular closure spaces
via binary relation.

Let X be any set; then, a relation on X is a subset of
X × X, i.e., R⊆X × X. *e formula (x, y) ∈ R is abbreviated
as xRy, which means that x is in relation R with y. In 2006,
afterset of x ∈ X was denoted and defined as xR � y: xRy􏼈 􏼉

and foresets were denoted and defined as Rx � y: yRx􏼈 􏼉 [6].
Liu [11], in 2010, represented aftersets and foresets as left
relation and right relation. A set 〈p〉R is the intersection of
all aftersets containing p, i.e., 〈p〉R � ∩ p∈xRxR, if there
exists x such that p ∈ xR. In this paper, we introduced
variants of strongly normal closure spaces i.e., normal and
almost-normal closure spaces. Some properties of newly
defined notions are studied, and the relation between new
notions and lower separation axioms is investigated with the
help of covering axioms. As most of the practical situation
involves binary relation, which can easily be expressed
through graphs, an attempt in this paper is made to provide
examples via graphs to support notions defined in this paper.
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Definition 1 (see [5]). Let X be any set and R⊆X × X be any
binary relation on X. *e relation R gives rise to a closure
operation clR on X as follows:

clR(A) � A∪ x ∈ X: 〈x〉R∩A≠∅{ }, (1)

which satisfies the following conditions:

(1) cl(∅) � ∅,

(2) A ⊆ cl(A),

(3) cl(A∪B) � cl(A)∪ cl(B).

In addition to the above three properties, it also satisfies
the idempotent condition. *e set along with the operator
clR is a closure space. In the closure space (X, clR), a set A is
closed [5] if clR(A) � A.

Lemma 1 (see [5]). Let R be any binary relation on a
nonempty set X; then, x{ }∪ 〈x〉R is a minimal neighborhood
of x for all x ∈ X i.e., NR(x) � x{ }∪ 〈x〉R.

Remark 1 (see [5]). *e minimal neighborhood of a point x

in a closure space (X, clR) is defined as follows:

NR(x) �
〈x〉R, if 〈x〉R≠∅,

x{ }, if 〈x〉R � ∅.
􏼨 (2)

Lemma 2 (see [5]). For any binary relation R on X if
x ∈ 〈y〉R, then 〈x〉R⊆ 〈y〉R.

Theorem 1. In a closure space (X, clR), clR(∪NR(x)) is the
smallest closed set containing NR(x).

Definition 2. In a closure space (X, clR), a set A is said to be
regularly closed if for a closed set clR(A) � A, clR(intR
(A)) � A, and a set is said to be regularly open if its
complement is regularly closed, i.e., clRintR(X − clR
(A)) � X − clR(A).

Definition 3 (see [5]). A closure space (X, clR) generated
from a binary relation R is said to be T1 if and only if for
every two distinct points x andy ∈ X, both x ∉ 〈y〉R and
y ∉ 〈x〉R hold.

Definition 4 (see [5]). Let R be any binary reflexive relation;
then, a closure space (X, clR) generated from R is called as a
T2-space if and only if for every two distinct points
x, y ∈ X〈x〉, R∩ 〈y〉R � ∅.

Definition 5 (see [10]). Let R be a binary relation on X; then,
the closure space (X, clR) is said to be strongly normal if for
two disjoint closed sets A � clR(A) and B � clR(B), there
exist distinct x andy such that A ⊆ (〈x〉R), B ⊆ (〈y〉R),
and 〈x〉R∩ 〈y〉R � ∅.

Definition 6 (see [10]). Let R be a binary relation on X; then,
the closure space (X, clR) is said to be strongly regular if for
any closed set clR(A) � A and a point x ∉ clR(A), there exist
disjoint 〈u〉R and 〈v〉R such that x ∈ 〈u〉R and
clR(A) ⊆ 〈v〉R.

2. Variants of Strongly Normal Closure Space

Definition 7. Let R be a binary relation on X; then, the
closure space (X, clR) is said to be normal if for two disjoint
closed sets clR(A) � A and clR(B) � B, there exist some x

and y in clR(A) and clR(B), respectively, such that
clR(A)⊆ ∪x∈ANR(x) � U, clR(B)⊆ ∪ y∈BNR(y) � V, and
U∩V � ∅.

*e following example establishes that there exists a
closure space generated from a relation which is normal but
not strongly normal.

Example 1. Let us consider the set X consisting of straight
lines in a plane and define a binary relation R on X as aRb if
and only if line a is parallel to line b. Clearly, the closure
space (X, clR) is normal but not strongly normal because for
two disjoint closed sets, there do not exist disjoint 〈x〉R and
〈y〉R containing them.

Example 2. A closure space generated from a graph which is
not normal.

From the directed graph in Figure 1, we have
aR � c, d{ }, bR � a, b, c{ }, cR � b, c{ }, and dR � c{ }. *en,
〈a〉R � a, b, c{ }, 〈b〉R � b, c{ }, 〈c〉R � c{ }, and 〈d〉R � c, d{ }.
*e closure space (X, clR) is not normal because for two
disjoint closed sets clR(A) � a{ } � A and clR(B) � d{ } � B,
there does not exist some x and y such that clR(A)⊆
∪ x∈ANR(x), clR(B)⊆ ∪ y∈BNR(y), and ∪ x∈ANR(x)∩
∪ y∈BNR(y) � ∅.

Theorem 2. For any binary relation R, the closure space
(X, clR) is normal if and only if for every closed set clR(A) � A

contained in ∪ x∈ANR(x), there exists some y such that
clR(A)⊆ ∪ y∈ANR(y) ⊆ clR(∪ y∈ANR(y))⊆ ∪ x∈ANR(x).

Proof. Let (X, clR) be a normal closure space and clR(A) �

A be a closed set contained in ∪ x∈ANR(x). *us,
X − ∪ x∈ANR(x) � clR(B) is a closed set which is disjoint
from the closed set clR(A). Since (X, clR) is normal, there
exist y and z with ∪ y∈ANR(y)∩ ∪ z∈BNR(z) � ∅ such that
clR(A)⊆ ∪ y∈ANR(y) and clR(B)⊆ ∪ z∈BNR(z) imply ∪ y∈A
NR(y)⊆ (X − ∪ z∈BNR(z)). *erefore, clR(A)⊆ ∪ y∈ANR

(y)⊆X − ∪ z∈BNR(z)⊆ ∪ x∈ANR(x). Since
clR(∪ y∈ANR(y)) is the smallest closed set by *eorem 1,
clR(A)⊆ ∪ y∈ANR(y)⊆ clR(∪ y∈ANR(y))⊆ ∪ x∈ANR(x).
Conversely, let clR(A) � A and clR(B) � B be two closed sets
and clR(A) be contained in X − clR(B) � ∪ x∈(X− B)NR(x).
By a given condition, there exists some y such that clR(A)⊆
∪ y∈ANR(y)⊆ clR(∪ y∈ANR(y))⊆ ∪ x∈ANR(x). *erefore,
clR (A)⊆ ∪ y∈ANR(y), clR(B)⊆X − clR(∪ y∈ANR(y)), and
∪ y∈A NR(y)∩ (X − clR(∪ y∈ANR(y))) � ∅. Hence,
(X, clR) is normal. □

Theorem 3. In a normal closure space (X, clR), for every pair
of disjoint closed sets clR(A) � A and clR(B) � B, there exist
∪ y∈ANR(y) and ∪ z∈BNR(z) containing clR(A) and clR(B)

such that clR(∪ y∈ANR(y))∩ clR(∪ z∈BNR(z)) � ∅.
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Proof. Let (X, clR) be a normal closure space and clR(A) �

A and clR(B) � B be two disjoint closed sets in X. Since
clR(A)∩ clR(B) � ∅, we have clR(A)⊆ (X − clR(B)), where
X − clR(B) � ∪ x∈X− BNR(x). By the normal closure space of
X, there exists some y such that clR(A)⊆ ∪ y∈ANR(y)

⊆ clR(∪ y∈ANR(y))⊆ (X − clR(B)). *us, clR(∪ y∈ANR(y))

∩ clR(B) � ∅. Since clR(B)⊆ (X − clR(∪ y∈ANR(y)))

� ∪ u∈X− clR(∪NR(y))NR(y), so again by using character-
ization of a normal closure space, there exists some z such
that clR(B)⊆ ∪ z∈BNR(z)⊆ clR(∪ z∈BNR(z))⊆ (X − clR
(∪ y∈ANR(y))) which implies clR(∪ y∈ANR(y))∩ clR
(∪ z∈BNR(z)) � ∅.

In general, normality does not imply T2 which is evident
from Example 1. For two distinct points ‘c’ and ‘d’ which are
in the form of straight lines, there does not exist disjoint
〈x〉R and 〈y〉R containing ‘c’ and ‘d,’ respectively. But in
T1 closure space, the result is true, as shown in *eorem 4
below. □

Theorem 4. In a reflexive T1 closure space (X, clR), every
normal space is T2.

Proof. Let (X, clR) be aT1 normal closure space and x and y

be two distinct points. We have to show that (X, clR) is T2.
Since x{ } and y􏼈 􏼉 are closed, by normality of (X, clR), there
exist some x and y such that x{ }⊆ ∪NR(x), y􏼈 􏼉⊆ ∪NR(y),
and ∪NR(x)∩ ∪NR(y) � ∅. Hence, (X, clR) is T2. □

Definition 8. A closure space (X, clR) generated from a
binary relation R is said to be almost normal if for a closed
set clR(A) � A and a regularly closed set clR(intR(B)) � B

disjoint from clR(A), there exist some x and y, respectively,
such that clR(A)⊆ ∪ x∈ANR(x) � U, clR(intR(B))⊆
∪ y∈BNR(y) � V, and U∩V � ∅.

From the definitions, it is obvious that every normal
closure space is almost normal but the converse need not be
true, as shown in the following example.

Example 3. Let us consider the directed graph in Figure 2. It
is clear that aR � b, c, d{ }, bR � a, c{ }, cR � ∅, and
dR � a, c{ }.*en, 〈a〉R � a, c{ }, 〈b〉 R � b, c, d{ }, 〈c〉R � c{ },

and 〈d〉R � b, c, d{ }. *e closure space (X, clR) generated
from the graph in Figure 2 is almost normal but not normal
because for two disjoint closed sets clR(A) � a{ } � A and
clR(B) � b, d{ } � B, there does not exist some x and y such
that clR(A)⊆ ∪ x∈ANR(x), clR(B)⊆ ∪ y∈BNR(y), and
∪ x∈ANR(x)∩ ∪ y∈BNR(y) � ∅.

Example 4. A closure space generated from a graph which is
not almost normal. *e closure space (X, clR) generated
from the binary relation in Figure 3 is not almost normal
because for regularly closed set clR(intR( a, b{ })) � a, b{ } and
a closed set clR( d{ }) � d{ }, there does not exist some x and y

such that clR(A)⊆ ∪ x∈ANR(x), clR(B)⊆ ∪ y∈BNR(y), and
∪ x∈ANR(x)∩ ∪ y∈BNR(y) � ∅.

*e implications in Figure 4 are obvious from the
definitions. But none of these implications is reversible (see
[10] and Examples 1, 3, and 4 above).

Theorem 5. A closure space (X, clR) generated from a binary
relation R is almost normal if and only if for every regularly
closed set clR(intR(A)) � A contained in ∪ x∈A(NR(x)),
there exists some y such that clR(intR(A)) ⊆ ∪ y∈A
NR(y)⊆ clR(∪ y∈ANR(y))⊆ ∪ x∈ANR(x).

Proof. Let (X, clR) be an almost normal closure space,
clR(intR(A)) � A be a regularly closed set contained in
∪ x∈ANR(x), and X − (∪ x∈A(NR(x))) � clR(B) � B be a
closed set disjoint from clR(intR(A)) � A. Since (X, clR) is
almost normal, there exist some y and z with ∪ y∈A
NR(y)∩ ∪ z∈BNR(z) � ∅ such that clR(intR(A)) ⊆ ∪ y∈A
NR(y) and clR(B)⊆ ∪ z∈BNR(z) which imply that ∪ y∈A
NR(y)⊆X − ∪ z∈BNR(z). *erefore, clR(intR(A)) ⊆ ∪ y∈A
NR(y)⊆ (X − ∪ z∈BNR(z))⊆ ∪ x∈ANR(x). Since clR (∪ y∈A
NR(y)) is the smallest closed set by *eorem 1, clR
(intR(A)) ⊆ ∪ y∈ANR(y)⊆ clR(∪ y∈ANR(y)) ⊆ ∪ x∈ANR

(x). Conversely, let clR(intR(A)) � A be a regularly closed
set and clR(B) � B be a closed set. *us, X − clR
(B) � ∪ x∈(X− B)NR(x) is an open set containing clR(intR
(A)). By the given condition, there exists some y such that
clR(intR(A)) ⊆ ∪ y∈ANR(y)⊆ clR(∪ y∈ANR(y))⊆ ∪ x∈(X− B)

NR(x). *us, clR(intR(A)) ⊆ ∪ y∈ANR(y) and clR(B)

⊆X − clR(∪ y∈ANR(y)). Hence, (X, clR) is almost
normal. □

Theorem 6. If R a binary relation, then the generated closure
space (X, clR) is almost normal if and only if for every closed
set clR(A) � A contained in a regularly open set ∪ x∈ANR(x),
there exists some y such that clR(A)⊆ ∪ x∈ANR(y)

⊆ clR(∪ x∈ANR(y))⊆ ∪ x∈ANR(x).

Proof. Let (X, clR) be an almost normal closure space,
clR(A) � A be a closed set contained in ∪ x∈ANR(x), and
X − (∪ x∈ANR(x)) � clR(intR(B)) � B be a regularly closed
set disjoint from clR(A). Since (X, clR) is an almost normal
closure space, there exist some y and z with ∪ y∈A
NR(y)∩ ∪ z∈BNR(z) � ∅ such that clR(A)⊆ ∪ y∈ANR(y)

and clRintR(B)⊆ ∪ z∈BNR(z) which imply that
∪ y∈ANR(y)⊆X − ∪ z∈BNR(z). *erefore, clR(A)⊆ ∪ y∈A
NR(y)⊆X − ∪ z∈BNR(z)⊆ ∪ x∈ANR(x). Since
clR(∪ y∈ANR (y)) is the smallest closed set by *eorem 1,
clR(A)⊆ ∪ y∈ANR(y)⊆ clR(∪ y∈ANR(y))⊆ ∪ x∈ANR(x).
Conversely, let clR(A) � A be a closed set and
clR(intR(B)) � B be a regularly closed sets’ disjoint from a
closed set. *us, X − clR(intR(B)) � ∪ x∈(X− B)NR(x) is a
regularly open set containing clR(A). By the given condition,
there exists some y such that

a

c

b

d

Figure 1: Closure space generated from this graph is not normal.
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clR(A)⊆ ∪ y∈ANR(y)⊆ clR(∪ y∈ANR(y))⊆
∪ x∈(X− B)NR(x). *us, clR(A)⊆ ∪ y∈ANR(y) and clR(intR
(B))⊆X − clR(∪ y∈ANR(y)). Hence, (X, clR) is almost
normal. □

Definition 9. Let R be any binary relation on X and (X, clR)

be the generated closure space. *en, a family
W � Wα: α ∈ Λ􏼈 􏼉 of subset X is said to be an R-cover of X if
X � ∪Wα∈WWα. If elements ofW are of the form ∪NR(x),
then it is said to be an R-open cover of X.

Definition 10. A closure space (X, clR) is said to be nearly
compact if for every R-open cover Wα: α ∈ Λ􏼈 􏼉 of X, there is
a finite subset P of Λ such that int(clR(Wα)): α ∈ P􏼈 􏼉 is an
R-cover of X.

Theorem 7. Every regularly closed closure subspace of a
nearly compact space is nearly compact.

Proof. Let (Y, clRY
) be a regularly closed closure subspace of

a nearly compact space (X, clR). Let U � ∪ ∪NR􏼈

(xα): α ∈ Q} be an R-open cover of Y. We have to show that
there is a finite subcollection whose closure is an R-cover of
Y. Since NR(xα): α ∈ Q􏼈 􏼉 is an R-open cover of Y, ∪ ∪NR􏼈

(xα): α ∈ Q}∪ (X − Y) is an R-open cover of X. Also,
(X, clR) is nearly compact, so there is a finite subcollection
NR(xα): α ∈ P􏼈 􏼉 such that int(clR(NR􏼈 (xα))): α ∈ P} is an
R-cover of X. If this subcollection has (X − Y), then discard

it. *e remaining subcollection also covers Y. Hence,
(Y, clR) is a nearly compact closure space. □

Theorem 8. 6e closure space (X, clR) generated from a
reflexive relation R is almost normal if it is nearly compact
and T2.

Proof. Let clR(A) � A be a regularly closed set which is
disjoint from a closed set clR(B) � B. We have to show that
(X, clR) is almost normal. Since for a point b ∈ clR(B) and a
point a ∈ clR(A), 〈a〉R∩ 〈b〉R � ∅. *e family
U � ∪ ∪NR(a): a ∈ clR(A)􏼈 􏼉 covers A. Since clR(A) is
regularly closed and (X, clR) is nearly compact, clR(A) is
nearly compact by *eorem 7. *us, there is a finite set Q of
clR(A) such that intR(clR(∪NR(aα))): α ∈ Q􏼈 􏼉 is an R-
cover of clR(A). *us, there exist some a and b such that
clR(A)⊆ ∪ (intR(clR(∪NR(aα)))), b ∈ NR(b), and ∪NR

(aα)∩NR(b) � ∅. Since for every point b ∈ clR(B) there
exists NR(b), the collection ∪ ∪NR(bα): α ∈ clR(b)􏼈 􏼉

covers clR(B). *us, clR(A)⊆ intR(clR(∪ a∈ANR(aα))) and
clR(B)⊆ intR(clR(∪ b∈BNR(bα))) as (X, clR) is nearly com-
pact and ∪ intR(clR(∪ a∈ANR(aα)))∩ intR(clR(∪ b∈B
NR(bα))) � ∅. Hence, (X, clR) is an almost normal closure
space. □

Remark 2. *e following example establishes that T2 con-
dition in *eorem 8 cannot be dropped.

Example 5. Let us consider the directed graph in Figure 5.
Here, the closure space (X, clR) generated from the graph is
nearly compact but not almost normal because for the
regularly closed set clR(intR(A)) � a, b{ } and a closed set
clR(B) � d{ }, there does not exist some x and y such that
clR(intR(A))⊆ ∪ x∈A(NR(x)), clR(B)⊆ ∪ x∈y(NR(y)), and
∪ x∈A(NR(x))∩ ∪ x∈y(NR(y)) � ∅.

3. Subspace

Definition 11 (see [5]). Let Y⊆X and RY ⊆R; then, (Y, clRY
)

is called a closure subspace of a closure space (X, clR) if
〈x〉RY � 〈x〉R∩Y for all x ∈ Y.

Remark 3 (see [12]). Let Y be a subspace of a closure space
X. *en,

(a) A is closed (open) in X implies that Y∩A is closed
(open) in Y.

(b) Y is closed in X and A is a closed set in Y imply that
A is closed in X.

In the following example, it is shown that the normality
of the closure space generated from a graph does not imply
that the closure space generated from its subgraph is normal.

Example 6. Let us consider the graph in Figure 6. *e
closure space (X, clRX

) generated from the graph in Figure 6
is normal as it satisfies the condition of a normal closure
space. But the closure space generated from its subgraph, as
shown in Figure 7, is not normal.

a

b

c

d

Figure 2: Closure space generated from this graph is almost
normal but not normal.

a

c

b

d

Figure 3: Closure space generated from this graph is not almost
normal.

Strongly normal Normal Almost normal

Figure 4: Interrelation diagram.
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*e closure space (Y, clRY
) of the subgraph in Figure 7 is

not normal because for two disjoint closed sets clRY
(A) �

b{ } � A and clRY
(B) � c{ } � B, there does not exist some x

and y in Y such that clRY
(A)⊆ ∪ x∈ANRY

(x), clRY
(B)⊆

∪ y∈BNRY
(y), and ∪ x∈ANRY

(x)∩ ∪ y∈BNRY
(y) � ∅.

Theorem 9. Let (X, clR) be a normal closure space. 6en,
every closed subspace (Y, clRY

) of (X, clR) is normal.

Proof. Let A � clRY
(A) and B � clRY

(B) be two disjoint
closed sets in a closed subspace Y of X. By Remark 3, clR(A)

and clR(B) closed in X implies that clR(A)∩Y and
clR(B)∩Y are closed in X. By Remark 3, clRY

(A) and clRY
(B)

are closed in X. Since (X, clR) is normal, there exist some x

and y such that clRY
(A)⊆ ∪ x∈A(NR(x)), clRY

(B)⊆
∪ y∈B(NR(y)), and ∪ x∈A(NR(x))∩ ∪ y∈B(NR(y)) � ∅.
*us, by Definition 11, ∪ x∈A(NR(x))∩Y and ∪ y∈B
(NR(y))∩Y contain clRY

(A), clRY
(B), and ∪ x∈A(NR(x))

∩Y∩ ∪ y∈B(NR(y))∩Y � ∅. Hence, (Y, clRY
) is

normal. □

Remark 4. A closed subspace of a normal closure space is
normal. But a closed subgraph of an almost normal space
need not be almost normal, as shown in Example 7 below.

Example 7. Closure space generated from a closed subgraph
of an almost normal closure space need not be almost
normal.

*e closure space (X, clRX
) generated from the graph in

Figure 8 is almost normal because for every closed set and a
regularly closed set disjoint from a closed set, there exist
some x and y satisfying the condition of the almost normal
closure space.

Let us consider the closed subgraph in Figure 9 of the
graph in Figure 8. *e closed closure subspace (Y, clRY

)

generated from the subgraph in Figure 9 is not almost
normal because for a closed set A � a{ } � clRY

(A) and a
regularly closed set B � d, e{ } � clRY

(intRY
(B)), there does

not exist some x and y inY satisfying the required condition.

Remark 5. In a closure space (X, clR), a regularly closed
closure subspace of an almost normal closure space need not
be almost normal. We can say that a clopen subspace of an
almost normal space (X, clR) is almost normal.

4. Preservation under Mapping

Definition 12 (see [5]). Let (X1, clR1
) and (X2, clR2

) be two
closure spaces. A function f: X1⟶ X2 is continuous at
x ∈ X1 if and only if f(〈x〉R1)⊆ 〈f(x)〉R2. A function from
a closure space (X1, clR1

) into a closure space (X2, clR2
) is

said to be continuous on X1 if and only if it is continuous at
each point of X1.

Theorem 10 (see [5]). Let f be a function from a closure
space (X1, clR1

) into a closure space (X2, clR2
); then, the

following conditions are equivalent:

(1) f is continuous.
(2) For every subset A of X1, f(clR1

(A))⊆ clR2
(f(A)).

(3) 6e inverse image of every closed subset of X2 is a
closed subset of X1.

(4) 6e inverse image of every open subset ofX2 is an open
subset of X1.

Definition 13 (see [5]). A function f: (X1, clR1
)

⟶ (X2, clR2
) is called open (closed) if the image of an open

(closed) subset of X1 is an open (closed) subset of X2.

Theorem 11. Let f: (X, clRX
)⟶ (Y, clRY

) be a continuous
closed and surjection and (X, clRX

) be normal; then, (Y, clRY
)

is also a normal closure space.

Proof. Let clRY
(A) � A and clRY

(B) � B be two disjoint
closed sets in Y. We have to show that (Y, clRY

) is normal.
Since f is continuous, f− 1(clRY

(A)) and f− 1(clRY
(B)) are

disjoint closed sets in X. As (X, clRX
) is normal, there exist

some x and y with ∪ x∈ANRX
(x)∩ ∪ y∈BNRX

(y) � ∅ such
that f− 1(clRY

(A))⊆ ∪ x∈ANRX
(x) and f− 1(clRY

(B))⊆
∪ y∈BNRX

(y). Since f is closed, f(X − ∪ x∈ANRX
(x)) and

f(X − ∪ y∈BNRX
(y)) are closed in Y. Since f− 1 (clRY

a

c

b

d

Figure 5: Closure space generated from this relation is nearly
compact but not almost normal.

b

a

c

d

Figure 6: Closure space generated from this graph is normal.

b

a

c

Figure 7: Closure space generated from this subgraph is not
normal.
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(A))⊆ ∪ x∈ANRX
(x), (X − ∪ x∈ANRX

(x))⊆ (X − f− 1(clRY

(A))) implies that f(X − ∪ x∈ANRX
(x))⊆f(X − f− 1

(clRY
(A))). *us, clRY

(A)⊆ (Y − f(X − ∪ x∈ANRX
(x))) �

∪ u∈(Y− f(X− ∪NRX
(x)))NRY

(u). Since f− 1(∪ u∈(Y− f(X− ∪NRX
(x)))

NRY
(u)) � ∪ x∈ANRX

(x), there exists ∪ u∈ANRY
(u) con-

taining clRY
(A) such thatf− 1(∪ u∈ANRY

(u))⊆ ∪ x∈ANRX
(x).

Similarly, there exists ∪ v∈BNRY
(v) containing clRY

(B) such
that f− 1(∪ v∈BNRY

(v)) ⊆ ∪ y∈BNRX
(y). Also, f− 1(∪ u∈ANRY

(u))∩f− 1(∪ v∈BNRY
(v)) ⊆ ∪ x∈A NRX

(x)∩ ∪ y∈B NRX
(y) �

∅ implies that (∪ u∈ANRY
(u))∩ (∪ v∈BNRY

(v)) � ∅. Hence,
(Y, clRY

) is a normal closure space. □

Example 8. In a closure space (X, clRX
), the continuous

image of an almost normal space need not be almost normal.
Let X be a set of natural numbers and Y � a, b, c, d{ } be a

set. Let R1 be a relation defined on X as aR1b if and only if
a � b for all a and b ∈ X and b � a − 1, where a is even, and
R2 � (a, c), (a, d), (b, a), (b, b), (b, c), (c, b){ } be a relation
defined on Y. *en,

〈i〉R1 �
i, if i is odd,

i − 1, i, if i is even,
􏼨 (3)

and 〈x〉R2 is defined as in Example 4. Here, (X, clR1
) and

(Y, clR2
) are closure spaces. A function f: (X, clR1

)

⟶ (Y, clR2
),

f(x) �

a, if x ∈ N − 1, 3, 4{ },

b, if x � 1,

c, if x � 3,

d, if x � 4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

is continuous. Here, closure space (X, clR1
) is almost normal

but (Y, clR2
) is not almost normal because for closed set

clR2
( d{ }) � d{ } � A and a regularly closed set

clR2
(intR2

(B)) � a, b{ } � B, there does not exist some x and y

in Y such that clR2
( d{ })⊆ (∪ x∈ANR2

(x)), clR2
(intR2

( a, b{ }))

⊆ (∪ y∈BNR2
(y)), and ∪ x∈ANR2

(x)∩ ∪ y∈BNR2
(y) � ∅.

Example 9. continuous closed image of an almost normal
space need not be almost normal.

Let X � N∪ p, q􏼈 􏼉 and Y � a, b, c, d{ } be two sets. Let R1
be a relation defined on X as aR1b if and only if

a � b, ∀a and b ∈ X,

b � p, for a≥ 4,

b � a − 1, for a � 3,

b � a + 1, for a � 2,

b � 1, for a � q,

(5)

and relation R2 � (a, a), (a, b), (a, c), (b, c), (c, b), (d, c),{

(d, d)}, defined on Y, are two binary relations. *en,
〈1〉R1 � 1{ }, 〈2〉R1 � 〈3〉R1 � 2, 3{ }, 〈i〉R1 � i, p􏼈 􏼉 for i≥ 4,
〈p〉R1 � p􏼈 􏼉, 〈q〉R1 � 1, q􏼈 􏼉, 〈a〉R2 � a, b, c{ }, 〈b〉R2 �

b{ }, 〈c〉R2 � c{ }, and 〈d〉R2 � c, d{ }. Here, (X, clR1
) and

(Y, clR2
) are closure spaces. A function f: (X, clR1

)⟶
(Y, clR2

) is defined as

f(x) �

a, if x � q, 2, 3, and 4,

b, if x � 1,

c, if x � p,

d, if x ∈ N − 1, 2, 3, 4{ },

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

is continuous. Here, (X, clR1
) is almost normal but (Y, clR2

)

is not almost normal because for closed set clR2
( d{ }) � d{ } �

A and a regularly closed set clR2
(intR2

( a, b{ })) � a, b{ } � B,
there does not exist some x and y in Y satisfying the
condition of the almost normal closure space.

Since the continuous closed image of an almost normal
space need not be almost normal, so we replace a continuous
function with a completely continuous.

Definition 14. Let R be a binary relation and (X, clRX
) and

(Y, clRY
) be two closure spaces; then, a function

f: (X, clRX
)⟶ (Y, clRY

) is said to be completely contin-
uous if inverse image of ⋃NR(x) � U in (Y, clRY

) is reg-
ularly open in (X, clRX

).
From the above definition, we can say that if

f: (X, clRX
)⟶ (Y, clRY

) is a completely continuous onto
function and B � clRY

(intRY
(B)) is regularly closed in

(Y, clRY
), then f− 1(B) is regularly closed in (X, clRX

).

Observation 1. In a closure space (X, clRX
), every completely

continuous function is continuous.

Example 10. *e completely continuous image of an almost
normal space in a closure space need not be almost normal.

d

a

e

c

b

Figure 8: Closure space generated from this graph is almost
normal.

d

a

e

b

Figure 9: Closure space generated from this subgraph is not almost
normal.
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Let X be a set of natural numbers and Y � p, q, r, s􏼈 􏼉 be
two sets. Let R1 be a relation on X, as defined in Example 8,
and R2 be the relation on Y given by R2 � (p, p), (q, p),􏼈

(q, q), (q, r), (r, r), (s, r), (s, s)}. *en, 〈i〉R1 is defined as in
Example 8, and 〈p〉R2 � p􏼈 􏼉, 〈q〉R2 � p, q, r􏼈 􏼉, 〈r〉R2 � r{ },
and 〈s〉R2 � r, s{ }. Here, (X, clR1

) and (Y, clR2
) are closure

spaces. A function f: (X, clR1
)⟶ (Y, clR2

) defined by

f(x) �

p, if x � 1 and 2,

q, if x � N − 1, 2, 3, 4, 5, 6{ },

r, if x � 3 and 4,

s, if x � 5 and 6,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

is completely continuous. Here, (X, clR1
) is almost normal

but (Y, clR2
) is not almost normal because for a closed set

A � s{ } � clR2
(A) and a regularly closed set

B � p, q􏼈 􏼉 � clR2
(intR2

(B)), there does not exist some x and
y in Y such that clR2

(A)⊆ (∪ x∈ANR2
(x)), clR2

(intR2
(B))⊆ (∪ y∈BNR2

(y)), and
∪ x∈ANR2

(x)∩ ∪ y∈BNR2
(y) � ∅.

Theorem 12. Completely continuous, closed image of an
almost normal closure space, is almost normal.

Proof. Let clRY
(A) � A be a closed set and clRY

(intRY
(B)) �

B be a regularly closed set. *en, f− 1(clRY
(A)) is closed, and

f− 1(clRY
(intRY

(B))) is regularly closed in X. Since (X, clRX
)

is almost normal, there exist some x and y with ∪ x∈A
(NRX

(x))∩ ∪ y∈B(NRX
(y)) � ∅ such that f− 1clRX

(A)⊆
∪ x∈A(NRX

(x)) and f− 1(clRY
(intRY

(B)))⊆ ∪ y∈B(NRX
(y)).

*us, f(X − ∪ x∈A(NRX
(x))) and f(X − ∪ y∈B (NRX

(y)))

are closed in (Y, clRY
). As f− 1(clRY

(A)) ⊆ ∪ x∈A(NRX
(x))

implies X − ∪ x∈A(NRX
(x))⊆X − f− 1(clRY

(A)), clRY
(A)⊆

(Y − f(X − ∪ x∈A (NRX
(x)))) � ∪ p∈Y− f(X− ∪NRX

(x)) (NRX

(p)). Now, f− 1(∪ p∈Y− f(X− ∪NRX
(x)) (NRX

(p))) � f− 1(Y − f

(X − ∪ x∈A(NRX
(x)))) � ∪ x∈A (NRY

(x)). *us, there exists
some p in Y such that clRY

(A)⊆ ∪ p∈A(NRX
(p)). Similarly,

there exists some q in Y such that clRY
(intRY

(B))

⊆ ∪ q∈B(NRX
(q)). Also, ∪ p∈A (NRX

(p))∪ ∪ q∈B(NRX
(q)) �

∅. Hence, (X, clRY
) is an almost normal closure space. □
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