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In this paper, the positive operator solutions to operator equation X − A∗X− tA � Q (t> 1) are studied in infinite dimensional
Hilbert space. Firstly, the range of norm and the spectral radius of the solution to the equation are given. Secondly, by constructing
effective iterative sequence, it gives some conditions for the existence of positive operator solutions to operator equation X −

A∗X− tA � Q (t> 1). ,e relations of these operators in the operator equation are given.

1. Introduction

Operator algebra has played an important role in the subject of
functional analysis; it has been considered by many authors. At
the same time, operator equation is one of the hottest topics in
operator theory. ,e researches on the positive solutions to
operator equations began in 1990s; it has been applied to many
fields such as dynamic programming [1], stochastic filtering,
control theory [2, 3], and statistics [4]. In recent years, operator
equation attained a great development and many scholars put
into studying different kinds of operator equations (see [5–11]).

In this paper, let H be infinite dimensional Hilbert space
and B (H) denote the set of all bounded linear operators on
H; we will consider nonlinear operator equation.

X − A
∗
X

− t
A � Q, (1)

in H; here, A, Q ∈ B(H) with Q> 0, A∗ is the adjoint of A.
In the past few years, many authors used different iterative

methods for computing the positive definite solutions to
equation (1) in finite dimensional space. In this paper, we
extend the study of operator equation (1) from finite dimen-
sional space to infinite dimensional Hilbert space. Some
necessary conditions for the existence of positive operator
solutions to operator equation (1) are derived. Furthermore,
conditions under which operator equation (1) has positive
operator solutions are obtained.

ForA ∈ B(H), A∗, σ(A), ‖A‖ denote the adjoint, the
spectrum, and the norm of A, respectively. If Ax, x≥ 0 for all
x ∈ H, then A is said to be a positive operator and denoted
by A≥ 0. For positive operators in B(H), the following
conclusions are obvious:

(1) For P≥Q> 0, we have P− 1 ≤Q− 1.
(2) For positive operator P, λmin(P)I≤P≤ λmax(P)I,

where

λmin(P) � min λ: λ ∈ σ(P), P> 0{ },

λmax(P) � max λ: λ ∈ σ(P), P> 0{ }.
(2)

2. Main Results and Proofs

Lemma 1 (see [12]). Let A, B ∈ B(H). If A≥B, then
‖A‖≥ ‖B‖.

Lemma 2 (see [12]). Let A and B be self-adjoint operators in
B(H). If A≤B, then for any T ∈ B(H), we have
T∗AT≤T∗BT.

Proposition 1 (see [12]). IfA ∈ B(H) is normal, then the
C∗− algebra generated by A is commutative.
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Theorem 1. If the operator equation (1) has a positive op-
erator solution X, then

‖Q‖≤ ‖X‖≤ ‖Q‖ 1 + Q
(− t/2)

AQ
(− 1/2)

�����

����� 
2
. (3)

Proof. If the operator equation (1) has a positive operator
solution X, from A∗X− tA> 0, we can obtain X≥Q. From
Lemma 2, it is easy to see ‖X‖≥ ‖Q‖. From equation (1),

X � Q + A
∗
X

− t
A≤Q + A

∗
Q

− t
A

� Q
(1/2)

I + Q
− (1/2)

A
∗
Q

− t
AQ

− (1/2)
 Q

(1/2)
.

(4)

We can obtain ‖X‖≤‖Q‖(‖I + Q− (1/2) A∗Q− t AQ− (1/2)‖) �

‖Q‖(1+ ‖Q− (t/2)AQ− (t/2)‖2). ,at is, ‖Q‖≤ ‖X‖≤
‖Q‖(1+ ‖Q(− t/2)AQ(− 1/2)‖2). ,e theorem is proved. □

Theorem 2. If A is invertible, then equation (1) has a positive
operator solution.

Proof. Let ϕ(X) � Q + A∗X− tA, then ϕ is continuous for
any X ∈ [Q, Q + A∗Q− tA]. Clearly, ϕ(X)≥Q for any X,
combination with the proof of ,eorem 1, we have

ϕ(X) � Q + A∗X− tA≤Q + A∗Q− tA, that is, ϕ(X) ∈
[Q, Q + A∗Q− tA]; this implies ϕ is a mapping to itself on
[Q, Q + A∗Q− tA]. By the fixed point theorem , ϕ has a fixed
point X0 in [Q, Q + A∗Q− tA] such that ϕ(X0) � X0, i.e.,
X0 � Q + A∗X0

− tA, that is,X0 is a positive operator solution
to equation (1). □

Theorem 3. Let A ∈ B(H). 1e operator equa-
tionX − A∗X− tA � Q has a positive invertible operator so-
lution X if and only if A has the factor
decompositionA � (W∗W)(t/2)B, where W, B satisfy W∗W −

B∗B � Q and W is invertible.

Proof. If operator equation (1) has a positive operator so-
lution X, let W �

��
X

√
, then W∗ � W and W is invertible, so

X � W∗W. According to equation (1), we have

W
∗
W − W

∗
W( 

− (t/2)
A 
∗

W
∗
W( 

− (t/2)
A � Q. (5)

Let (W∗W)− (t/2)A � B, then A � (W∗W)(t/2)B. From
equality (5), we obtain W∗W − B∗B � Q. Conversely, if A
has the factor decomposition A � (W∗W)(t/2)B,W, B satisfy
W∗W − B∗B � Q and W is invertible. Let X � W∗W, then

X − A
∗
X

− t
A � W

∗
W − W

∗
W( 

(t/2)
B 
∗

W
∗
W( 

− t
W
∗
W( 

(t/2)
B � W

∗
W − B

∗
B � Q. (6)

,at is, X is a positive operator solution to equation (1).
In [6], it proves that if A is not invertible and then X is a

positive solution to X + A∗X− 2A � I, then λmax(X) � 1. In
finite dimensional space, if A is not invertible, then N(A)≠ 0,
but in infinite dimensional space, if A is not invertible, N(A)

maybe a null space; the lemma in [6] is not held in infinite
dimensional space, but the following conclusion holds. □

Theorem 4. If X − A∗X− tA � Q has positive operator so-
lution X, then‖X‖ � ‖Q‖ if and only if A is not bounded below.

Proof. From,eorem 1, we know ‖X‖≥ ‖Q‖ for any positive
operator solution to equation (1).

Necessary. If X − A∗X− tA � Q has positive operator so-
lution X and ‖X‖ � ‖Q‖, then ω(X) � c(X) � ‖X‖ � ‖Q‖,
hence there exists unit sequence xn 

+∞
n�1 such that(Xsxn,

xn)⟶ b(n⟶∞). For any unit vector x ∈ H, we have

Xx, x)〈 〉 � A
∗
X

− t
A + Q x, x  � Qx, x〈 〉 + A

∗
X

− t
Ax, x ,

(7)

hence (X− tAxn, Axn)⟶ 0. On the other hand,
(X− tAxn, Axn) � ‖X− (t/2)Axn‖2 ≥ (‖Axn‖2/‖X(t/2)‖2).

Hence, Axn⟶ 0, therefore A is not bounded below.
Sufficient. Assume ‖X‖> ‖Q‖ for any positive operator

solution X, then X − ‖Q‖I is nonnegative and invertible,
then for any unit vector x ∈ H, there exists constant δ > 0
such that (X − ‖Q‖I)x, x≥ δ‖x‖2. Since X � A∗X− tA + Q

and Q≤ ‖Q‖I, we can conclude that

δ‖x‖
2 ≤ (X − ‖Q‖I)x, x〈 〉≤ (X − Q)x, x〈 〉

� A
∗
X

− t
Ax, x  � X

− (t/2)
Ax

�����

�����
2
≤ X

(t/2)
�����

�����
2
‖Ax‖

2
,

(8)

that is, ‖Ax‖≥
�
δ

√
‖X− (t/2)‖− 1‖x‖; this illustrates that A is

bounded below; it is a contradiction, so ‖X‖ � ‖Q‖. □

Theorem 5. If X is a positive operator solution to equation
(1), then

λmax(X) − λmax(Q)( λmin
t
(X)≤ λmax A

∗
A( ≤ λmax(X) − λmin(Q)( λt

max(X). (9)

Proof. From 0< λmin(X)I≤X≤ λmax(X)I, we have
Q + (A∗A/λt

max(X))≤Q + A∗X− tA≤Q + (A∗A/λt
min(X)),

that is,

Q +
A
∗
A

λt
max(X)
≤X≤Q +

A
∗
A

λt
min(X)

. (10)
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From the first inequality of (10), we have
(A∗A/λt

max(X))≤ λmax(X − Q)≤ λmax(X) − λmin(Q), that is,
λmax(A∗A)≤ (λmax(X) − λmin(Q))λt

max(X).
From the second inequality of (10), we have

λmax(X)≤ λmax(Q + (A∗A/λt
min(X)))≤ λmax(Q) + λmax(A∗

A/ λt
min(X)), that is,λmax(A∗A)≥ (λmax(X)− λmax(Q))

λt
min(X). ,erefore, (λmax(X) − λmax(Q))λmin

t(X)≤
λmax(A∗A)≤ (λmax(X) − λmin(Q))λmax

t(X). □

Theorem 6. If A is normal, t � 2m and A, Q, t satisfy
(t‖A‖2at− 1/‖Q‖2t)< 1, then equation (1) has positive operator
solution, where m is the positive integer and
a � ‖Q + A∗Q− tA‖.

Proof. Consider the sequence of positive operators Xn 
+∞
n�0,

X0 � Q, Xk+1 � Q + A
∗
X

− t

k
A, k � 0, 1, 2, . . . . (11)

According to the iteration sequence (11), Xi is in the
C∗− algebra generated by A and Q. Because A is normal, in
accordance with Proposition 1, for any n � 0, 1, 2, . . ., we
have AXn � XnA, Xn+1Xn � XnXn+1. Since X1 � Q+

A∗X− t
0 A≥Q � 0

Xand X1
− t ≤X− t

0 , it is easy to see
X2 � Q + A∗X− t

1 A≤Q + A∗X− t
0 A�1

X; this implies Q � X0 ≤
X2 ≤ 1X � Q + A∗Qt

− A. Successive analogy: we can prove

Q � X0 ≤X2 ≤X4 ≤ . . . ≤X5 ≤X3 ≤X1 � Q + A
∗
Q

− t
A,

(12)

therefore the subsequence X2n 
+∞
n�0 and X2n+1 

+∞
n�0 both

converge to positive operators. At the same time, for all
nonnegative integers i, we have Q≤Xi ≤Q + A∗Qt

− A.
‖Q‖≤ ‖X‖i ≤ ‖Q + A∗Qt

− A‖. Denote ‖Q + A∗Qt
− A‖ � a,

then

X2k+1 − X2k

����
���� � A

∗
X

− t
2kA − A

∗
X

− t
2k− 1A

����
����≤ ‖A‖

2
X

− t
2k X

t
2k− 1 − X

t
2k X

− t
2k− 1

�����

�����≤ ‖A‖
2
‖Q‖

− 2t
X

t
2k− 1 − X

t
2k

����
����, (13)

X
t
2k− 1 − X

t
2k

����
���� � X

(t/2)
2k− 1 X

(t/2)
2k− 1 − X

(t/2)
2k  + X

(t/2)
2k− 1 − X

(t/2)
2k X

(t/2)
2k

�����

�����

≤ X
(t/2)
2k− 1 − X

(t/2)
2k

�����

����� X
(t/2)
2k− 1

�����

����� + X
(t/2)
2k

�����

����� ≤ 2a
(t/2)

X
(t/2)
2k− 1 − X

(t/2)
2k

�����

�����.
(14)

In the same way, we have

X
(t/2)
2k− 1 − X

(t/2)
2k

�����

�����≤ 2a
(t/4)

X
(t/4)
2k− 1 − X

(t/4)
2k

�����

�����, . . . (15)

Successive analogy:

X
t
2k− 1 − X

t
2k

����
����≤ 2a

(t/2)
  2a

(t/4)
  · · · 2a

t/2m( )
  X

t/2m( )
2k− 1 − X

t/2m( )
2k

�����

����� � 2m
a

t− 1
X2k− 1 − X2k

����
����. (16)

,erefore, ‖X2k+1 − X2k‖≤ tat− 1‖A‖2‖Q‖− 2t‖X1
2k− − Xk

2‖.
Combined with the condition (t‖A‖2at− 1/‖Q‖2t)< 1, we can
know that subsequence X2n 

+∞
n�0 and X2n+1 

+∞
n�0 converge to

the same positive operator, which is the positive operator
solution to equation (1). □
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