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In this paper, a finite-dimensional Lie superalgebra K (1,m) over a field of prime characteristic is constructed. Then, we study
some properties of K (1, m). Moreover, we prove that K (1, m) is an extension of a simple Lie superalgebra, and if m = n — 1, then it

is isomorphic to a subalgebra of a restricted Lie superalgebra.

1. Introduction

In the 1970s, physicists introduced the concept of Lie
superalgebra in order to describe supersymmetry (see [1]).
Since Lie superalgebra is an important mathematical model
of supersymmetry, the research on it has been very active
and rich results have been obtained (see [2]). In mathe-
matics, Lie superalgebra is also a natural generalization of
Lie algebra. In 1977, Kac completed the classification of
finite-dimensional simple Lie superalgebras over a field of
characteristic zero (see [3]). The research on Lie super-
algebras over a field of characteristic zero has been quite
systematic (see [4-6]), but the research on modular Lie
superalgebras remains to be perfected (see [7]). Although
some mathematicians try to study the classification of
modular Lie superalgebras (see [7-13]), the classification
problem has still been open. Therefore, it is very important
to construct new finite-dimensional modular Lie
superalgebras.

The finite-dimensional modular Lie superalgebras
W (n,m), H (n, m) were constructed in [14, 15], respectively.
Their natural filtrations are investigated in [16]. The finite-
dimensional modular Lie superalgebra S (n, m) was given in
[17]. Modular Lie superalgebra K (rn), which takes the
Grassmann algebra as base algebra, was constructed in [18].

Inspired by the above mentioned literatures, this paper
constructs a finite-dimensional modular Lie superalgebra of
contact type, which is denoted by K (n, m).

The remainder of this paper is arranged as follows. A
brief summary of the relevant concepts and notations is
presented in Section 2. In Section 3, we construct the finite-
dimensional modular Lie superalgebra K (n,m). In Section
4, we obtain some properties of K (n,m). Moreover, we
prove that K(n,m) is an extension of % (n,0), and if
m=mn-1, then it is isomorphic to a subalgebra of
KO(n-1,n1).

2. Preliminaries

Throughout this paper, F denotes an algebraic closed field of
characteristic p > 3; nis an integer greater than 3. Apart from
the standard notation Z, the sets of positive integers and
nonnegative integers are denoted by N and N, respectively.
Z, =1{0,1} denotes the ring of integers modulo 2.

Let A (n) be the Grassmann algebra over [ in n variables
X1y Xgseoos X Set By = {<ipydy, .o i) |1 <y <y < o <G <
n} and B(n) = U}_ B, where B,=0. For u=,
iy..iy €By, set |ul=k {u}={ij,i...,q} and
x* =%, 5% (19] = 0,57 = 1). Then, {x“|u € B(n)} is
an [F-basis of A (n).
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Let A(n— 1) be the Grassmann algebra over F in n — 1
variables x,x,,...,x,_;. Obviously, A(n)=Am-1)A
(X0

Let D;: A(n) —> W (n) be the linear map such that for
any f € A(n)y, 0 € Z,,

n-1

Bk(f):Zfilji"_fn'xnljn’ (1)

i=1

where f; = (-1)% (x;x,,D, (f) + D;(f)) and f, =2f - ¥/
x;D; (f). _ _

Let K (n) = {Dy (f)If € A(n)}. Then, K(n) is a finite-
dimensional Lie superalgebra according to the operations in
W (n). Let_K(n) = [K(n),K(n)]. Then, K(n)=/{f|f €
A(n), f #x"}, where i = (1,...,n—1). In [18], Xin proves
that K (n) is not a simple Lie superalgebra.

Let % = A(n) ® T (m) be the tensor product, where T (1)
is the truncated polynomial algebra satisfying y? = 1 for all
i=1,2,...,m (see [17]). Then, % is an associative super-
algebra with Z,-gradation induced by the trivial Z,-gra-
dation of T(m) and the natural Z,-gradation of A(n).
Namely, % = Uy®%;, where %;=A(n)e®T(m) and
Uy = A(n); T (m).

For f € A(n) and « € T (m), we abbreviate f ® a as fa.
Then, the elements x* y" with u € B(n) and A € G form an
F-basis of %. It is easy to see that % = &-°%, is a Z-graded
superalgebra, where %;= spanF{x"yklu e B(n),|ul =1,
A€ G} In particular, %,=T(m) and %, = spang{x”
y)‘I)L € G}, where m: =<1,2,...,n) € B(n).

In this paper, let hg (A) = A5 U A7, where A = Az®@A7isa
superalgebra. If x is a Z,-homogeneous element of A, then
degx denotes the Z,-degree of x.

SetY ={1,2,...,n}. Giveni € Y, let 0/0x; be the partial
derivative on A (n) with respect to x;. Fori € Y, let D, be the
linear transformation on % such that Di(x“y)‘) = (ox"/
axi)yA for all u € B(n) and A € G. Let Der % denote the
derivation superalgebra of % (see [11]). Then, D; € Der; %
for all i € Y since d/0x; € Der; (A (n)) (see [7]).

Suppose that u € B, CB(n) andi € Y. When i € {u}, u -
(i) denotes the uniquely determined element of B,_, sat-
isfying {u — <i)} = {u}~{i}. Then, the number of integers less
than 7 in {u} is denoted by 7(u,i). When i ¢ {u}, we set
7(u,i) = 0 and x* ¥ = 0. Therefore, D, (x*) = (~1)"®"
x*= for all i € Y and u € B(n).

ic]

ie]

(Z (-1)*8/G,(f)G, + fG,
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We define (f D)(g) = f D(g) for f,g € hg(%) and
D e hg(Der %). Since the multiplication of % is super-
commutative, f D is a derivation of %. Let

W (n,m) = span[F{x”y’\D,-Iu €eB(n), AeG,iie Y}. (2)

Then, W (n,m) is a finite-dimensional Lie superalgebra
contained in Der Z. A direct computation shows that
(D, 9D;] = £D,(9)D; - (-1 UP)s() g (D,
(3)
where f,g € hg(%) and i,jeY.
Definition 1 (see [4]). A Lie superalgebra L is called simple if

it does not have any graded ideals which are different from
{0} and L and if, moreover, [L, L] # {0}.

3. Construction of K (1, m)

Set J ={l,...,n—1}. Let Dy: % — W (n,m) be the linear
map such that
Dk(f):ZfiDi+fnann> (4)
i€]

where  f ehg(%), f;= (-1)%/ (x,;x,D, (f)+D;(f)),
ie],and f, =2f = Y;xD; (f).

Let K(n,m) ={Dy(f)|f € %}. Then, K(n,m) is a
subspace of W (n,m).

Let
Gi = Dl + Xiann, Vi € ]: (5)
G, = 2x,D,,. (6)
By direct calculation, we have
G, G;| =9;G,,
6,61, .

(G Gj] = 0.
where i, j € ] and §;; is the Kronecker delta.
Proposition 1. D, (f) = Yie (—l)dengi ()G; + fG,.

Proof. For any j € J and A € G, we have

o)

- <Z (-1)%sf (D; (f) + x;x,D,,(f))(D; + xiann)>(xij)

_ (_l)degf(Dj(f) +x,x,D, (f))(yl)

= De(Nxp'),
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<Z( D*8/G,(f)G; + G, >( )
i€]

( l)degf D (f) + X; x (f)) (Dz + xix,,Dn) + zfann>(xnyA)

(16]
> - )% (D, (f) + x,%,D, (f))xi%, 0" + 2fx, 5"
ie]
=2
i€]

(8)
-1/ D, (f)x,x,y" +2fx,"
( Di(f)+ 2f>(xnyl)
i€]
= Dy ()(x0").
= (- 6 . / =
Therefore, fi= CUGf), Vie] fu=f, (11)
_ dcs f 9= (1'Gi(g), Vielg,=g
Dy (f) =) (-1)*¥/G,(f)G, + fG, 9)
i€] Therefore, deg(f;) =0+ 1,deg(g;) =p+1,forieY.
= Hence,
Proposition 2. Let f € Uy and g € %W where 0,y € Z,. Gi(f]-) = Gi((—l)eG-(f)) = (—l)eGiGj(f). (12)
Then,
. ~ ~ ~ Since [G;, G;] = §;;G,,, where i, j € ], we obtain
[Dr (), Di(9)] = D (<> ), (10) Gi(f;) = G, (f:) + (-8, ()
\fi)=-G;(f;)+(=1)"9;; ,
where {f,g) = Dy (f)(9) - G, (f)(9)- ! ! (13)

(gj)— -G;(g;) + (=1)"6;,G, (9.

Proof. Let Dy (f) = Yiey fiGi Di(9) = Y jev9,G -
roof. Let Dy (f) = Yiey fiGi» Dy (9) Z]éYg]] Set[Dk(f)aDk(g)]ZZjeth ;- Forany h € %, we have

Since f)k(f) = Zie](—l)dengi ()G; + fG,,, we get

[Dx () Di(9)] (h)
= ZfiGi,Zngj](h)
ieY jey
= D (fiGi(9;G;(M) - (-1)*g,G; (f.G; ()
i,jey
= 3 (£6(9))6, 00~ 19,56, )
i,j€
- (_l)aﬂg]G] (fz)Gz (h) + (_1)‘“+1f1g]G] (Gz (h)) (14)
= > (:Gi(9;)G; - D% g,G; (£)G:) ()
i,jey
+ (D" Y fi9;(Gu G (b
i,jeYy
= Y (fiGi(9;)G; - D% g,G;(£)G:) (W)
ijey
+ (=" Y 8, £,9,G, (h).
i,jey

It follows that



[Di () Dy (9)]

= [Z fGi ). 9,G;
194 jey

= Z (fiGi(gj)Gj —(—1)9M9jGj (fi)Gi) - (-1 Z 8,1 fi9;Gp
igey igey

For all j € J, we have

Then, h :

Dy (Kf. )

hj = ZfiGi(gj) - (—1)6)” ZgiGi(fj) + fGn(gj) - (—I)GMQGn(fj)

i€] i€]
==Y £,G;(g)+ (D" Y g,G;(f;) + (-1"f;G,(9) - (-1*"3,G,(f)
ic] i€]
+fG,(g;) - ~D%gG,(f;)
= (D" Y(G;(f)g: + D™ £,G;(g)) + (DG ()G, (9)

i€]
- ()M ()G, () + £G,(g;) - (~D*4G,(f,)

= (—1)9G,~(Z figi> +(-1D)™G; ()G, (9) - (-D™G, ()G, (g)

i€]

+ fG,((-1'G; () - (-1)%gG,((-1)°G; (f))
= (—1)"G,~(Z -1°G,(f) (-1)'G, (g)> +(-D"G;(fG,(9) - G,(f)9)

i€]
= (—1)9“‘@,-(2 (-1)°G,(f)G;(9) + fG,(9) - G, (f>g>
i€]
= (-)™G; (D (f)(9) - G, (f)(9))
= (-D)"G;({f. ).

exactly equals to the coefficient of G; in In addition,

hy=Y £G(9) - (D" Y g,G,(f)

i€] i€]

+ £G,(9) - (-1)*gG, (f) —(—1)“;fig,-
- ; (-1)’G, (f)G;(g) - (—1)9”; (-1'G,(9)G; (f)

+ £G,(9) - ()" 4G, (f) - (—1)*‘; (-1G, () (~1)'Gi(9)
= ~(-)HHENED N G ()G, (9) + fG,(9) - G, (f)g

i€]

- Z] (-1)’G;(f)G;(9) + £G,(9) - G,(f)g
=D (/)(9) -G, (H)(g)
={f> -
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(15)

(16)

(17)



Journal of Mathematics

Then, h, exactly equals to the coeflicient of G, in
B.(frg). )

Therefore, [Dy (f), Dy (g)] = D;. ({f, g)).

An immediate corollary of this proposition is the
following. U

Corollary 1. K (n,m) is a subalgebra of W (n, m).
Next, we give another way to express K (n,m). We still
denote the linear map from % to K(n,m) by D,. Namely,

Dy: U — K (n,m). (18)

Then, we prove the following proposition.
Proposition 3. K (n,m) = %.

Proof. Let f € Ker D;. We obtain
fi=(1* (xx,D,(f) +D;(f)) =0, Vie],

fu=2f=) x:Di(f) =0,
; (19)

f=3 T D) =5 Y s, () =0

ie] i€]

Therefore, Ker D, = 0. Then, D is injective.
We define an operator [,] in %. For any f,g € %, we
have

[f, 9] = Dr(f)(9) -G, () (9. (20)
By Proposition 2, we have
D (1f,9) =[1~3k(f),1~)k(g)]- (21)

Note that D, is injective. Therefore, it can be concluded
that % is a Lie superalgebra about the operator [, ] (see [1]).
It follows from equation (21) that K(n,m)=% as Lie
superalgebras.

Since K (n,m) = %, we use K (n, m) instead of % defined
by equation (20). By equations (5) and (6) and Proposition 2,
for f,g € K(n,m), we have

u, O A
Xy > X XX, Y

[f.9] = Di(f)(9) - G, (f)(g)
= Z] (-D*G,()Gi(9) + fG,(9) - G, ()(g)
= Z] (~)**/ D, (f)D; (g)
+ 3 (-1)* D, (f)x,x,D,, (9) + 2fx,D,(g)
i€]
+ Z] (-1)*¢/x,x,D, (/)D; () - 2x,D, (f)g

+ 3 ()" xx,D, (f)x:x,D, (9)
ie]

i€]

= <2f - Z x;D; (f)>ann (g)

_ (_l)deg(f)deg(g) <29 _ inDi (g)>ann (f)

i€]
+ Y (DD (f)D; (g).
i€]
(22)
O

Definition 2. K (n,m) = [K (n,m), K (n,m)].

Proposition 4. K(n,m) = {x”yﬂx”y" €U x"y ;bxayl},
where u={1,...,n-1).

Proof. Let K(n,m) = {x”y"|x”y’1 €U x"y qéx“yA}. It
suffices to prove that K(m,m)=K(nm). For any
feK(nm), let f= ZtZMGcﬂx”txg’y", where ¢, € F,u,
={t;,. .t J(t; €],j=1,...,5). If generator x, is contained
in x* x, y*, then &, = 1. Otherwise, §, = 0.

Firstly, we prove K (n, m)2K (n,m):

(i) If |u,| <n— 1, there exist t, ¢ {u,} such that

= <2xtr - Z xiDi(xtr) )x,,Dn(xtrx”‘ xi‘ yA)

ic]

-<-nd€g<x~>“g“""””‘”<2xt,x"fxify*—zxiDi<xt,xufxzfy*>)xnpxxt,) @

i€]

+ Y (-D)*4D,(x, )Dy(x, x“x2 ")

ic]

= x, x, X" xny’\ —(-1° (i) ye xi‘ yA

= —(-1 oot (ful} = {t,, . m}).
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Therefore, x“fxg‘yA € [K (n,m), f(n,m)] =K (n,m)
(i) If |ul=mn-1, 6, =1, then x”txny = x"x, .
Therefore,
[yk,xaxn] =(-D)"! -2x;xnyl. (24)
_ According to (i) and (ii), x"f}f_ﬁ’yA € [K (n,m),
K (n,m)] = K(n,m). Namely, for all f € K(n,m), we have

f € K(n,m). Therefore, K (n, m)zf((n, m).
Secondly, we prove K (n,m)CK (n, m):

Journal of Mathematics

Note that
dim (K (n,m)) = 2"p",dim (K (n,m)) = (2" - 1)p"",
dim (K (n, m)) — dim (K (n,m)) =
(25)

Therefore, it suffices to prove that x;)/‘ ¢
[K (n,m), K (n, m)]. Without loss of generality, suppose that

[x”lxé1 ¥y x x‘szy"] = <2x“1 Xy - inD (x X0 y"))an (x xazy”)

ie]

_ (_ 1 )deg (x”l x?,l )deg (x"2 xiz ) <

+Z(—1)d8gxulxilD(x x,'y

i€]

If §;, = 1,8, = 0, then [x*1x] y, x*2x7 y#] = ¢, x"x, ",
where ¢, € F,x* € A(n—1).

Therefore, §; = §, = 0. Namely,

[xxyxxy]

=[xy, x"y] (27)
_ (_l)degxul Z (_1)T(u1,i)+r(uz,i)xu1+u2—2<i>yi‘
i€]

By the definition of the Grassmann algebra, for all
u;,u, € B(n—1), we have

Z]:(_l)r(ul 1)+T(u21) uy+u,— 2€0) l;&x e (28)
1€

It follows that xay)‘ ¢ [K (n,m), K (n,m)].
K (n,m) = [K (n,m), K (n,m)]<K (n,m).
Therefore, K (n,m) = {x" y*|x" y* e%xyrﬁxy} O

Then,

4. Some Properties of K (1, m)

Proposition 5. K(n,m) does not possess a Z-graded
structure as W (n, m).

Proof. Suppose that K (n,m) has Z-gradation:
K(n,m) =e®,__ K(n,m), (29)

i=—r

where K (n,m); = spang{x“y*|x* € A(n),A € G,i =i(u)}.
Let y* € K(n,m),, x,y" € K(n, m),, where A, € G. Sup-
pose that x;y* € K(n,m),, for all i#nueG. Since
[x; ", x;9*] = —y*, we have t =2l Since [y x,y"]=

there exist x"1x,'y",. x“2x5 >y € K(n,m) such that
[t x5 "y, X2 X3 y#] = x*y", where A = 7 + .
If 6, =6, =1, then
Zx”inzy” - Z xiDi(x”ngzy”)>ann(x”‘xgly’7) (26)
i€]
9, ’7) (x xszyﬂ) 0.
2x,yM", we have t+q=gq. Then, t =2l = 0. Therefore,
x;y* € K(n,m), for all i#mueG. Since [x;)* x,

Y1 = x;x, " and  [K(n,m)y, K (n, m)q]gK (n, m)q, we
obtain x;x,y*"" € K(n,m),. For all x;#x;, j#n,y € G, we
have «x iy e K(n,m),. Then, [xjyy, xpx, ] = X;
XX yy“"”” € K(n,m),, where y+pu+ 11 € G. Following the
dlscussmn above, we have x“x,y* € K (n, m),, where
x*e A(n-1),1 €G.

On the other hand, let x; x]y € K(n, m)u, where
i+j#¥nAeG. Since [x;p¥ x Jy]——( 1)7 ) x y*"rA
where {u} = {i, j}, we know a = 0. Therefore, x;x; y €
K (n,m),. For all x y# € K(n, m)o,qun,z j» we have
BT xkx,x]y M= (- 1)7(""xxjyf‘*A where {u} = {k, i, j}.
Then, x;.x;x ; y € K (n,m),. Followmg the discussion above,
we have x“y* € K (n,m),, where x* € A(n— 1), € G.

If x,y" e K(n,m),, then K(n,m)=K(nm), If x,
y" € K(n,m),, then K (n,m) = K (n,m) @K (n,m),.

Therefore, K (n,m) does not possess a Z-graded struc-
ture as W (n, m). O

Lemma 1 (see [15]). Let A=Y, 50 Y ca =0,
ay € F}. Then, A is an ideal of T (m) and T (m) = AeF1.

Theorem 1. Let I, = {x“a|x” € A(n),a e, x”aqéxaa]».

Then, 1, is an ideal of K (n, m). Namely, the Lie superalgebra
K (n,m) is not simple.

Proof. Let x*1a € I, x*2b € K (n,m), where x"1,x"> € A(n),
a €A, b € T (m). Then,
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[x"1a, x"D]

= <2x”1a - Z x;D; (x"a) >an,, (x"2b)

i€]

_ (_l)deg(xul )deg (x2) 215 — Z xiDi (X”Z b) ann (xula)
i€]
+Y (D" D, (x" a)D, (x"b)
i€]
=c,x"ab,

(30)
where ¢, € F,x* € A(n). Since A is an ideal of T (m), we
have ab €A. Then, [x*1a, x*2b] = ¢, x"ab € I,,. Therefore, I,
is an ideal of K (1, m). Now, we conclude that K (n, m) is not

a simple Lie superalgebra.
Let K (n,m),: = K(n,m)/I,. Then,

K (n,m), ={x“+IO|x” EA(n),x”;éx;}. (31)

Let # (n,0) = {x”lx” e A(n), x* q&xa}. Then, we define
an operator |,| in % (n,0). For all f e % (n,0)59 €

K (n,0),, OuezZ, we define |f g]= Zie](—l)eDi
(f)D;(g). Then, F (n,0) is a simple Lie superalgebra. [

Theorem 2. K (n,m), = K (n,0). Therefore, K (n,m) is an
extension of the simple Lie superalgebra F (n,0) and I, is the
maximal ideal of K (n, m).

Proof. We define a linear map o: K(n,m), — F (n,0)
such that o(x* + 1)) = x* for all x* + I, € K (n,m),. Obvi-
ously, ¢ is an isomorphism of linear spaces.

In addition, for all x*1 + I, x*2 + I, € K (n,m),, we have

o([x" + 1 x" +1,])

= o ([x" 2]+ [ I] + [T, x™ ] + 1, I )

o (2 oot

i€]
— (—1)des e [t Z x;D; (x") |x,D, (x™)
i€]
+ Z (-1 D, (x")D; (x") + I,
i€]
=o([x", x| +1,)
=[x, x|
=[o(x" + 1), 0 (x" +1,)].
(32)
Therefore, o is a homomorphism of Lie superalgebras.

Then, 0 is an isomorphism of Lie superalgebras. We consider
the following sequence:

05 I, - K(mm) 25 F (n,0) — 0. (33)

In the above sequence, p is the embedded map from I to
K (n,m) and 7 is the natural homomorphism from K (n, m)
to K (n,m),. Obviously, p(I,) = Ker (0 o). Therefore, the
above sequence is an exact sequence. Note that I, is an ideal
of K (n,m) and K (n,m) = & (n, 0)@l,. Therefore, K (n, m) is
an extension of the simple Lie superalgebra % (n,0).

Let U (n — 1,1) denote the divided power algebra over F
with basis {x@|a= (...,a;...) e NI La,<p—1}. Let
An-1,nl1)=Umn-1,1)®A(n). For i=1,...,2n—-1,
let D; be the linear transformation of the superalgebra A (n —
1,n,1) such that

lae) g

i=1,...,n—-1,

(@) E)JCM .
X 3 , i=n,...,2n—1.
Xi

Let W(n-1n1) ={¥"'fDlfi € A(n-1n1),
i=1,...,2n— 1}. Then, we define a linear map Dyy: A(n —
1,n,1) — W(n-1,n,1) such that

D,-(x(“)x”) =

(34)

2n-2

Dro(f) = ) (-0 /Dy () 4 (-)*/ Dy 1 (D),

i=1

2n-2
+ ( Z x:D; (f) - 2f>52n—1’
(35)

for all feAm-1,n1). Let KO(n-1,n1) = spang
{Dxo ()| f e A(n—1,n1)}. Then, KO(n—1,n1) is a
finite-dimensional odd contact Lie superalgebra (see [19]). O

Proposition 6 (see [15]). Let m =n— 1. Then, T(n—-1) is
isomorphic to U(n—1,1).

In [15], we can see that the isomorphism
¢ T(n-1) — U(n—-1,1) can be extended to an iso-
morphism ¢: %4 — A(n—1,n,1).

Theorem 3. If m = n-— 1, then K(n,m) is isomorphic to a
subalgebra of KO(n—1,n,1).

Proof. Let KO, (n—1,n,1) = {Dyo Q(f))If € %}. It is a
subalgebra of KO(n—1,n,1). Then, we define a map
¢: K(n,n—-1) — KO, (n—1,n,1) such that go(Dk(f)) =
Dyo (G(f)) for all D, (f) € K (n,n—1). By virtue of Prop-
osition 6, ¢ is an isomorphism of Lie superalgebras. O
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