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In this study, a new composite algorithm with the help of the finite difference and the modified cubic trigonometric B-spline
differential quadrature method is developed. The developed method was applied to two-dimensional coupled Burgers’ equation
with initial and Dirichlet boundary conditions for computational modeling. The established algorithm is better than the tra-
ditional differential quadrature algorithm proposed in literature due to more smoothness of cubic trigonometric B-spline
functions. In the development of the algorithm, the first step is semidiscretization in time with the forward finite difference
method. Furthermore, the obtained system is fully discretized by the modified cubic trigonometric B-spline differential
quadrature method. Finally, we obtain coupled Lyapunov systems of linear equations, which are analyzed by the MATLAB solver
for the system. Moreover, comparative study of these solutions with the numerical and exact solutions which are appeared in the
literature is also discussed. Finally, it is found that there is good suitability between exact solutions and numerical solutions
obtained by the developed composite algorithm. The technique can be extended for various multidimensional Burgers’ equations

after some modifications.

1. Introduction

In this paper, the authors considered the following di-
mensionless form of two-dimensional (2D) coupled Burgers’
equation:

—v 0w, 0u, om (1a)
o Yax Yoy e
av ov ov

—v oot sy (1b)

with initial conditions (ICs),

u(x, ¥,0) =y, (%), (x¥) € [af]x[y,0], (2a)

(x,y) € [a, B x [y, 6], (2b)

and Dirichlet boundary conditions (BCs),

v(x, ¥,0) =y, (x, y),

u(a, y,t) = hy (y,t),
u(Bsy:t) = hy (y:1), 3)
u(x,y,t) = h3 (x, 1),
u(x,0,t) = hy (x,t),

where V? = (0%/0x?) + (0°/0y*) is Laplace operator,
u(x, y,t) and v(x, y,t) are velocity components to be de-
termined. Also, h;,i=1,2,...,4 are known smooth func-
tions and Re = (p|7|L/y) is the Reynolds number with
density p, viscosity u, characteristic length L, and
W= [uv].

The nonlinear convection-diffusion model is simply
represented by Burgers’ equation [1]. This famous equation
describes the flow theory through a shockwave moving in
viscous liquid [2], phenomena of turbulence [3], and various
other kinds of phenomena in aerodynamics.

Due to its extensive scope of applicability, various nu-
merical schemes have been constructed to study its
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numerical solutions. Moreover, due to its application in
various fields of science and technology, researchers and
scientists are still interested in developing algorithms to find
their numerical and exact solutions. A great number of
works has been studied for finding approximate solutions of
Burgers’ equation, for example, cubic spline method [4],
finite element and difference methods [5-8], multilevel al-
ternating direction implicit schemes [9], and various explicit
and implicit methods [10, 11]. Furthermore, the de-
composition method [12], spectral method [13], Chebyshev
collocation method [14], and local discontinuous radial basis
function collocation method [15, 16] are investigated in
literature. Also, Haar wavelet quasilinearization approach
[17] and differential quadrature methods (DQMs) [18-23]
have been developed. In recent years, new meshless methods
[24-26] for various types of Burgers’ equations have been
developed.

In Lagrange interpolation-based DQMs [18-22],
Lagrange’s fundamentals are used to compute the weighting
coeflicients. In these cases, as the number of grid points
increases the weights become unstable. Herein, to reduce
this instability, the modified cubic trigonometric B-spline
functions are used to the weighting coefficients of DQMs.

In this article, a new numerical algorithm is developed
based on the finite difference and the modified cubic trig-
onometric B-spline (CTBS) DQMs for approximate solu-
tions of coupled two-dimensional Burgers’ equations’
weighting coeflicients (WCs) of DQM are calculated by
using the modified CTBS functions as test functions which
are different from the conventional technique of Lagrange
interpolation [27]. Some well-known test problems are
worked out to inspect the correctness and competence of the
planned approach. The techniques lead to correct results
with insignificant L, RMS and L, errors.

2. Differential Quadrature Method

Recently, DQMs have become popular for solving nonlinear
partial differential equations (PDEs) arising in nonlinear

[+ (%)

1 2
Bj(x) = ©0l? (ipa) [1 (x41)s (Xi03) + 5 (X7 (0130) ] +7(x)57 (x145)

53 (xi+4)’

L 0,

r () [ (%;)s (xi12) + 5 (xi03)7 (1) ] + S(xi+4)”2 (%i1)>
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TaBLE 1: Coefficients of CTBSs and their derivatives at knots x i

x Xj2 X1 X Xjr1 j+2
B J (x) 0 o o, o 0
B (x) 0 o 0 ay 0
B! (x) 0 o5 o o 0

phenomena. DQMs discretize the first and second de-
rivatives over 1D domain Q = [a, ] as follows:

N
u,(x;,t) = Z oci(jl)u(xj,t), i=1,2,...,N, (4)
=

N
I NG .
uxx(xi’t) = “ij u(xj,t), ] = 1,2,...,N, (5)
=1
where oc,-(}) and oci(jz) are unknown coefficients weighting the

first and second  derivatives, respectively, and
x;,i=1,2,...,N, are uniform grids as well as nonuniform
grids that exist in the domain. Bellman et al. [28] introduced
two approaches to calculate WCs. Furthermore, to modify
Bellman’s approaches for finding WCs, many efforts have
been carried out such as Lagrange interpolated cosine
tunctions, spline functions, Legendre polynomials, Lagrange
interpolation polynomials, and radial basis functions (see
[19, 29-35] and the references therein) to determine these
coeflicients. In this study, we determine WCs with the use of
CTBS functions after some modifications.

2.1. Cubic Trigonometric B-Spline Functions. In this section,
we mesh the solution domain a <x <8 into N subintervals
[x;, %], =0,1,..., N — 1 with the help of knots x; such
that & = x, <x,,..., <xy =f is a uniform partition with
step length a = x;,, —x; = (B-a)/N,i=0,1,...,N - 1.

Now, the piecewise CTBS basis functions 7B;(x) over
the uniform mesh are defined as follows [36, 37]:

x € [xi5 %),
x € [Xi %),
x € [x;X,1), (6)

x € [xiﬂ’ xi+2)’

otherwise,
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where

s(x;) = sin(xi - x), (7)

w= sin<g)sin (a)sin(%).

The basis over the region o <x <f is formed by the set
{B—l (x)7 BO (x)7 B BN (X), BN+1 (x)} (8)

Every CTBS covers four elements. Now, with the help of
Table 1, we have tabulated the values of B; (x) and its de-
rivatives as follows:

. sin’ (a/2)
' sin(a)sin (3a/2)’

2

0 =—
27 1+ 2cos(a)

-3
% = 4sin (3a2)’

3 (9)

% = 4sin (3a/2)’

B 3[1+ 3 cos(a)]
16 sin” (a/2)[2 cos(a/2) + cos(3a/2)]

B 3 cos’ (al2)
2 sinz(a/z)[l +2 cos(a)]

2.2. Modified Cubic Trigonometric B-Spline Functions. In this
work, we compute WCs of DQM with the help of modified
CTBS function defined in (6) as follows:

[ By (x) = By (x) +2B_; (x), j=0,
B, (x) = B, (x) - B, (x), ji=1
{ B;(x) = B;(x), j=23...,N-2,
By_1(x) =By i (x) =By, (%), j=N-1,
E’N(x) = By (x) + 2By, (%), j=N.
(10)

It is worth mentioning that the modified functions
{TEj (x)},j =0,1,...,N, are linearly independent. On the
solution domain [a, 3], these functions create a family of
basis functions.

2.3. Weighting Coefficients for Modified Cubic Trigonometric
B-Spline Differential Quadrature Method. Now, substitute
the modified functions {TBj (x)}, forj=0,1,...,N, into
equation (4). The matrix form of the equation is as follows:

3
( (1) _
Aw,’ = B,
(1)
Aw;"’ = B,
1 (11)
(1)
AwyZy = By,
(1)
| Awy’ = By
where A is (N + 1) x (N + 1) coefficient matrix:
[, + 20, « ]
0 o, o
A 0 o
A= o . (12)
A a 0
L ap o, + 20 |
The matrix wk [ockO ,(x,ﬁ ... ockN T fork=0,1,.
N, and B, at x;,fork =0,1,. N are as follows:
[ =20, [—oy ] [0 7 [0 7
2a, 0 0 0
0 oy 0 0
BOI 0 ,Bl— 0 |, ~~>BN—1: aBN_
: —ay 0
0 0 0 -2a,
L 0 ] L 0 ] L ooy | L 2a, |
(13)

Furthermore, with the help of Thomas algorithm WCs,

a'l are achieved as solutions of tridiagonal systems of

equation (11). Similarly, with the help of the above method,
it is easy to calculate second-order WCs ﬂl g

2.4. Two-Dimensional Modified Cubic Trigonometric B-Spline
Differential Quadrature Method. In order to apply this
method to 2D nonlinear problems, first of all, decompose the

domain Q = {(x, y): a; <x <P, <y<B,}(n/6) as Q! =
{(xi,yj),i =1,2,...,N;j= 1,2,...,M} by adopting step
length Ax = x; -x;; and Ay=y;-y,; in x and y di-

rection, respectively. This modified technique helps to es-
timate the 1** order partial derivatives of u(x, y,t) at a point
as follows:

z

i=12,...,N, (14)

a7 ) = D5 30 0)

M=

uy(x,-,yj,t) = ﬁ](.,?u(x,», Yot), j=12,...,M, (15)

k=1



where oc( is WCs for the 1* order derivatives w.r.t. x.
Slmﬂarly, B (k are coeflicients w.r.t. y.

In order to compute the 2D WCs, we can define the
functions {TB (y)} j=0,1,...,N, as in equation (10).
Furthermore, take the test functlons as T} (x, y) =
7B, (x)TB (). Now, with the help of the ax1oms of vector
space and substituting the value of T'; (x, y) into equations
(14) and (15), we have

Z(X B (xk j,i=1,2,._.,N,

M (16)
Bi(y:) =Y BB (3i), jri=12...,M.

k=1

ﬁ(f 1)
(r) 1) p(r-1) _
ﬁijr = 7”|:ﬁij ﬁiir v, -

1

M
Y BY, fori=j,
j=Lj#i

where (x " and ﬁ(r) are WCs for ™ order partial derivatives
w.rt. x and ¥, respectively.

3. Numerical Algorithm for Two-Dimensional
Coupled Burgers’ Equation

In this section, the numerical algorithm is developed in the
following sections.

Journal of Mathematics

Furthermore, applying the well-known algorithm
“Thomas algorithm” and proceeding with the same methods
as in the case of eciuatlon (11), the solutions of the systems
give the value of oc ) and /3(1 In 2D case, the WCs in higher-
order derivatives can be considered as follows:

(1)
.
ol = r[ajjnaﬁf” —’f} fori,j=1,2,...,N;i#j;r=2,3,...,N—1,
j

(17)

:|, fori,j=1,2,...,N;i#j;r=2,3,...,N—1,
J

3.1. Semidiscretization in Time. Applying forward difference
on time derivatives and weighted average on spatial de-
rivatives, we have

u(x, ") —u(x ") 1, . X - nl

" = e [HV u(x, " ) +(1+0)Vu(x,y, t")] - (uu,)" —(uuy) , n=0,1,..., K, (18a)
vyt vyt 1, ) ) 41 nil

o - [6V2v(x, 3, 67 ) + (1 + O)Vv (x, y,1")] = (vv,)" —(vvy) , n=0,1,...,K, (18D
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where u(x, y,t"™") = u(x, y,t + nAt), v(x, y, ") =v(x,
y,t +nAt), At step length in time direction, and 0<6<1.
The nonlinear term is linearized in the following manner:

(uux)nﬂ — unuZ,

+ (19a)
(vuy)n - v"ug',, ’
n+l n
(uvx)n+1 =u"y (19b)
()" =V,
with ICs
u(x3,t") =y, (%), (%) € [ap] x[y,0],  (20a)
v(x3,t") =y, (x,y),  (x,9) € [a,p] x[y,6],  (20b)

and prescribed BCs (3).
After simplification, equations (18a) and (18b) can be
written as follows:

Atf
n+l
Hij Re <kz

k=1

n+1 + Zﬁ n+1> <1 — At Zﬁlkl)uzj

A
Wl Z 2L gyzm - (1= Al )u™ + At (1 - OA’W" — AtV
Re y
(21a)
n+1 At 2 n+l n 2 n nn
Y — — VY ( - AtV )v +At(1 - 0)A™Y" - Atu”™V,
Re
(21b)

which is a system of second-order differential equations,
where u™!(x,y) = u(x, y,t"!) and equations (21a) and
(21Db) are a system of second-order differential equations.

3.2. Fully Discretization in Space. In this section, spatial
derivatives that occur in equations (2la) and (21b) are
discretized by modified CTBS DQM over the given domain.
After spatial discretization, equations (21a) and (21b) con-
vert into a system of linear equations for each n in the
following form:

N
n 2). n (2) (1)
>ui].+At(l—9)<kZoclk uk]+Z[3 > AtuUZﬁ Uy,
=1

(22a)

AtO
+1 +1 +1 1) (2) 1)
v?j _R_e<z o Z] +Zﬁ]k Vi >—< AtZoclk VZ]>V:’]»+A1‘(1 <Z(xlk vk1+2[3 "> Atvl]Z(x Vi

where u; = u" (x;, ;) and ocl.(kz) and f8 i(k2) are WCs of 2™ order
partial derivatives w.r.t. x and y.

3.3. Implementation of Dirichlet Boundary Conditions.
The Dirichlet BCs given in equation (3) as (&, y,t) = h; (¥,
), u(B, y,t) = hy (y,t), u(x,y,t) = hy(x,t), andu(x,6,t) =
hy (x,t) can be implemented directly as follows:

g At
1 Re Pt

ALl [ X
71+1
Vij _¥<Z

k=1

n+1 n+1 _
+Zﬁ]k Vik >_

N

= <1 —AtZ(x](,i)uZ >u1"] +At(1 —6)(
=1
M

(1 -AtZﬁ,,?vz])v;;mt(l —0)(

(2) n+l 2) n+l
Kji U Z;'*Zﬁ M):

(22b)

€[y,8l,j=12,..., M,
(23a)

upy = hy(xt),u;5 = by (x,1),  x; € [a,B),i=1,2,...,N.

(23b)

As a result of applying the BCs on systems (23a) and
(23b), the system can be written as follows:

ij> (243)

)

N

(2) (2) (1)
Z ik MZ]+Z/3 ”> Atul] Zﬁ zr;c’
2) (1)
Z Pk VkJ + Zﬁjk :;c> - Atuj; Z o Vi
k=1

(24b)

z



6
The system of equations (18a) and (18b) is a Lyapunov where
system of equations of the form
[A][U] +[U][B,] +[C,] =0, (25a)
[A,][U] +[U][B,] +[C;] =0, (25b)
- i
1
[Al] =
1
L LI (N_ayN-2)
r (2) (2) (2) (2) h
) ®3 % (N-2) % (N-1)
(2) (2) (2) (2)
o3 033 3 (N-2) &3 (N-1)
At6
Re ’
e N C R e
(N-2)2 ¥ (N-2)3 (N-2)(N-2) ¥(N-2)(N-1)
(2) 2) (2) (2)
LOAN-12 ¥(N-23 " FN-p(v-2) F-D (V-1 D (v-2)xv-2)
r (2) (2) h
2 23 ﬁz(M 2) ﬁZ(M 1)
(2) (2)
32 33 /53(M 2) :83(1\4 1)
(B,] - At6
TR
(2) (2)
ﬁ(M -2)2 ﬂ(M—2)3 : ﬁ(M 2)( B(M—Z)(M—l)
(2) 2)
ﬂ(M 1)2 /3(M-2)3 : ﬁ(M 1)(M-2) ﬁ(M—l)(M—l)-(M_z)X(M_z)
[ Sy S S (M-2) Sy (m-1)
S, S33 S3(M-2) S3(Mm-1)
[Cl] =
Swv-22 Sv-23 0 Sev-pym-2) S(v-2)(m-1)
LSov-12 Sav-ns 0 Siv-nv-2) Sav-n -1 4 (v-ayxm-2)

Journal of Mathematics

(26)
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Also,

- ;
1
[Az] =
1
L Ll (N-2yx(N-2)
r (2) (2) (2) (2) h
(0533 X3 %) (N-2) &y (N-1)
(2) (2) (2) (2)
*3; *33 A3 (N-2) &3 (N-1)
AtO
Re ’
I N R e
(N-2)2 ¥(N-2)3 (N-2)(N-2) ¥(N-2)(N-1)
2@ o« e
(N-1)2 "(N-2)3 (N-1)(N-2) "(N-1)(N-1) 4(N-2)x(N-2)
r 1 1 1 1 b
Vi Va3 V3 (M-2) V3 (M-1)
Vn+1 vn+1 Vn Vn+1
32 33 3(M-2) 3(M-1)
V] = ,
n+1 n+1 . bn+1 bn+1
Vin-22 V(N-2)3 (N-2)(M-2) 9 (N-2)(M-1)
1n+1 n+1 n+1 7n+1
LViN-02 Bl Yoy ey Yo Jveason-a)
r (2) (2) b
2 23 ﬂz(M 2) ﬁz(zw 1)
(2) (2)
32 33 ﬁ3(M 2) ﬁ3(M 1)
(B,] - AtO
Z47 R
(2) 2
ﬁ(M 2)2 ﬁ(M—Z) ,3<M 2)(M-2) ﬁ(M—Z)(M—l)
(2) 2)
ﬁ(M 12 /3(1\/1—2) ﬁ(M 1) (M~-2) ﬁ(M—l)(M—l)-(M_z)X(M_z)
[ Ty Ty T (m-2) T, (m-1)
T T3 T3 (m-2) T3 -1y
[C] =-

T(N—2)2 T (N-2)3

LT (n-12 T (v-1)3

T2 Tov-pyan

“Tiven-2 Tov-no-n d(vepyxu-2)

(27)
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TABLE 2: L, RMS, and L, errors of Problem 1 at different times and Reynolds number for u(x, y,t) with N = M = 40.
T Re=50 Re=100
Ly, RMS L, Ly, RMS L,
0.1 7.064E — 04 1.020E-04 4.081E-03 2.287E—-04 4.676E—05 1.871E-03
0.5 6.864E — 04 1.102E-04 4.409E—-03 2.393E-04 6.091E - 05 2.437E-03
1.0 6.386E — 04 1.068E — 04 4273E-03 2.424E - 04 6.153E—05 2.461E-03
1.5 6.150E — 04 1.031E—-04 4.124E-03 2.403E-04 5.857E—-05 2.343E-03
2.0 6.028E - 04 9.924E - 05 3.969E - 03 2.348E - 04 5.521E-05 2.208E-03
TaBLE 3: L, RMS, and L, errors of Problem 1 at different times and Reynolds number for u(x, y,t) with N = M = 40.
T Re =200 Re =400
Ly, RMS L, Ly, RMS L
0.1 9.269E — 04 1.265E—-05 5.059E-03 3.269E-03 2.390E-04 3.563E-03
0.5 9.948E - 04 8.723E-05 3.489E-03 3.742E-03 3.349E-04 3.768E—-03
1.0 9.167E — 04 1.345E-05 5.282E-03 3.910E-03 3.214E-04 3.867E—-03
1.5 9.020E - 04 1.367E—-05 5.458E—-03 4481E-03 3.514E—-04 3.989E-03
2.0 9.037E - 04 1.332E-05 5.321E-03 4.891E-03 3.890E - 04 4.891E -03

Numerical solution

Numerical solution

Exact solution

(®)

FiGure 1: NSs and ESs of u(x, y,¢) in 3D form for T = 1.0 of Problem 1.

Exact solution

(®)

FIGURE 2: NSs and ESs of u(x, y,¢t) in 3D form for T = 2.0 of Problem 1.
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FIGURe 3: NSs and ESs of u(x, y,t) in 3D form for T = 3.0 of Problem 1.
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FIGURE 4: NSs and ESs of u(x, y,t) in 3D form for T = 5.0 of Problem 1.
TaBLE 4: Maximum abosulte error L., of the problems at different nodes for u(x, y,t).
Problem 2 Problem 1
T Re=100 Re=100
N=M=10 N=M=20 N=M=40 N=M=10 N=M=20 N=M=40
0.1 2.923E-04 5.569E — 05 2.950E05 0.747E - 03 0.326E—-03 2.287E—-04
0.5 4958E — 04 7.518E—05 2.421E-05 0.381E—-03 0.103E—-03 2.393E-04
1.0 3.932E-04 8.167E—05 1.387E-05 0.444E - 03 9.972E - 04 2.424E — 04
Equations (19a) and (19b) are the coupled Lyapunov L = max | e |
system, first solved for n = 0 and then solved simultaneously N Y
for n=1,2,...,K by developing code in MATLAB 7.
1<jsM
4. Numerical Experiments and Discussion
- N M 12
Under this heading, to check the correctness and compe- RMS = 1 Z Z Ke“)lz (28)
tence of the algorithm modified CTBS DQM, two test NM &4 & ’

problems have been considered, which are available in the
literature. All the computation work is conducted by using -
MATLAB 7.0. The following formulas are used for com- L,
puting maximum absolute error L., root mean square

(RMS) error, and L, error, respectively:

Il
.MZ

Il
—_

]

Li=1 j=1



10 Journal of Mathematics
TABLE 5: L, RMS, and L, errors of Problem 2 at different times and Reynolds number for u(x, y,t) with N = M = 40.
T Re=50 Re=100
Ly, RMS L, Ly, RMS L,
0.1 1.123E-04 2.437E-05 4.874E - 04 2.950E05 8.381E—06 1.676E—05
0.5 7.569E — 05 3.865E—-05 7.730E - 04 2.421E-05 1.759E - 05 3.519E—-04
1.0 4.621E-05 3.983E-05 7.966E — 04 1.892E-05 2.120E-05 4.240E — 04
1.5 2.818E—-05 3.509E-05 7.018E—04 1.478E—-05 2.227E-05 4454F - 04
2.0 1.271E-05 2.949E - 05 5.898E - 04 1.154E - 05 2.190E - 05 4.380E - 04
TABLE 6: L, RMS, and L, errors of Problem 2 at different times and Reynolds number for u(x, y,t) with N = M = 40.
T Re =200 Re =400
L., RMS L, L, RMS L,
0.1 7.557E - 06 2.561E— 06 5.122E—-05 1.915E-06 3.575E-07 1.422E—-05
0.5 6.847E - 06 6.965E — 06 1.393E-04 4.103E-06 8.296E - 07 3.318E-05
1.0 6.637E - 06 9.197E - 06 1.839E - 04 4.844E - 06 1.089E - 06 4.359E - 05
1.5 6.944E — 06 1.040E - 05 2.079E - 04 5.187E—-06 1.262E - 06 4985E—05
2.0 6.938E - 06 1.112E-05 2.224E-04 5.378E-06 1.353E-06 5.413E—-05

0.04
0.02

-0.02

Numerical solution
(=}

-0.04

(a)

Exact solution

FIGURE 5: NSs and ESs of u(x, y,t) in 3D form for T = 2.0 of Problem 2.

where u;;and u;; are approximate and exact solutions, re-
spectively, and e;; = u;; — u;;.
Problem 1. As the first problem, consider 2D Burgers’
equations (1a) and (1b). The exact solutions over the domain
D ={(x,y): 0<x<1,0<y<1} is generated by the Hopf-
Cole transformation [12, 15, 17] and obtained as

3 1

u(x, y,t) = 4 4[1 + eRe(4y—4x—t)/32]’ (29)
( 9 3 N 1
v(x,y, = - .
y 4 4[1 + eRe(4y—4x—t)/32] (30)

ICs and BCs are taken from exact solutions (29) and (30).
The numerical results are shown with the help of Tables 2
and 3 and Figures 1-4 in form of errors, three-dimension,
and contour plots. Convection prevails the flow which
causes the errors become larger and larger as we increase the

value of Re. L, is smaller than [15] for T = 2.0,Re = 100
with less grid points N = M = 40. The figures show that
exact solutions and numerical solutions are well consistent
in three-dimensional and contour form. Table 4 shows that,
as we increase the values of M and N, the absolute errors
decrease which shows the convergence of the method.

Problem 2. Consider 2D Burgers’ equations (la) and (1b)
over the computational domain D = {(x, y): 0<x< 1,0<
y <1} with the ICs [12],

—47 cos (2mx)sin (my)

u(x.y,0) = Re[2 + sin (27x)sin (ny)]’ (7)€ D,
_ —2m sin(27x)cos (my)
V(% 7,0 = Re[2 + sin (27x)sin (7 y)]’ (x.7) € D,
(31)
and BCs,
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FIGURE 6: NSs and ESs of u(x, y,t) in contour form for T = 2.0 of Problem 2.
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—

FIGUre 7: NSs and ESs of v(x, y,t) in 3D form for T = 2.0 of Problem 2.

FIGURE 8: NSs and ESs of v(x, y,t) in contour form for T = 2.0 of Problem 2.

11



12

—57121.‘) ~ (my)

sin —==,
Re

u(0, y,t) = 2m exp( R
e

—57°t
u(l, y,t) = 2m exp( T )sin@,

v(0,9,) =0, v(1,»,t) =0, 0<y<1,t>0,

u(x,0,t) =0, u(x,1,t) =0,

—57°t 2
v(x,0,t) = -1 exp( ﬂ )sin (27x)

Re Re ’
572t . (27x)
v(x,0.5,t) = m exp Re sin <x<1,t=0
e

Re ’

The exact solutions of the problem are given by
-4 exp(—5n2t/Re)cos(an)sin(ny)
Re [2 + exp(—Sﬂzt/Re)sin (Zﬂx)sin(ny)]’

u(x, y,t) =

-2 exp(—Sﬂzt/Re)sin(an)cos(ny)
Re [2 + exp(—Snzt/Re)sin (Zﬂx)sin(ny)]'
(33)

v(x, y,t) =

Tables 5 and 6 show L., RMS, and L, errors for
different values of Re and time, while Figures 5-8 show
a comparison of numerical and exact solution in three-
dimensional form. Convection prevails the flow which
causes the errors become larger and larger as we increase
the value of Re. The figures show that exact and numerical
solutions are well consistent in three-dimensional and
contour form. Table 4 shows that, as we increase the values
of M and N, the absolute errors decrease which shows the
convergence of the method.

5. Conclusion

In this study, a modified CTBS DQM and a new algorithm
to reveal the computational modeling of 2D coupled
Burgers’ equations are developed. The proposed algorithm
is tested on two benchmark problems appearing in the
literature. The main results of this study are summarized
as follows:

(i) A different technique using modified CTBS func-
tions is presented to determine the WCs of 2D
DQM than Lagrange interpolation traditional
technique [22].

(ii) CTBS DQ algorithm proposed in [33] has extended
for 2D problems in different forms, and it has
concluded the algorithm worked nicely for the same
problems.

(iii) The developed algorithm is better than the DQ

algorithms proposed in [31, 32, 34] due to more
smoothness of CTBS functions.

Journal of Mathematics

(iv) The presented method leads to quite similar results
to those treated in [12, 15, 17, 18] and good accuracy
in the case of a small number of grid points.

(v) After some modifications, the presented method
can be extended to solve 2D or higher-dimensional
equations. In this way, it can be used to analyze
many other biological, mechanical or physical
events, such as reaction, linear diffusion, dispersion,
and nonlinear convection.

Comparison of numerical solutions (NSs) and exact
solutions (ESs) are given on left and right sides, respectively,
in Figures [1-8] for R = 100 and At = 0.001.
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