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In this paper, the convergence to minimizers of a convex function of a modified proximal point algorithm involving a single-
valued nonexpansive mapping and a multivalued nonexpansive mapping in CAT(0) spaces is studied and a numerical example is
given to support our main results.

1. Introduction

In daily life, no matter what we do, there are always many
options available and many possible outcomes. When we do
these things, we always consciously or unconsciously choose
an optimal solution in order to achieve the optimal result.
(e discipline of seeking the best solution to achieve the best
result is optimization.(e way to find the optimal solution is
the optimization method.

Given a real number κ (curvature), let M2
κ denote the

following space: if κ< 0, then M2
κ is a real hyperbolic space

H2 with the distance function scaled by a factor of (1/
���
− κ

√
);

if κ � 0, then M2
κ is the Euclidean plane; if κ> 0, then M2

κ is
the 2-sphere S2 with themetric scaled by a factor (1/

�
κ

√
). Let

Dκ denote the diameter of M2
κ. Let Δ be a geodesic triangle in

X with a perimeter less than 2Dκ. Let Δ ∈M2
κ be a com-

parison triangle for Δ. (en, Δ is said to satisfy the CAT(κ)
inequality if for x, y ∈ Δ and all comparison points x, y ∈ Δ,

d(x, y)≤d(x, y). (1)

If κ≤ 0, then X is called a CAT(κ) space if X is a
geodesic space all of whose geodesic triangles satisfy the
CAT(κ) inequality. If κ> 0, then X is called a CAT(κ) space
if X is Dκ-geodesic and all geodesic triangles in X of

perimeter less than 2Dκ satisfy the CAT(κ) inequality.(us,
it can be seen that a CAT(0) space is a special case of
CAT(κ) spaces when the curvature κ � 0. Furthermore, it is
possible that the metric on CAT(κ) spaces (κ> 0) may take
infinite values.

Ametric space is said to be a geodesicmetric space if every
two points of X are joined by a geodesic in this metric space; a
geodesic metric space (X, d) is said to be a CAT(0) space if
each geodesic triangle of geodesic metric space (X, d) is at
least as “thin” as its comparison triangle in R2. In addition, a
CAT(0) space is said to be a Hadamard space if it is complete;
see for more details in [1–8]. Let X be a geodesic metric space
and D be a nonempty subset of X. One of the major problems
for optimization is to find a point x ∈ X such that

f(x) � min
y∈X

f(y), (2)

where f is a proper convex lower semicontinuous function
and the set of all minimizers of f on X is denoted by
argminy∈Xf(y). (ere are many ways to study this problem.

For any λ> 0,∀x ∈ X, the Moreau–Yosida resolvent of f

is defined in CAT(0) spaces X as

Jλ(x) � argmin
y∈X

f(y) +
1
2λ

d
2
(y, x)􏼔 􏼕. (3)

Hindawi
Journal of Mathematics
Volume 2021, Article ID 6951062, 8 pages
https://doi.org/10.1155/2021/6951062

mailto:ssldstg@qq.com
https://orcid.org/0000-0002-2994-6751
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6951062


In fact, here f is a proper convex and lower semi-
continuous function. (e concept of Moreau − Yosida re-
solvent of f appeared in [9]. Furthermore, the fact that the
set F(Jλ) of fixed points of the resolvent associated with f

coincides with the set argminy∈Xf(y) of minimizers of f is
shown in [10, 11]. Also, for any λ> 0, the resolvent Jλ of f is
nonexpansive [12].

In 1970, Martinet [13] published an article and a new
algorithm was proposed to solve this optimization problem;
the new algorithm is called as the proximal point algorithm.
In 1976, in a Hilbert space, Rockafellar [14] studied the
convergence to a solution of the convex minimization
problem by the proximal point algorithm and proved and
obtained a main conclusion that the sequence xn􏼈 􏼉 con-
verges weakly to a minimizer of a convex function f such
that 􏽐

∞
n�1 λn �∞. In 2013, the proximal point algorithm was

introduced by Bac̆ák [15] into CAT(0) spaces (X, d) as
follows: x1 ∈ X, for each n ∈ N,

xn+1 � argmin
y∈X

f(y) +
1
2λn

d
2

y, xn( 􏼁􏼢 􏼣. (4)

Here, λn > 0, ∀n ∈ N, and this shows that, if f has a
minimizer, 􏽐

∞
n�1 λn �∞, then the sequence xn􏼈 􏼉Δ-con-

verges to its minimizer. In fact, the proximal point algorithm
has been combined with many iterative methods, and a new
construction algorithm is further proposed to find ap-
proximating fixed points of nonlinear mappings and a
proper convex lower semicontinuous function f. In 1953, a
known iteration method was proposed by Mann, and it was
named as Mann iteration [16]; the Mann iteration process is
defined as follows: x1 ∈ D and

xn+1 � αnxn + 1 − αn( 􏼁Txn. (5)

Here, αn􏼈 􏼉, n ∈ N, is a real sequence in (0,1). In 1974,
another well-known iteration method was proposed by
Ishikawa, and this iteration method was named as Ishikawa
iteration [17]; the Ishikawa iteration process concretely is
expressed as follows: x1 ∈ D and

yn � 1 − αn( 􏼁Txn + αnxn,

xn+1 � 1 − βn( 􏼁Tyn + βnxn,
􏼨 (6)

for each n ∈ N, where αn􏼈 􏼉, βn􏼈 􏼉 is a real sequence in (0,1).
In 2017, Suthep Suantai andWithum Phuengtattana [18]

proposed a proximal point algorithm for a hybrid pair of
nonexpansive single-valued and multivalued mappings in
geodesic metric spaces as follows:

zn � argmin
y∈X

f(y) +
1
2λn

d
2

y, xn( 􏼁􏼢 􏼣,

yn � βnzn⊕ 1 − βn( 􏼁wn, wn ∈ Syn,

xn+1 � αnxn⊕ 1 − αn( 􏼁Tzn, ∀n ∈ N,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where αn, βn ∈ [0, 1], T is a single-valued nonexpansive
mapping, and S is a multi-valued nonexpansive mapping.

Motivated and inspired by the above research work,
Ishikawa iteration process, multivalued mapping, non-
expansive mapping, and convex function are considered as
some elements for a new idea; then, the plan is to make use of
these elements to reconstruct an algorithm; thus in this
article, a modified proximal point algorithm involving a
convex function and two nonexpansive mappings will be
proposed. Under some suitable conditions, the convergence
of the proposed algorithm is studied and its convergence
analysis in the end is given.

2. Preliminaries

If z, x, andy are three points in CAT(0) spaces and if
((x⊕y)/2) is the midpoint of a geodesic segment [x, y], then
the CAT(0) inequality implies

d
2

z,
x⊕y
2

􏼒 􏼓≤
1
2
d
2
(z, x) +

1
2
d
2
(z, y) −

1
4
d
2
(x, y), (8)

which is the (CN) inequality (see [19]).
Let X be a CAT(0) space; a subset D ∈ X is convex, if for

any x, y ∈ D, [x, y] ∈ D, where [x, y] � λx⊕(1 − λ)y: 0≤􏼈

λ≤ 1} and [x, y] is the unique geodesic joining x and y.
Indeed, a geodesic space (X, d) is said to be a CAT(0) space,
if and only if the inequality ((CN∗) inequality [20]),

d
2
((1 − λ)x⊕λy, z)≤ (1 − λ)d

2
(x, z)

+ λd
2
(y, z) − λ(1 − λ)d

2
(x, y),

(9)

is satisfied for all x, y, z ∈ X and λ ∈ [0, 1]. Moreover, if
x, y, and z are points in a CAT(0) space (X, d) and
λ ∈ [0, 1], then

d((1 − λ)x⊕λy, z)≤ (1 − λ)d(x, z) + λd(y, z). (10)

Let CB(D) and KC(D) denote the families of nonempty
closed bounded subsets and compact convex subsets of D,
respectively. (e Pompeiu − Hausdorff distance [21] on
CB(D) is defined by

H(A, B) � max sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)
⎧⎨

⎩

⎫⎬

⎭, (11)

for A, B ∈ CB(D), where dist(x, D) � inf d(x, y): y ∈ D􏼈 􏼉 is
the distance from a point x to a subset D. Let S: D⟶
CB(D) be a multivalued mapping. An element x ∈ D is said
to be a fixed point of mapping S, if an element x ∈ Sx.(e set
of fixed points of mapping S is denoted by F(S); in brief,
F(S) � x ∈ D: x ∈ Sx{ }. More references for a multivalued
mapping can be seen in [18, 22, 23].

Definition 1 (see [18]). A single-valued mapping T: D⟶
D is nonexpansive if ∀x, y ∈ D, d(Tx, Ty)≤ d (x, y).

Definition 2 (see [18]). A multivalued mapping S: D⟶
CB (D) is nonexpansive if ∀x, y ∈ D, H(Sx, Sy)≤ d(x, y).

Definition 3 (see [18]). Let xn􏼈 􏼉 be a bounded sequence in a
CAT(0) space X. For any x ∈ X, we define a mapping

2 Journal of Mathematics



r(·, xn􏼈 􏼉): X⟶ [0,∞) by r(x, xn􏼈 􏼉) � limn⟶∞supd(x,

xn): (i) the asymptotic radius of xn􏼈 􏼉 is given by r( xn􏼈 􏼉)

� inf r(x, xn􏼈 􏼉): x ∈ X􏼈 􏼉; (ii) the asymptotic center of xn􏼈 􏼉 is
the set A( xn􏼈 􏼉) � x ∈ X: r(x, xn􏼈 􏼉) � r( xn􏼈 􏼉)􏼈 􏼉.

(e asymptotic center A( xn􏼈 􏼉) in a complete CAT(0)

space consists of exactly one point [24].

Definition 4 (see [18]). A sequence xn􏼈 􏼉 in a CAT(0) space
X is said to Δ-converge to x ∈ X if x is the unique as-
ymptotic center of every subsequence of xn􏼈 􏼉. In this case, we
write Δ − limn⟶∞xn � x and call x as the Δ-limit of xn􏼈 􏼉.

In fact, given xn􏼈 􏼉 in X such that xn􏼈 􏼉Δ-converges to x

and given y ∈ X with x≠y, limn⟶∞infd(xn, x)<
limn⟶∞infd(xn, y). So, the Opial condition in Banach
space is also satisfied in every CAT(0) space X.

Lemma 1 (see [25]). Every bounded sequence in a CAT(0)

space has a Δ-convergent subsequence.

Lemma 2 (see [26]). Let D be a nonempty closed convex
subset of a CAT(0) space X. If xn􏼈 􏼉 is a bounded sequence in
D, then the asymptotic center of xn􏼈 􏼉 is in D.

Lemma 3 (see [20]). If xn􏼈 􏼉 is a bounded sequence in a
complete CAT(0) space with A( xn􏼈 􏼉) � x{ }, un􏼈 􏼉 is a sub-
sequence of xn􏼈 􏼉 with A( un􏼈 􏼉) � u{ }, and the sequence
d(xn, u)􏼈 􏼉 converges, then x � u.

Lemma 4 (see [20]). Let D be a nonempty closed convex
subset of a complete CAT(0) space X and T: D⟶ D be a
nonexpansive mapping. If xn􏼈 􏼉 is a bounded sequence in D

such that limn⟶∞d(xn, Txn) � 0 and Δ − limn⟶∞xn � x,
then x � Tx.

Lemma 5 (see [12]). Let (X, d) be a complete CAT(0) space
and f: X⟶ (− ∞,∞] be a proper convex and lower
semicontinuous function. 4en, the following identity holds:

Jλx � Jμ
λ − μ
λ

Jλx⊕
μ
λ

x􏼠 􏼡, ∀x ∈ X, λ> μ> 0, (12)

where Jλ is the Moreau − Yosida resolvent of f.

Lemma 6 (see [27]). Let (X, d) be a complete CAT(0) space
and f: X⟶ (− ∞,∞] be a proper convex and lower
semicontinuous function. 4en, for all x, y ∈ X and λ> 0, the
following inequality holds:
1
2λ

d
2

Jλx, y( 􏼁 −
1
2λ

d
2
(x, y) +

1
2λ

d
2

x, Jλx( 􏼁 + f Jλx( 􏼁≤f(y),

(13)

where Jλ is the Moreau − Yosida resolvent of f.

Lemma 7 (see [28, 29]). Let X be a CAT(0) space and D be a
nonempty closed and convex subset of X. Let xi􏼈 􏼉

n

i�1 be any
finite subset of D and αi ∈ (0, 1), i � 1, 2, . . . , n such that
􏽐

n
i�1 αi � 1. 4en, the following inequalities hold:

(i) d(⊕ni�1αixi, z)≤ 􏽐
n
i�1 αid(xi, z),∀z ∈ D

(ii) d2(⊕ni�1αixi,z)≤􏽐
n
i�1αid

2(xi,z) − 􏽐
n
i,j�1,i≠j d2(xi, xj),

∀z∈D

3. Main Results

Theorem 1. Let (X, d) denote a CAT(0) space and be
complete, assuming that the subset D⊆X is nonempty, closed,
and convex. Suppose that S: D⟶ CB(D) is a multivalued
nonexpansive mapping, T is a single-valued nonexpansive
mapping, and f: D⟶ (− ∞,∞] is a proper convex and
lower semicontinuous function. Suppose that the set

Ω � F(T)∩F(S)∩ argmin
y∈C

f(y)≠∅ (14)

and Sp � p􏼈 􏼉 for p ∈ Ω. For x1 ∈ D, let the sequence xn􏼈 􏼉 be
defined by

wn � argmin
y∈C

f(y) +
1
2λn

d
2

y, xn( 􏼁􏼢 􏼣,

xn+1 � αnxn⊕βnpn⊕cnTpn, pn ∈ Swn,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

the sequences αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉⊆(0, 1), and 0< a≤ αn, βn, cn ≤
b< 1, αn + βn + cn � 1 n ∈ N, and λn􏼈 􏼉 is a sequence such that
λn ≥ λ> 0 for all n ∈ N and some λ. 4en, the following
statements hold:

(i) limn⟶∞d(xn, p) exists for all p ∈ Ω
(ii) limn⟶∞d(xn, wn) � 0
(iii) limn⟶∞d(xn, Txn) � 0
(iv) limn⟶∞dist(xn, Sxn) � 0
(v) limn⟶∞d(xn, Jλxn) � 0

Proof. Let p ∈ Ω; then, we get that p � Tp ∈ Sp and
f(p)≤f(y) for all y ∈ D. (us, it shows that

f(p) +
1
2λn

d
2
(p, p)≤f(y) +

1
2λn

d
2
(y, p), ∀y ∈ D, (16)

and hence, p � Jλp for each n ∈ N.

(i) First of all, the first step is to prove the fact that for
all p ∈ Ω, limn⟶∞d(xn, p) exists. Since wn � Jλn

xn,
with the nonexpansiveness of Jλn

, then
d wn, p( 􏼁 � d Jλn

xn, Jλn
p􏼐 􏼑≤ d xn, p( 􏼁. (17)

For p ∈ Ω, by p ∈ Sp, (17), and Lemma 7, we have

d xn+1, p( 􏼁 � d αnxn⊕βnpn⊕cnTpn, p( 􏼁

≤ αnd xn, p( 􏼁 + βnd pn, p( 􏼁 + cnd Tpn, p( 􏼁

≤ αnd xn, p( 􏼁 + βnH Swn, Sp( 􏼁 + cnd Tpn, p( 􏼁

≤ αnd xn, p( 􏼁 + βnd wn, p( 􏼁 + cnd pn, p( 􏼁

≤ αnd xn, p( 􏼁 + βnd wn, p( 􏼁 + cnd wn, p( 􏼁

≤ αnd xn, p( 􏼁 + 1 − αn( 􏼁d wn, p( 􏼁

≤ d xn, p( 􏼁.

(18)
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(is shows that the sequence d(xn, p)􏼈 􏼉 is de-
creasing and bounded. So, the limit limn⟶∞d

(xn, p) exists for all p ∈ Ω.
(ii) Next, prove that limn⟶∞d(xn, wn) � 0. Now, we let

lim
n⟶∞

d xn, p( 􏼁 � c, (19)

where c is a constant in [0,∞) and p ∈ Ω. In fact, by
the inequality of Lemma 6, it implies that
1
2λn

d
2

wn, p( 􏼁 −
1
2λn

d
2

xn, p( 􏼁 +
1
2λn

d
2

wn, xn( 􏼁

≤f(p) − f wn( 􏼁.

(20)

Because of f(p) ≤f(wn) for all n≥ 1, it follows that

d
2

wn, xn( 􏼁≤ d
2

xn, p( 􏼁 − d
2

wn, p( 􏼁. (21)

Since limn⟶∞d(xn, p) � c, in order to show the
fact that limn⟶∞d(xn, wn) � 0, it is sufficient to
show that

lim
n⟶∞

d wn, p( 􏼁 � c. (22)

From (18), we have

d wn, p( 􏼁≥
1

1 − αn

d xn+1, p( 􏼁 − αnd xn, p( 􏼁􏼂 􏼃. (23)

(en, this shows that

lim
n⟶∞

infd wn, p( 􏼁

≥ lim
n⟶∞

inf
1

1 − αn

d xn+1, p( 􏼁 − αnd xn, p( 􏼁􏼂 􏼃􏼨 􏼩 � c.

(24)

At the same time, from (17), we get that

lim
n⟶∞

supd wn, p( 􏼁≤ lim
n⟶∞

supd xn, p( 􏼁 � c. (25)

(us, from (24) and (25), it is implied that

lim
n⟶∞

d wn, p( 􏼁 � c. (26)

(en, from (19), (21), and (26), it can be shown that

lim
n⟶∞

d xn, wn( 􏼁 � 0. (27)

(iii) Next, prove that limn⟶∞d(xn, Txn) � 0. By
Lemma 7, we have

d
2

xn+1, p( 􏼁 � d
2 αnxn⊕βnpn⊕cnTpn, p( 􏼁

≤ αnd
2

xn, p( 􏼁 + βnd
2

pn, p( 􏼁 + cnd
2

Tpn, p( 􏼁

− αnβnd
2

xn, pn( 􏼁 − αncnd
2

xn, Tpn( 􏼁 − βncnd
2

pn, Tpn( 􏼁

≤ αnd
2

xn, p( 􏼁 + βnH
2

Swn, Sp( 􏼁 + cnd
2

Tpn, Tp( 􏼁

− αnβnd
2

xn, p( 􏼁 − αncnd xn, Tpn( 􏼁 − βncnd
2

pn, Tpn( 􏼁

≤ αnd
2

xn, p( 􏼁 + βnd
2

wn, p( 􏼁 + cnd
2

pn, p( 􏼁

− αnβnd
2

xn, p( 􏼁 − αncnd xn, Tpn( 􏼁 − βncnd
2

pn, Tpn( 􏼁

≤ d
2

xn, p( 􏼁 − αnβnd
2

xn, pn( 􏼁 − αncnd xn, Tpn( 􏼁 − βncnd
2

pn, Tpn( 􏼁,

(28)

that is,

αnβnd
2

xn, pn( 􏼁 + αncnd xn, Tpn( 􏼁

+ βncnd
2

pn, Tpn( 􏼁≤d
2

xn, p( 􏼁 − d
2

xn+1, p( 􏼁.

(29)

(en from (19) and (29), we get

lim
n⟶∞

d xn, pn( 􏼁 � 0,

lim
n⟶∞

d xn, Tpn( 􏼁 � 0,

lim
n⟶∞

d pn, Tpn( 􏼁 � 0.

(30)

(erefore, from (30), we can obtain

d xn, Txn( 􏼁≤d xn, Tpn( 􏼁 + d Tpn, Txn( 􏼁

≤d xn, Tpn( 􏼁 + d pn, xn( 􏼁.
(31)

From (30) and (31), it can be shown that

lim
n⟶∞

d xn, Txn( 􏼁 � 0. (32)

(iv) (us,

dist xn, Sxn( 􏼁≤d xn, pn( 􏼁 + dist pn, Sxn( 􏼁

≤d xn, pn( 􏼁 + H Swn, Sxn( 􏼁

≤d xn, pn( 􏼁 + d wn, xn( 􏼁.

(33)

From (27), (30), and (33), it is implied that
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dist xn, Sxn( 􏼁 � 0. (34)

(v) Since λn ≥ λ> 0, making use of wn � Jλn
xn, the

nonexpansiveness of Jλ, and Lemma 5, it can be seen
that

d xn, Jλxn( 􏼁≤d xn, wn( 􏼁 + d wn, Jλxn( 􏼁

≤d xn, wn( 􏼁 + d Jλn
xn, Jλxn􏼐 􏼑

� d xn, wn( 􏼁 + d Jλ
λn − λ
λn

Jλn
xn⊕

λ
λn

xn􏼠 􏼡, Jλxn􏼠 􏼡

≤d xn, wn( 􏼁 +
λn − λ
λn

d Jλn
xn, xn􏼐 􏼑 +

λ
λn

d xn, xn( 􏼁

� 2 −
λ
λn

􏼠 􏼡d xn, wn( 􏼁.

(35)

So, this implies the fact that the limit

lim
n⟶∞

d xn, Jλxn( 􏼁 � 0. (36)

(is completes the proof. □

Theorem 2. Let D be a nonempty closed convex subset of a
complete CAT(0) space (X, d). Let function f: D⟶ (− ∞,

∞] be a proper convex and lower semicontinuous function, T

be a nonexpansive single-valued mapping, and S: D⟶ KC
(D) be a multivalued nonexpansive mapping. Suppose that

Ω � F(T) ∩F(S)∩ argmin
y∈D

f(y)≠∅ (37)

and Sp � p􏼈 􏼉 for p ∈ Ω. For x1 ∈ D, let the sequence xn􏼈 􏼉 be
defined by (15), the sequences αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉 ∈ (0, 1), and
0< a≤ αn, βn, cn ≤ b< 1, αn + βn + cn � 1 n ∈ N. In addition,
λn􏼈 􏼉 is a sequence such that λn ≥ λ> 0 for all n ∈ N and some
λ. 4en, the sequence xn􏼈 􏼉Δ-converges to a point in Ω.

Proof. Let ωΔ � ⋃A( un􏼈 􏼉), where the union is taken over
all subsequences un􏼈 􏼉 of xn􏼈 􏼉. Let p ∈ ωΔ(xn). (en, there
exists a subsequence un􏼈 􏼉 of xn􏼈 􏼉 such that A( un􏼈 􏼉) � p􏼈 􏼉.
D ∈ X is a nonempty closed convex subset, and it is easy to
know from (eorem 1 that the sequence xn􏼈 􏼉 is bounded.
(en, by Lemmas 1 and 2, it can be shown that there exists a
subsequence vn􏼈 􏼉 of un􏼈 􏼉 such that

Δ − lim
n⟶∞

vn � v ∈ D. (38)

From (eorem 1 (iii) and (v), we have limn⟶∞d(vn,

Tvn) � 0 and limn⟶∞d(vn, Jλvn) � 0. (en, by the non-
expansiveness of T and Jλ, through Lemma 4, it can be
shown that the fact that v � Tv � Jλv. (us, we get

v ∈ F(T) ∩F Jλ( 􏼁 � F(T)∩ argmin
u∈D

f(u). (39)

Since the mapping S is compact valued, for each n ∈ N,
then there exist rn ∈ Svn and cn ∈ Sv such that d(vn, rn) �

dist(vn, Svn) and d(rn, cn) � dist(rn, Sv). By (eorem 1 (iv),
this implies the fact that

lim
n⟶∞

d vn, rn( 􏼁 � 0. (40)

Owing to the fact Sv is compact, there exists a subse-
quence cni

􏽮 􏽯 of cn􏼈 􏼉 such that limi⟶∞cni
� c ∈ Sv. (us,

this shows that

lim
i⟶∞

supd vni
, c􏼐 􏼑≤ lim

i⟶∞
sup d vni

, rni
􏼐 􏼑 + d rni

, cni
􏼐 􏼑 + d cni

, c􏼐 􏼑􏼐 􏼑

≤ lim
i⟶∞

sup d vni
, rni

􏼐 􏼑 + dist rni
, Sv􏼐 􏼑 + d cni

, c􏼐 􏼑􏼐 􏼑

≤ lim
i⟶∞

sup d vni
, rni

􏼐 􏼑 + H Srni
, Sv􏼐 􏼑 + d cni

, c􏼐 􏼑􏼐 􏼑

≤ lim
i⟶∞

sup d vni
, rni

􏼐 􏼑 + d rni
, v􏼐 􏼑 + d cni

, c􏼐 􏼑􏼐 􏼑

� lim
i⟶∞

supd vni
, v􏼐 􏼑.

(41)

(rough (38) and the uniqueness of asymptotic centers,
we can obtain that v � c ∈ Sv. (erefore, by (39), we can
show that

v ∈ F(T)∩F(S)∩ argmin
u∈D

f(u) � Ω. (42)

It follows by Lemma 3 and(eorem 1 (i) that p � v, and
hence, ωΔ(xn)⊆Ω.

In order to show that xn􏼈 􏼉Δ-converges to a point inΩ, it
suffices to show that ωΔ(xn) consists of exactly one point.
Suppose that un􏼈 􏼉 is a subsequence of xn􏼈 􏼉 with A( un􏼈 􏼉) �

u∗{ } and A( xn􏼈 􏼉) � x{ }. Since u∗ ∈ ωΔ(xn)⊆Ω and d(xn,􏼈

u∗)} converge, it implies by Lemma 3 that x � u∗.
(is completes the proof. □ □

Remark 1.

(i) (e results of Shuntai and Phuaengrattana [18] and
Cholamjiak [30] are extended and improved by
(eorem 2. In fact, a new proximal point algorithm
can be used for solving the constrained convex
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minimization problem as well as the fixed-point
problem of a single-valued nonexpansive mapping
and a multivalued nonexpansive mapping in a
CAT(0) space.

(ii) Since every real Hilbert space H is a complete
CAT(0) space, the above result can also be obtained
in Hilbert spaces, so a convergence weakly theorem
can be obtained in a real Hilbert space as follows.

Corollary 1. Let D be a nonempty closed convex subset of a
real Hilbert space H. Let f: D⟶ (− ∞,∞] be a proper
convex and lower semicontinuous function, T be a single-
valued nonexpansive mapping, and S: D⟶ CB(D) be a
multivalued nonexpansive mapping. Suppose that

Ω � F(T) ∩F(S)∩ argmin
y∈C

f(y)≠∅ (43)

and Sp � p􏼈 􏼉, p ∈ Ω. For x1 ∈ D, let the sequence xn􏼈 􏼉 be
defined by

wn � argmin
y∈C

f(y) +
1
2λn

d
2

y, xn( 􏼁􏼢 􏼣,

xn+1 � αnxn + βnpn + cnTpn, pn ∈ Swn,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(44)

the sequences αn􏼈 􏼉, βn􏼈 􏼉, cn􏼈 􏼉⊆(0, 1), and 0< a≤ αn, βn, cn ≤
b< 1, αn + βn + cn � 1 n ∈ N, and λn􏼈 􏼉 is a sequence such
that λn ≥ λ > 0,∀n ∈ N and some λ. 4en, the sequence xn􏼈 􏼉

converges weakly to an element in Ω.

Remark 2. In fact, the construction of our proposed algo-
rithm is rather peculiar and it is different from references
[31–33]. Convex combination of the sequences xn􏼈 􏼉, pn􏼈 􏼉,

and Tpn􏼈 􏼉 are given here, especially pn ∈ Swn, and Tpn is the
nonexpansive mapping T that operates on the sequences
pn􏼈 􏼉.

4. Numerical Experiments

In this section, a numerical example is given to illustrate
reckoning the convergence of modified proximal point al-
gorithm with iteration (15) by numerical experiment for
supporting (eorems 1 and 2.

Let X � R2 with Euclidean norm and D � x � (x(1),􏼈

x(2)) ∈ R2: 0≤ x(1), x(2) ≤ 1}. For each x � (x(1), x(2)) ∈ D,
the concrete definition of nonexpansive mappings T and S is
shown as

Tx �
2x

(1)
+ 1

4
,

x
(2)

+ 7
8

􏼠 􏼡,

Sx � x
(1)

􏽮 􏽯 ×
3x

(2)
+ 1

4
, 1􏼢 􏼣.

(45)

For each x ∈ D, assume that ‖x‖1 � 􏽐
n
i�1 |xi|, and ‖x‖2 �������

􏽐
n
i�1 x2

i

􏽱
. (e function f: D⟶ (− ∞,∞) is defined in the

following manner:

f(x) � ‖x‖1 +
1
2
‖x‖

2
2 +(− 1.5, − 2)x + 7. (46)

From the fact that T and S are nonexpansive and f is a
proper convex lower semicontinuous function easy to prove,
we skip their proofs here. Furthermore, by making use of the
soft thresholding operator [34] and the proximity operator
[35], let λn � 1; we have

J0x � argmin
v∈D

f(v) +
1
2
‖v − x‖

2
􏼔 􏼕 � proxfx

� prox ‖·‖1/2( )
x − (− 1.5, − 2)

2
􏼠 􏼡

� max
x

(1)
+ 1.5

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 1
2

, 0
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
sgn x

(1)
+ 1.5􏼐 􏼑, max

x
(2)

+ 2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 1
2

, 0
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
sgn x

(2)
+ 2􏼐 􏼑⎛⎜⎝ ⎞⎟⎠,

(47)

where sgn(ξ) is a signum function, that is,

sgn(ξ) � 1, ξ > 0,

sgn(ξ) � 0, ξ � 0,

sgn(ξ) � − 1, ξ < 0.

⎧⎪⎨

⎪⎩
(48)

Further simplification of the proposed iterative algo-
rithm is in the following expression:

wn � J0xn,

xn+1 � αnxn + βnpn + cnTpn, pn ∈ Swn,

⎧⎪⎨

⎪⎩
(49)

where xn � (x(1)
n , x(2)

n ) and wn � (w(1)
n , w(2)

n ) are points in
R2. In addition, we choose some points and the sequences of
parameters as follows:
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pn � w
(1)
n ,

3w
(2)
n + 1
4

􏼠 􏼡 ∈ Swn,

αn �
50n − 3
100n

,

βn �
35n − 4
100n

,

cn �
15n + 7
100n

.

(50)

Next, we use Algorithm (49) with an initial point x1 �

(0.1, 0.2) and obtain numerical results in Table 1.

Remark 3

(i) From Figure 1, with the increase in the number of
iterations, the errors between xn and xn+1 decrease.
When the iteration is 17 times, the minimum of f is
obtained.

(ii) From Table 1 and Figure 1, it is observed that the
sequence xn􏼈 􏼉 converges to a point (0.5, 1).

(iii) (e point (0.5, 1) is a solution of the constrained
convex minimization problems (46) and also a
solution of the fixed-point problems of a pair of a
nonexpansive single-valued mapping T and a
nonexpansive multivalued mapping S.
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[9] O. Güler, “On the convergence of the proximal point algo-
rithm for convex minimization,” SIAM Journal on Control
and Optimization, vol. 29, no. 2, pp. 403–419, 1991.
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