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Graph invariants provide an amazing tool to analyze the abstract structures of networks. +e interaction and interconnection
between devices, sensors, and service providers have opened the door for an eruption of mobile over the web applications.
Structure of web sites containing number of pages can be represented using graph, where web pages are considered to be the
vertices, and an edge is a link between two pages. Figuring resolving partition of the graph is an intriguing inquest in graph theory
as it has many applications such as sensor design, compound classification in chemistry, robotic navigation, and Internet network.
+e partition dimension is a graph parameter akin to the concept of metric dimension, and fault-tolerant partition dimension is an
advancement in the line of research of partition dimension of the graph. In this paper, we compute fault-tolerant partition
dimension of alternate triangular cycle, mirror graph, and tortoise graphs.

1. Introduction and Basic Terminologies

Graph theory is an intense region of arithmetic that has
capacious variety of implementations in numerous regions of
science, such as chemistry, biology, software engineering, and
electrical and hardware engineering. Graphing is a powerful
tool for representing and understanding objects and their
relationships. Currently, online social networks are consid-
ered as an essential element for interpersonal relationships
where people and smart objects are connected together in
smart environments. +eoretical principles of graph theory
are applied to practical fields, by determining graph invariants
such as vertices, edges, diameter, and degree and mapping
them to real-time problems. +ese invariants are the sup-
porting tools between science and engineering or computa-
tional techniques in the fields of chemical, electrical,
computer, and telecommunication engineering. One concept
that pervades all the graph theory is that of distance and is
used in isomorphism testing, graph operations, maximal and
minimal problems on connectivity, and diameter. Metric
dimension is one of the distance related parameter in graphs
that has attracted the attention of several researchers. +e
generalized version of metric dimension of the graph is
unique and an important parameter of graph theory called

partition dimension of the graph. It is considered as an
applied topic of graph theory and has applications in
structure-activity issues in drug design, network discovery
and verification [5], pattern recognition and image processing
[16], and modelling of chemical substances [14].

In 2000, the concept of partition dimension of graph was
initiated by Chartrand et al. as an extension of metric di-
mension of the graph [6]. LetΩ be a connected graph of order
n with vertex set V(Ω) and edge set E(Ω). If two vertices
w, z ∈ V(Ω), then the length of shortest path between w and
z in Ω is distance between these vertices and is denoted by
d(w, z). +e distance between a vertex z and J⊆V(Ω) is
defined as min d(z, y)|y ∈ J  and is denoted by d(z, J). For a
vertex z ∈ V(Ω), N(z) will denote the open neighbourhood
of z in Ω, i.e., N(z) � q ∈ V(Ω): q is adjacent to z}, and
closed neighbourhood of z will be denoted by
N[z] � N(z)∪ z{ } [18]. Let μ � z1, z2, . . . , zp  be an or-
dered subset of vertex set of Ω. +e representation of z with
respect to μ is p tuple (d(z, z1), d(z, z2), . . . , d(z, zp)) and is
denoted by r(z|μ). +e subset μ is called a resolving set ofΩ if
distinct vertices of Ω have distinct representations with re-
spect to μ. +e metric dimension of Ω is defined as
min |μ|: μ is resolving set of Ω  and is denoted by β(Ω). Ali
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et al. discussed that path-related graphs have constant metric
dimension [1]. Zuo et al. computed constant metric di-
mension of some generalized convex polytopes [27]. Rehman
et al. computed the metric dimension of arithmetic graph of a
composite number [20]. In 2021, metric dimension of
windmill graph was computed by Singh et al. [24].

In 2008, Hernando et al. initiated the concept of fault-
tolerant metric dimension of graphs [10]. If, for every pair of
distinct vertices q, z ∈ V(Ω), there exists at least two vertices
α1, α2 ∈ μ such that d(q, δi)≠ d(z, δi) for i ∈ 1, 2{ }, then the
resolving set μ of V(Ω) is called fault tolerant. +e fault-
tolerant metric dimension of Ω is the minimum cardinality
of fault-tolerant resolving set μ and is denoted by β′(Ω).
Ahmad et al. computed fault-tolerant metric dimension of
P(n, 2)⊙K1 graph [3]. Hayat et al. discussed fault-tolerant
metric dimension of interconnection networks [9].

Let ξ � ξ1, ξ2, . . . , ξp  be a partition with p partition
classes of vertex set of connected graph Ω. +e representation
of vertex z with respect to partition set ξ is p vector
(d(z, ξ1), d(z, ξ2), . . . , d(z, ξp)) denoted by r(z|ξ). +e
partition ξ is called resolving partition ofΩ if representation of
all the vertices in Ω is different. We define the partition di-
mension of graph Ω as min |ξ|: ξ is resolving partition of Ω 

and is denoted by pd(Ω). Chartrand et al. [6] characterised the
graphs having pd(Ω) to be 2 or n. For various classes of
connected graphs, the partition dimension has been obtained.
For instance, Ayesha et al. computed the partition dimension of
trihexagonal α boron nanotube [23]. Mehreen et al. computed
the partition dimension of the fullerene graph [15]. Hussain
et al. provided the bounds on partition dimension of gener-
alized Mobius ladder [11]. Monica et al. studied the partition
dimension problem for certain classes of the series-parallel
graph [17]. Chu et al. calculated the sharp bounds for partition
dimension of convex polytopes [7]. Wei et al. studied the
partition dimension problem for cycle-related graphs [25].
Yero et al. studied the partition dimension of strong product
graphs and Cartesian product graphs [26].

Gary et al. and Khuller et al. mentioned the computa-
tional complexity of metric dimension of general graphs
[8, 13]. Computation of pd(Ω) is more complex as it is more
harder than computing metric dimension of a graph.

+e concept of fault-tolerant partition dimension of the
graph was initiated by Salman et al. [22]. Let ξ � ξ1,

ξ2, . . . , ξp} be a partition with p partition classes of the vertex
set of connected graph Ω. +e partition ξ is called fault-
tolerant resolving partition of Ω if for every pair of distinct
vertices y, z ∈ V(Ω), and r(y|ξ) and r(z|ξ) differ by at least
two places. +e fault-tolerant partition dimension of Ω is
defined as min |ξ|: ξ is fault−{ tolerant resolving partition of Ω}

and is denoted byF(Ω). Imran et al. characterised thatF(Ω)

of all the graphs of order n is n − 1 [12]. Kamran et al.
computed theF(Ω) of homogeneous caterpillar, tadpole, and
necklace graphs [2, 4]. Asim et al. computedF(Ω) of circulant
graphs with connection set 1, 2{ } in [19]. In this paper, we
extend this study by considering alternate triangular cycle,
mirror graph, and tortoise graphs and show that they have
constant fault-tolerant partition dimension.

Chartrand et al. revealed the following basic results on
pd(Ω).

Proposition 1 (see [6]). Let Ω be a graph; then,

(1) pd(Ω)≤ β(Ω) + 1
(2) pd(Ω) � 2 if Ω � Pn, where Pn is a path
(3) pd(Ω) � n ifΩ � Kn, where Kn is the complete graph

Salman et al. revealed the following basic results on
F(Ω).

Proposition 2 (see [21]). For n≥ 2,

(1) pd(Ω)≤F(Ω)

(2) F(Ω) � n if Ω � Kn or Ω � Kn − e

Proposition 3 (see [22]).

(1) For n≥ 2, F(Ω)≤ β′(Ω) + 1
(2) For n≥ 3, 3≤F(Ω)≤ n

+e remaining part of the paper is structured in the
following manner. In Section 2, we are concerned with the
computation of F(A(C2n)), F(Mr(Pn)), and F(Tn),
whereA(C2n),Mr(Pn), andTn are alternate triangular cycle,
mirror graph, and tortoise graphs, respectively. Finally, we
conclude the paper in Section 3, by giving future research
direction.

2. Fault-Tolerant Partition Dimension of
Alternate Triangular Cycle

In this section, we compute F(A(C2n)), where A(C2n) is
alternate triangular cycle. Vertices of A(C2n), for n≥ 3, are
divided into three sets, D � dϱ: 1≤ ϱ≤ n , E � eϱ: 1≤ ϱ≤

n}, and F � fϱ: 1≤ ϱ≤ n . An alternate triangular cycle
A(C2n) is obtained by replacing alternate edge of an even
cycle C2n by C3. +e set V(A(C2n)) � D∪E∪F and E(A

(C2n)) � dϱeϱ: 1≤ ϱ ≤ n}∪ eϱdϱ+1: 1≤ ϱ≤ n − 1 ∪ d1en 

∪ dϱfϱ: 1≤ ϱ≤ n ∪ eϱfϱ: 1≤ ϱ≤ n  are vertex set and
edge set of alternate triangular cycle, respectively. Order of
A(C2n) is 3n. +e alternate triangular cycle A(C12) is shown
in Figure 1.

We compute pd(A(C2n)) and (HTML translation failed)

in the following theorems.

Theorem 1. -e partition dimension of alternate triangular
cycle A(C2n), for n≥ 2, is 3.

Proof. Let ξ � ξ1, ξ2, ξ3  be a partition with 3 partition
classes of vertex set of A(C2n) for n≥ 2. For n � 2, we
consider ξ1 � d1 , ξ2 � e1 , and ξ3 � d2, e2, f1, f2 . It can
easily be observed that ξ is resolving partition.
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Case 1: for n � 3δ, δ ≥ 1, r(w|ξ), where
ξ1 � dϱ: 1≤ ϱ≤ n ∪ eϱ: 1≤ ϱ≤ n ∪ fϱ: 1≤ ϱ≤ δ ,
ξ2 � fϱ: δ + 1≤ ϱ ≤ 2δ , and ξ3 � fϱ: 2δ + 1≤ ϱ≤ n 

are shown as follows:

r dϱ|ξ  �

(0, 2δ − 2ϱ + 3, 2ϱ), 1≤ ϱ≤ δ,

(0, 1, n + δ − 2ϱ + 3), δ + 1≤ ϱ≤ 2δ,

(0, 2ϱ − n − δ, 1), 2δ + 1≤ ϱ≤ n,

⎧⎪⎪⎨

⎪⎪⎩

r eϱ|ξ  �

(0, 2δ − 2ϱ + 2, 2ϱ + 1), 1≤ ϱ≤ δ,

(0, 1, n + δ − 2ϱ + 2), δ + 1≤ ϱ≤ 2δ,

(0, 2ϱ − n − δ + 1, 1), 2δ + 1≤ ϱ≤ n,

⎧⎪⎪⎨

⎪⎪⎩

r fϱ|ξ  �

(0, 2δ − 2ϱ + 3, 2ϱ + 1), 1≤ ϱ≤ δ,

(1, 0, n + δ − 2ϱ + 3), δ + 1≤ ϱ≤ 2δ,

(1, 2ϱ − n − δ + 1, 0), 2δ + 1≤ ϱ≤ n.

⎧⎪⎪⎨

⎪⎪⎩

(1)

Case 2: for n � 3δ + 1, δ ≥ 1, r(w|ξ), where ξ1 �

dϱ: 1≤ ϱ≤ n ∪ eϱ: 1≤ ϱ≤ n ∪ fϱ: 1≤ ϱ≤ δ + 1 ,
ξ2 � fϱ: δ + 2≤ ϱ ≤ 2δ + 1 , and ξ3 � fϱ: 2δ + 2≤ ϱ

≤ n} are shown as follows:

r dϱ|ξ  �

(0, 2δ + 2, 2), ϱ � 1,

(0, 2δ − 2ϱ + 5, 2ϱ), 2≤ ϱ≤ δ + 1,

(0, 1, n + δ − 2ϱ + 4), δ + 2≤ ϱ≤ 2δ + 1,

(0, 2ϱ − n − δ − 1, 1), 2δ + 2≤ ϱ≤ n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r eϱ|ξ  �

(0, 2δ − 2ϱ + 4, 2ϱ + 1), 1≤ ϱ≤ δ,

(0, 2, 2δ + 2), ϱ � δ + 1,

(0, 1, n + δ − 2ϱ + 3), δ + 2≤ ϱ≤ 2δ + 1,

(0, 2ϱ − n − δ, 1), 2δ + 2≤ ϱ≤ n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r fϱ|ξ  �

(0, 2δ − 2ϱ + 5, 2ϱ + 1), 1≤ ϱ≤ δ + 1,

(1, 0, n + δ − 2ϱ + 4), δ + 2≤ ϱ≤ 2δ + 1,

(1, 2ϱ − n − δ, 0), 2δ + 2≤ ϱ≤ n.

⎧⎪⎪⎨

⎪⎪⎩

(2)

Case 3: for n � 3δ + 2, δ ≥ 1, r(w|ξ), where ξ1 �

dϱ: 1≤ ϱ≤ n ∪ eϱ: 1≤ ϱ≤ n ∪ fϱ: 1≤ ϱ≤ δ + 1 ,

ξ2 � fϱ: δ + 2≤ ϱ≤ 2δ + 2 , and ξ3 � fϱ: 2δ + 3 ≤ ϱ
≤ n} are shown as follows:

r dϱ|ξ  �

(0, 2δ + 2, 2) ϱ � 1,

(0, 2δ − 2ϱ + 5, 2ϱ) 2≤ ϱ ≤ δ + 1,

(0, 1, n + δ − 2ϱ + 5) δ + 2≤ ϱ ≤ 2δ + 2,

(0, 2ϱ − n − δ − 2, 1) 2δ + 3≤ ϱ≤ n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r eϱ|ξ  �

(0, 2δ − 2ϱ + 4, 2ϱ + 1) 1≤ ϱ≤ δ + 1,

(0, 1, n + δ − 2ϱ + 4) δ + 2≤ ϱ ≤ 2δ + 2,

(0, 2ϱ − n − δ − 1, 1) 2δ + 3≤ ϱ≤ n,

⎧⎪⎪⎨

⎪⎪⎩

r fϱ|ξ  �

(0, 2δ − 2ϱ + 5, 2ϱ + 1), 1≤ ϱ≤ δ + 1,

(1, 0, n + δ − 2ϱ + 5), δ + 2≤ ϱ≤ 2δ + 2,

(1, 2ϱ − n − δ − 1, 0), 2δ + 3≤ ϱ≤ n.

⎧⎪⎪⎨

⎪⎪⎩

(3)

It is obvious from the above distinct representations that
ξ is resolving partition of A(C2n); therefore, pd(A(C2n))≤ 3.
It follows from Proposition 1(b) that pd(A(C2n))≥ 3. +is
completes the proof. □

Theorem 2. -e fault-tolerant partition dimension of al-
ternate triangular cycle A(C2n), for n≥ 2, is 4.

Proof. In order to prove thatF(A(C2n)) � 4, first, we show
that F(A(C2n))≤ 4. In this regard, consider
ξ � ξ1, ξ2, ξ3, ξ4  be a partition with 4 partition classes of
vertex set of A(C2n), for n≥ 2. For n � 2, consider ξ1 � d1 ,
ξ2 � e1, d2 , ξ3 � e2 , and ξ4 � f1, f2 . It is easy to ob-
serve that ξ is fault-tolerant resolving partition.

(1) Case 1: for n � 3δ, δ ≥ 1, r(w|ξ), where
ξ1 � dϱ: 1≤ ϱ≤ n ∪ eϱ: 1≤ ϱ≤ n , ξ2 � fϱ: 1≤

ϱ ≤ δ}, ξ3 � fϱ: δ + 1≤ ϱ≤ 2δ , and ξ4 � fϱ: 2δ +

1≤ ϱ≤ n} are shown as follows:

d6

e5

e4

d5

d4
e3

d3

d2

e1
d1e6

e2

f2

f1

f5

f4

f3

f6

Figure 1: Alternate triangular cycle A(C12).
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r dϱ|ξ  �

(0, 1, 2δ − 2ϱ + 3, 2ϱ), 1≤ ϱ ≤ δ,

(0, 2ϱ − n + δ, 1, n + δ − 2ϱ + 3), δ + 1≤ ϱ ≤ 2δ,

(0, 2n − 2ϱ + 3, 2ϱ − n − δ, 1), 2δ + 1≤ ϱ≤ n,

⎧⎪⎪⎨

⎪⎪⎩

r eϱ|ξ  �

(0, 1, 2δ − 2ϱ + 2, 2ϱ + 1), 1≤ ϱ≤ δ,

(0, 2ϱ − n + δ + 1, 1, n + δ − 2ϱ + 2), δ + 1≤ ϱ≤ 2δ,

(0, 2n − 2ϱ + 2, 2ϱ − n − δ + 1, 1), 2δ + 1≤ ϱ≤ n,

⎧⎪⎪⎨

⎪⎪⎩

r fϱ|ξ  �

(1, 0, 2δ − 2ϱ + 3, 2ϱ + 1), 1≤ ϱ≤ δ,

(1, 2ϱ − n + δ + 1, 0, n + δ − 2ϱ + 3), δ + 1≤ ϱ≤ 2δ,

(1, 2n − 2ϱ + 3, 2ϱ − n − δ + 1, 0), 2δ + 1≤ ϱ≤ n.

⎧⎪⎪⎨

⎪⎪⎩

(4)

(2) Case 2: for n � 3δ + 1, δ ≥ 1, r(w|ξ), where
ξ1 � dϱ: 1≤ ϱ≤ n ∪ eϱ: 1≤ ϱ ≤ n − 1 , ξ2 � en ∪

fϱ: 1≤ ϱ≤ δ , ξ3 � fϱ: δ + 1≤ ϱ ≤ 2δ , and
ξ4 � fϱ: 2δ + 1≤ ϱ≤ n  are shown as follows:

r dϱ|ξ  �

(0, 1, 2δ − 2ϱ + 3, 2ϱ), 1≤ ϱ≤ δ,

(0, 2ϱ − n + δ + 1, 1, n + δ − 2ϱ + 2), δ + 1≤ ϱ≤ 2δ,

(0, 2n − 2ϱ + 1, 2ϱ − n − δ + 1, 1), 2δ + 1≤ ϱ ≤ n,

⎧⎪⎪⎨

⎪⎪⎩

r eϱ|ξ  �

(0, 1, 2δ − 2ϱ + 2, 2ϱ + 1), 1≤ ϱ≤ δ,

(0, 2ϱ − n + δ + 2, 1, n + δ − 2ϱ + 1), δ + 1≤ ϱ≤ 2δ,

(0, 2n − 2ϱ, 2ϱ − n − δ + 1, 1), 2δ + 1≤ ϱ ≤ n − 1,

(1, 0, 2ϱ + 2, 1), ϱ � n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r fϱ|ξ  �

(1, 0, 2δ − 2ϱ + 3, 2ϱ + 1), 1≤ ϱ≤ δ,

(1, 2ϱ − n + δ + 2, 0, n + δ − 2ϱ + 2), δ + 1≤ ϱ≤ 2δ,

(1, 2n − 2ϱ + 1, 2ϱ − n − δ + 2, 0), 2δ + 1≤ ϱ ≤ n.

⎧⎪⎪⎨

⎪⎪⎩

(5)

(3) Case 3: for n � 3δ + 2, δ ≥ 1, r(w|ξ), where
ξ1 � dϱ: 1≤ ϱ≤ n ∪ eϱ: 1≤ ϱ ≤ n ∪ f1 , ξ2 �

fϱ: 2≤ ϱ≤ δ + 1 , ξ3 � fϱ: δ + 2≤ ϱ ≤ 2δ + 2 , and
ξ4 � fϱ: 2δ + 3≤ ϱ≤ n  are shown as follows:

r dϱ|ξ  �

(0, 3, 2δ + 2, 2), ϱ � 1,

(0, 1, 2δ − 2ϱ + 5, 2ϱ), 2≤ ϱ≤ δ + 1,

(0, 2ϱ − n + δ, 1, n + δ − 2ϱ + 5), δ + 2≤ ϱ≤ 2δ + 2,

(0, 2n − 2ϱ + 5, 2ϱ − n − δ − 2, 1), 2δ + 3≤ ϱ≤ n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r eϱ|ξ  �

(0, 2, 2δ + 2, 3), ϱ � 1,

(0, 1, 2δ − 2ϱ + 4, 2ϱ + 1), 2≤ ϱ ≤ δ + 1,

(0, 2ϱ − n + δ + 1, 1, n + δ − 2ϱ + 4), δ + 2≤ ϱ ≤ 2δ + 2,

(0, 2n − 2ϱ + 4, 2ϱ − n − δ − 1, 1), 2δ + 3≤ ϱ≤ n,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r fϱ|ξ  �

(0, 3, 2δ + 3, 3), ϱ � 1,

(1, 0, 2δ − 2ϱ + 5, 2ϱ + 1), 2≤ ϱ ≤ δ + 1,

(1, 2ϱ − n + δ + 1, 0, n + δ − 2ϱ + 5), δ + 2≤ ϱ ≤ 2δ + 2,

(1, 2n − 2ϱ + 5, 2ϱ − n − δ − 1, 0), 2δ + 3≤ ϱ≤ n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)
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It is obvious from the above distinct representations that
ξ is fault-tolerant resolving partition of A(C2n), so
F(A(C2n))≤ 4.

Now, we prove that F(A(C2n))≥ 4. For this, we show
that F(A(C2n))≠ 3. For a contradiction, suppose
ξ � ξ1, ξ2, ξ3  be a fault-tolerant partition basis of A(C2n).
+ere will be at least one vertex of degree 3 in one of the
partition set ξ1, ξ2, or ξ3. Without loss of generality, we
assume that dϱ is a vertex of degree 3 that belongs to ξ1, and
N(dϱ) � eϱ, eϱ+j, fϱ . Suppose that |ξ1| � 1, and
N(dϱ)⊆ξ2 ∪ ξ3, |N(dϱ)∩ ξ2|≥ 2, or |N(dϱ)∩ ξ3|≥ 2. With-
out loss of generality, we assume that, at least two vertices,
s, t ∈ N(dϱ)∩ ξ2. As r(s|ξ) � (1, 0, k1) and r(t|ξ) � (1, 0, k2)

are identical at two places, hence, it is a contradiction.
We consider the following cases when |ξ1|≥ 2 and

dϱ ∈ ξ1.

(1) Case 1: if N(dϱ)∩ ξ1 � eϱ, eϱ+j, fϱ , then
r(dϱ|ξ) � (0, b0, c0), r(eϱ|ξ) � (0, b1, c1), r(eϱ+j|ξ) �

(0, b2, c2), and r(fϱ|ξ) � (0, b3, c3). As b0 − 1≤ b1,

b2, b3 ≤ b0 + 1, so using Pigeonhole principle, there
will be similarity in the representation of two ver-
tices at two places; hence, it is a contradiction.

(2) Case 2: if two neighbours of dϱ ∈ ξ1 and one
neighbour of dϱ belongs to ξ2, then following cases
will arise:

(1) Case 2(a): if N(dϱ)∩ ξ1 � eϱ, eϱ+j  and one vertex
fϱ ∈ ξ2, then r(dϱ|ξ) � (0, 1, c0) and r(eϱ|ξ) �

(0, 1, c1). As representation of two vertices has two
identical coordinates, hence, it is a contradiction.

(2) Case 2(b): if N(dϱ)∩ ξ1 � eϱ, fϱ  and one vertex
eϱ+j ∈ ξ2, then, r(dϱ|ξ) � (0, 1, c0),
r(eϱ|ξ) � (0, b1, c1), and r(fϱ|ξ) � (0, 2, c2). Since
1≤ b1 ≤ 2, so representation of two vertices will have
two identical coordinates, hence, it is a
contradiction.

(3) Case 2(c): if N(dϱ)∩ ξ1 � eϱ+j, fϱ  and one vertex
eϱ ∈ ξ2, then r(dϱ|ξ) � (0, 1, c3),
r(eϱ+j|ξ) � (0, b2, c4), and r(fϱ|ξ) � (0, 2, c5). Since
1≤ b2 ≤ 2, so representation of two vertices have two
identical coordinates; hence, it is a contradiction.

(3) Case 3: if N(dϱ)∩ ξ1 � eϱ  and two vertices
eϱ+j, fϱ ∈ ξ2, then, r(dϱ|ξ) � (0, 1, c0),
r(eϱ|ξ) � (0, 1, c1), r(eϱ+j|ξ) � (1, 0, c2), and
r(fϱ|ξ) � (1, 0, c3). Since representation of two
vertices has two identical coordinates, thus, it is a
contradiction.

(4) Case 4: when each of ξ1, ξ2, and ξ3 contains one
neighbour of dϱ, then we have following cases:

(1) Case 4(a): if N(dϱ)∩ ξ1 � eϱ , eϱ+j ∈ ξ2, and
fϱ ∈ ξ3, then r(dϱ|ξ) � (0, 1, 1) and
r(eϱ|ξ) � (0, c1, 1), which leads to a contradiction.

(2) Case 4(b): if N(dϱ)∩ ξ1 � eϱ+j , eϱ ∈ ξ2 and
fϱ ∈ ξ3, then r(dϱ|ξ) � (0, 1, 1) and
r(eϱ+j|ξ) � (0, 2, 2). Since
N(eϱ+j) � dϱ, dϱ+j, fϱ+j , so let dϱ+j, fϱ+j ∈ ξ1.

Now, r(fϱ+j|ξ) � (0, a1, b1), where 2≤ a1, b1 ≤ 3,
and r(dϱ+j|ξ) � (0, a2, b2), where 1≤ a2 and b2 ≤ 3. It
is obvious that representation of two vertices is
identical at two places, so a contradiction.

(5) Case 5: if N(dϱ)∩ ξ1 � ∅, at least two vertices from
N(dϱ) belong to ξ2. Without loss of generality, we
suppose that eϱ, eϱ+j ∈ ξ2; then, r(dϱ|ξ) � (0, 1, c0),
r(eϱ|ξ) � (1, 0, c1), and r(eϱ+j|ξ) � (1, 0, c2). It is
again a contradiction.

+is discussion concludes the proof; hence,
F(A(C2n))≥ 4. □

Example 1. Consider the alternate triangular cycle A(C12), as
shown in Figure 1. If ξ � ξ1, ξ2, ξ3, ξ4 , where ξ1 � dϱ: 1≤

ϱ ≤ 6}∪ eϱ: 1≤ ϱ≤ 6 , ξ2 � f1, f2 , ξ3 � f3, f4 , and ξ4 �

f5, f6  is a partition ofV(A(C12)), then the representations of
vertices of A(C12) are as follows: r(d1|ξ) �

(0, 1, 5, 2), r(d2|ξ) � (0, 1, 3, 4), r(d3|ξ) � (0, 2, 1, 5), r(d4|ξ)

� (0, 4, 1, 3), r(d5|ξ) � (0, 5, 2, 1), r(d6|ξ) � (0, 3, 4, 1),
r(e1|ξ) � (0, 1, 4, 3), r(e2|ξ) � (0, 1, 2, 5), r(e3|ξ) �

(0, 3, 1, 4), r(e4|ξ) � (0, 5, 1, 2), r(e5|ξ) � (0, 4, 3, 1), r(e6|ξ)

� (0, 2, 5, 1), r(f1|ξ) � (1, 0, 5, 3), r(f2|ξ) � (1, 0, 3, 5),
r(f3|ξ) � (1, 3, 0, 5), r(f4|ξ) � (1, 5, 0, 3),
r(f5|ξ) � (1, 5, 3, 0), and r(f6|ξ) � (1, 3, 5, 0).

It can be seen from the above representations that ξ is a
fault-tolerant resolving partition of A(C12).

2.1. Fault-Tolerant Partition Dimension of Mirror Graph.
Mirror graph Mr(Pn) is defined as the disjoint union of
graph Ω and its copy Ω

�

with additional edges joining each
vertex of Ω to its corresponding vertex in Ω

�

. +e set
V(Mr(Pn)) � w1, w2, . . . , w2n  and E(Mr(Pn)) �

wlwl+1: 1≤ l≤ n − 1}∪ wn+lwn+l+1: 1≤ l≤ n − 1 ∪ wl

wn+l: 1 ≤ l≤ n} are vertex set and edge set of mirror graph,
respectively. Mirror graph Mr(P4) is shown in Figure 2.

Yero et al. computed the partition dimension of the
mirror graph in the following lemma.

Lemma 1 (see [26]). Let G be the mirror graph Mr(Pn);
then, pd(Mr(Pn)) � 3.

+e following theorem allows us to compute
F(Mr(Pn)).

Theorem 3. For every n≥ 2,

F Mr Pn( (  �
3, if n is 2,

4, otherwise.
 (7)

Proof. Let ξ � ξ1, ξ2, ξ3  be a partition set of vertices of
Mr(Pn) for n � 2. Considering ξ1 � w1, w2 , ξ2 � w3 , and
ξ3 � w4 , it is easy to observe that ξ is fault-tolerant re-
solving partition of Mr(Pn).

Now, for n≥ 3, consider ξ � ξ1, ξ2, ξ3, ξ4  be a partition
with 4 partition classes of vertices of Mr(Pn). r(w|ξ),

Journal of Mathematics 5



considering ξ1 � wj: 1≤ j≤ n − 1 , ξ2 � wn , ξ3 � wj: n +

1≤ j≤ 2n − 1}, and ξ4 � w2n , are as follows:

r wϱ|ξ  �

(0, n − ϱ, 1, n − ϱ + 1) for 1≤ ϱ≤ n − 1,

(1, 0, 2, 1) for ϱ � n,

(1, 0, 2n − ϱ + 1, 2n − ϱ) for n + 1≤ ϱ≤ 2n − 1,

(2, 1, 1, 0) for ϱ � 2n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

As all the above representations are different, so ξ is
fault-tolerant resolving partition of Mr(Pn); therefore,
F(Mr(Pn))≤ 4.

Now, we prove that F(Mr(Pn))≥ 4; for this, we show
thatF(Mr(Pn))≠ 3. For contradiction, let ξ � ξ1, ξ2, ξ3  be
a fault-tolerant partition basis of Mr(Pn). One of the par-
tition sets contains at least one vertex of degree 3. Without
loss of generality, we assume that wτ is a vertex of degree 3
that belongs to ξ1, and N(wτ) � wp, wq, wr . Suppose that
|ξ1| � 1 and N(wτ)⊆ξ2 ∪ ξ3, |N(wτ)∩ ξ2|≥ 2, or
|N(wτ)∩ ξ3|≥ 2. Without loss of generality, we assume that
at least two vertices e1, e2 ∈ N(wτ)∩ ξ2. As
r(e1|ξ) � (1, 0, k1) and r(e2|ξ) � (1, 0, k2) have two identical
coordinates, so it is a contradiction. Now, we discuss the
following cases when |ξ1|≥ 2 and wτ ∈ ξ1.

(1) Case 1: if N(wτ)∩ ξ1 � wp, wq, wr , then
r(wτ|ξ) � (0, b0, c0), r(wp|ξ) � (0, b1, c1),
r(wq|ξ) � (0, b2, c2), and r(wr|ξ) � (0, b3, c3). As
b0 − 1≤ b1, b2, b3 ≤ b0 + 1, so using Pigeonhole
principle, representation of two vertices have two
identical coordinates; therefore, it is a contradiction.

(2) Case 2: if N(wτ)∩ ξ1 � wp, wq  and one vertex
wr ∈ ξ2, then r(wτ|ξ) � (0, 1, c0),
r(wp|ξ) � (0, b1, c1), r(wq|ξ) � (0, b2, c2), and
r(wr|ξ) � (1, 0, c3). Since 1≤ b1, b2 ≤ 2, so there will
be similarity in the representation of two vertices at
two places from ξ1 and ξ2; hence, it is a
contradiction.

(3) Case 3: if N(wτ)∩ ξ1 � wp  and two vertices
wq, wr ∈ ξ2, then r(wτ|ξ) � (0, 1, c0),
r(wp|ξ) � (0, b1, c1), r(wq|ξ) � (1, 0, c2), and
r(wr|ξ) � (1, 0, c3). Since r(wq|ξ) and r(wr|ξ) have
two identical coordinates, therefore, it is a
contradiction.

(4) Case 4: if N(wτ)∩ ξ1 � wp , wq ∈ ξ2, and wr ∈ ξ3,
then N(wp) � wτ , s1 , N(wq) � wτ , s1, s2 , and

N(wr) � wτ , s2, s3 . Let s1 ∈ ξ1, s2 ∈ ξ2 and s3 ∈ ξ3,
then r(wτ|ξ) � (0, 1, 1) and r(s1|ξ) � (0, 1, c1),
which leads to a contradiction. Now, let s1 ∈ ξ1,
s3 ∈ ξ2, and s2 ∈ ξ3; then, r(wτ|ξ) � (0, 1, 1) and
r(s1|ξ) � (0, 1, c1), which leads to a contradiction.

(5) Case 5: if N(wτ)∩ ξ1 � ∅ and at least two vertices
from N(wτ) belong to ξ2, without loss of generality,
we suppose that wp, wq ∈ ξ2; then,
r(wτ|ξ) � (0, 1, c0), r(wp|ξ) � (1, 0, c1), and
r(wq|ξ) � (1, 0, c2). Again r(wp|ξ) and r(wq|ξ) have
two identical coordinates, a contradiction.

+e above discussions show thatF(Mr(Pn))≥ 4, which
completes the proof. □

Example 2. Consider the mirror graph Mr(P4), as shown in
Figure 2. If ξ � ξ1, ξ2, ξ3, ξ4 , where ξ1 � w1, w2, w3 ,
ξ2 � w4 , ξ3 � w5, w6, w7 , and ξ4 � w8  is a partition of
V(Mr(P4)), then the representations of vertices of Mr(P4)

are as follows: r(w1|ξ) � (0, 3, 1, 4), r(w2|ξ) � (0, 2, 1, 3),
r(w3|ξ) � (0, 1, 1, 2), r(w4|ξ) � (1, 0, 2, 1), r(w5|ξ) �

(1, 4, 0, 3), r(w6|ξ) � (1, 3, 0, 2), r(w7|ξ) � (1, 2, 0, 1), and
r(w8|ξ) � (2, 1, 1, 0). It is obvious from the above repre-
sentations that ξ is a fault-tolerant resolving partition of
Mr(P4).

2.2. Fault-Tolerant Partition Dimension of Tortoise Graph.
+e tortoise graph, denoted by Tn, has vertex set V(Tn) �

w1, w2, . . . , wn  and edge set E(Tn) � wjwj+1:

1≤ j≤ n − 1}∪ wjwn−j+1: 1≤ j≤ ⌊n/2⌋ . Tortoise graph T7
is shown in Figure 3.

+e following theorems allow us to compute pd(Tn) and
F(Tn).

Theorem 4. For every n≥ 3, where n � 2δ + 1 and δ ≥ 1,
pd(Tn) � 3.

Proof. Let ξ � ξ1, ξ2, ξ3  be a partition set of V(Tn) for
n≥ 3. r(w|ξ) with respect to ξ1 � wi: 1≤ i≤ n − 1/2 ,
ξ2 � wn+1/2 , and ξ3 � wi: n + 3/2≤ i≤ n  are as follows:

r wϱ|ξ  �

(0, δ − ϱ + 1, 1), for 1≤ ϱ≤ δ,

(1, 0, 1), for ϱ � δ + 1,

(1, 0, ϱ − δ − 1), for δ + 2≤ ϱ≤ n.

⎧⎪⎪⎨

⎪⎪⎩
(9)

It is obvious from the above distinct representations that
ξ is resolving partition ofTn; therefore, pd(Tn)≤ 3. It follows
by Proposition 1(b) that pd(Tn)≥ 3. Hence,
pd(Tn) � 3. □

Theorem 5. For every n≥ 3, where n � 2δ + 1 and δ ≥ 1,

F Tn(  �
3, if n is 3,

4, otherwise.
 (10)

w1 w2 w3 w4 w6 w7 w8w5

Figure 2: Mirror graph Mr(P4).
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Proof. Let ξ � ξ1, ξ2, ξ3  be a partition set of V(Tn) for
n � 3. Considering ξ1 � w1 , ξ2 � w2 , and ξ3 � w3 , it is
easy to see that ξ is fault-tolerant resolving partition of Tn.
Now, consider ξ � ξ1, ξ2, ξ3, ξ4  be a partition with 4 par-
tition classes of vertex set of Tn for n � 2δ + 1, where δ ≥ 2.
r(w|ξ) considering ξ1 � wi: 1≤ i≤ n − 1/2 , ξ2 � wi: n +

1/2≤ i≤ n − 2}, ξ3 � wn−1  and ξ4 � wn  are as follows:

r wϱ|ξ  �

(0, 2, 2, 1), for ϱ � 1, n � 5,

(0, 1, 1, 2), for ϱ � 2, n � 5,

(0, 3, 2, 1), for ϱ � 1, n≥ 7,

(0, 2, 1, 2), for ϱ � 2, n≥ 7,

(0, 1, ϱ − 1, ϱ), for 3≤ ϱ≤ δ,

(1, 0, n − ϱ − 1, n − ϱ), for δ + 1≤ ϱ ≤ n − 2,

(1, 1, 0, 1), for ϱ � n − 1,

(1, 2, 1, 0), for ϱ � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Distinct representations given above show that ξ is fault-
tolerant resolving partition of Tn; therefore, F(Tn)≤ 4.

Now, we prove that F(Tn)≥ 4. For this, we show that
F(Tn)≠ 3. For contradiction, suppose ξ � ξ1, ξ2, ξ3  be a
fault-tolerant partition basis of Tn. One of the partition sets
contains at least one vertex of degree 3. Without loss of
generality, we assume that wτ is a vertex of degree 3 that
belongs to ξ1, and N(wτ) � wp, wq, wr . Suppose that
|ξ1| � 1, and N(wτ)⊆ξ2 ∪ ξ3, |N(wτ)∩ ξ2|≥ 2, or
|N(wτ)∩ ξ3|≥ 2. Without loss of generality, we assume at
least two vertices f1, f2 ∈ N(wτ)∩ ξ2. As
r(|f1|ξ) � (1, 0, k1) and r(f2|ξ) � (1, 0, k2) has two iden-
tical coordinates, therefore, it is a contradiction. Now, we
consider the following cases when |ξ1|≥ 2 and wτ ∈ ξ1.

(1) Case 1: if N(wτ)∩ ξ1 � wp, wq, wr , then
r(wτ|ξ) � (0, b0, c0), r(|wp|ξ) � (0, b1, c1), r(wq|ξ)

� (0, b2, c2), and r(wr|ξ) � (0, b3, c3). As b0 − 1≤
b1, b2, b3 ≤ b0 + 1, so using Pigeonhole principle,
there will be similarity in the representation of two
vertices at two places, hence a contradiction.

(2) Case 2: if N(wτ)∩ ξ1 � wp, wq  and one vertex
wr ∈ ξ2, then r(wτ|ξ) � (0, 1, c0), r(wp|ξ) �

(0, b1, c1), r(wq|ξ) � (0, b2, c2), and r(wr|ξ) �

(1, 0, c3). Since 1≤ b1, b2 ≤ 2, so representation of

two vertices will have two identical coordinates,
hence a contradiction.

(3) Case 3: if N(wτ)∩ ξ1 � wp  and two vertices
wq, wr ∈ ξ2, then r(wτ|ξ) � (0, 1, c0), r(wp|ξ) �

(0, b1, c1), r(wq|ξ) � (1, 0, c2), and r(wr|ξ)

� (1, 0, c3). Since, representation of two vertices has
two identical coordinates, thus, it is a contradiction.

(4) Case 4: if N(wτ)∩ ξ1 � wp , wq ∈ ξ2 and wr ∈ ξ3.
(1) For n � 5, N(wp) � wτ , s1 , N(wq) � wτ , wr , and

N(wr) � wτ , wq, s1 . Let s1 ∈ ξ1; then
r(wτ|ξ) � (0, 1, 1), r(wp|ξ) � (0, 2, 2), and
r(s1|ξ) � (0, q1, 1), which leads to a contradiction.

(2) For n≥ 7, N(wp) � wτ , s1, s2 , N(wq) � wτ , s3 ,
and N(wr) � wτ , s2, s3 . Let, s1, s2 ∈ ξ1 and s3 ∈ ξ2;
then, r(wτ|ξ) � (0, 1, 1), r(wp|ξ) � (0, 2, 2),
r(s1|ξ) � (0, q1, g1), and r(s2|ξ) � (0, q2, 1), which
leads to a contradiction. Now, let s1, s2 ∈ ξ1 and
s3 ∈ ξ3; then, r(wτ|ξ) � (0, 1, 1), r(wp|ξ) � (0, 2, 2),
r(s1|ξ) � (0, q1, g1), and r(s2|ξ) � (0, q2, 1), which
leads to a contradiction.

(5) Case 5: if N(wτ)∩ ξ1 � ∅, ξ2 contains at least two
neighbours of wτ . Without loss of generality, we
suppose that wp, wq ∈ ξ3; then, r(wτ|ξ) � (0, c0, 1),
r(wp|ξ) � (1, c1, 0), and r(wq|ξ) � (1, c2, 0). Again
r(wp|ξ) and r(wq|ξ) have two identical coordinates;
hence, it is a contradiction.

+e above discussion follows that F(Tn)≥ 4. +us,
F(Tn) � 4. □

Example 3. Consider the tortoise graph T7, as shown in
Figure 3. If ξ � ξ1, ξ2, ξ3, ξ4 , where ξ1 � w1, w2, w3 ,
ξ2 � w4, w5 , ξ3 � w6 , and ξ4 � w7  is a partition of
V(T7), then r(w|ξ) are as follows: r(w1|ξ) � (0, 3, 2, 1),
r(w2|ξ) � (0, 2, 1, 2), r(w3|ξ) � (0, 1, 2, 3), r(w4|ξ) �

(1, 0, 2, 3), r(w5|ξ) � (1, 0, 1, 2), r(w6|ξ) � (1, 1, 0, 1), and
r(w7|ξ) � (1, 2, 1, 0). +e above distinct representations
verify that ξ is a fault-tolerant resolving partition of T7.

3. Conclusion

In this paper, authors conclude that pd(Ω) of alternate
triangular cycle and tortoise graph for n≥ 2 is 3. F(Ω) of
alternate triangular cycle, mirror graph, and tortoise graph
for n≥ 2 is between 3 and 4.+e obtained results led us to the
conclusion that the discussed cyclic networks have constant
partition and fault-tolerant partition dimension. pd(Ω) and
F(Ω) of these graphs are independent of the number of
vertices of the graph. Future research can focus on com-
puting the fault-tolerant partition dimension of alternate
square and alternate pentagonal cycle.

+e significance of the current work can be seen in
optimization related to resource management, routing
problem, and supply chain problem. +ese require to group
certain nodes in the network to optimally approach the

w2 w6w3 w5w1 w7w4

Figure 3: Tortoise graph T7.
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whole network. +e least number of grouping required in
such scenario can be realised as partition dimension
problem. Also, the least number of grouping required to
approach the whole network in case of inaccessibility of one
of the group relates to fault-tolerant partition dimension of
the graph.
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