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In this study, the S-function is applied to Saigo’s k-fractional order integral and derivative operators involving the k-hypergeometric
function in the kernel; outcomes are described in terms of the k-Wright function, which is used to represent image formulas of integral
transformations such as the beta transform. Several special cases, such as the fractional calculus operator and the S-function, are also listed.

1. Introduction and Preliminaries

Fractional calculus was first introduced in 1695, but only in
the last two decades have researchers been able to use it
efficiently due to the availability of computing tools. Sig-
nificant uses of fractional calculus have been discovered by
scholars in engineering and science. In literature, many
applications of fractional calculus are available in astro-
physics, biosignal processing, fluid dynamics, nonlinear
control theory, and stochastic dynamical system. Further-
more, research studies in the field of applied science [1, 2],
and on the application of fractional calculus in real-world
problems [3, 4], have recently been published. A number of
researchers [5-15] have also investigated the structure,
implementations, and various directions of extensions of the
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fractional integration and differentiation in detail. A detailed
description of such fractional calculus operators, as well as
their characterization and application, can be found in re-
search monographs [16, 17].

Recently, a series of research publications with respect to
generalized classical fractional calculus operators was
published. Mubeen and Habibullah [18] broughtout
k-fractional order integral of the Riemann-Liouville version
and its applications. Dorrego [19] introduced an alternative
definition for the k-Riemann-Liouville fractional derivative.

Gupta and Parihar [20] introduced the left and right
sides of Saigo k-fractional integration and differentiation
operators connected with the k-Gauss hypergeometric
function which are as follows:

(1)
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Mubeen and Habibullah [18] defined ,F, (9, k), (¢, k);
the k-Gauss hypergeometric function for
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xe€Clx|<1L,R(y)>R(c)>0:

o0 9 n

(9K, (6 0); (k) = 3 Dk (D

n=0 (y)n,kn!

(3)

Journal of Mathematics

Equations (1) and (2) are the left and right sides of
fractional differential operators involving k-Gauss hyper-
geometric function, respectively:
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(4 S r (x — ) ko1
dx ) kI (=94 n) Jo

x 21:1,,(<(—9 — k) (—y = 9+ mk); (=9 + m,k); (1 - —))f(t)dt

(4)

(DX f) (x) = (—%) (5775 £) (00 R (9) > 0,k > 05 = [R(9) + 1]

(4 n; _ ) Selk1,9+lk X
_( — )krk( 9+n),[ (t - x) x F1k<( 9 ¢ k), (—p = 9,K); (=9 + 1, k); <1 ))f(t)dt

where x>0,9 € C,R (9) >0,k >0 and [R (9)] is the integer
part of R (9).

Remark 1. When we set k = 1 in equations, operators (1),
(2), (4), and (5) reduce into Saigo’s fractional integral and
derivative operators, as stated in [9], respectively.

We consider the following basic results for our study.

Lemma 1 (see p. 497, equation 4.2, in [20]). Let
9,6 9,€ € C,R (e) >max|[0, R (¢ — p)]; then,
9,6,y (e/k)— v K LT (e=6+Y)  (e—ai-1
It (x) =
(O”‘ ) nz(“) T (e— T (e+9+7y)
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Lemma 2 (see p. 497, equation 4.3, in [20]). Let
9,6¢y,e€C,R(9)>0,ke R (0,00) and R (&) >max[R
(=6), R (=)); then,

9y (e <, Te(e+ QT (e+ e
(1% 0) (1) = Y & ket ol (e+y) 73
S Tl (e+9+6+y)
(7)
Lemma 3 (see p. 500, equation 6.2, in [20]). Let

9,¢y,e€Cn=[RO)]+1L,keR"(0,00) such that
R (&) >max [0, R (-9 — ¢ —p)]; then,

(Dg:}tt (elk)— )( )_ozo: n
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Lemma 4 (see p. 500, equation 6.3, in [20]). Let 9,¢,9,e € C
and n=[RO]+LkeR", R(e)>max[R(-9-7),
R (¢ — nk +n)]; then,
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Recent time, the S-function is defined and studied by
Saxena and Daiya [21], which is generalization of k-Mittag-
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special functions. These special functions have recently
found essential applications in solving problems in physics,
biology, engineering, and applied sciences.

YKL,
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Here, Diaz and Pariguan [26] introduced the k-Poch-
hammer symbol and k-gamma function as follows:
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as well as the relationship with the classic Euler’s gamma
function:

96 k
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(ii) Again, for k = ¢ = 1, the S-function is the general-
ized K-function [29]:
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For our purpose, we recall the definition of generalized
k-Wright function p‘I’k (x), defined by Gehlot and Pra]apatl

s mq; x]

The S-function is defined for 9',6',y'e € C, R(9') >0,

keR, RE)>kR(e), L(i=12,....,p) m;(j=12
.»q),and p<q+1 as
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where y' € C,k € R, and n € N. Refer to Romero and
Cerutti’s papers [27] for more information on the k-Poc-
hammer symbol, k-special functions, and fractional Fourier
transforms.

The following are some significant special cases of the
S-function:

(i) For p=g=0, the generalized k-Mittag-Leftler

function [28]
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[31], for k e R*; xa b;jeC, 9,6;€ R(D;¢;#05i =
Lpij=12,. ..,q) and (g +9n) (b +c]n)eC\kz , as

(16)
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2. Saigo k-Fractional Integration in Terms of
k-Wright Function

In this section, the results are displayed based on the
k-fractional integrals associated with the S-function.

0+,k
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Proof. We indicate the RH.S. of equation (18) by I;; in-
voking equation (10), we have

(a,k,k) ...

(bik,K). ..

Journal of Mathematics

Theorem 1. Let 9,6,9,9,¢,y',e,e € C;k € R, c € R and
v>0, such that R(O)>0, R(e)>max[0,R(¢c—-y)],
ER(s+y ¢)>0, a;(i=12,...,p),b;(j=12,...,9),
R () >kR (e); p<q+ L. If condition (17) is satisfied and
Igf,,f is the left-sided integral operator of the generalized
k-fractional integration associated with S-function, then (18)
holds true:

aK,K), Y’) &K ), (8’ L)) (8 ) ) L)) (1 )
kCXV/k .

(bk. k), (¢, 9'), (e=6v), (e + 9 +p,v),
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Now, applying equation (6) and (11), we obtain

above equation, we obtain

I, =

I'(a)...

(19)
_ = (al) (ap (y,)ns,k ! 9.6,y ( , (e+vnlk)-
= Z / _[IO+,k( )(x)
n=0 ( (bq)nr (c +9 1’1) n
I xEdO-L 0 (g (ap)nl"k (y' +nek)Ty (e + via)Ty (e +y — ¢+ vn) (kch/k)n (20)
YOG &), .. (bq)an (¢ +9n)(e—c+vm(e+9+y+wn) n!
Using (12) and some important simplifications on the
D(b2) - T(bg) x“ 9 (40t} (10,)
M(a,) T
(21)

Iy (ak +nk)...T

(apk + nk)l"k (y" +nek)Ti (e + vi)Ti (e +y — ¢+ vn) (kch/k)n
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Interpreting the definition of Wright hypergeometric
function (16) on the above equation, we arrive at the desired
result (18). O

Fk(bqk + nk)Fk (¢ +9n)i(e—c+vm(e+9+y+wn) nl

Theorem 2. Let 9,6,9,9,¢,y',e,e € C;k € RY,c € R, and
v>0, such that R(©O)>0, RO)>0, and R(e+9)>
max[-R(¢),-R (y)], with

RE#+R(Y), a;(i=12,
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L phbi(i=1,2,.

. ER(S )>kR (), and p<q+1. If
condition (17) is satisfied and I’ V) is the right-sided integral

operator of the generalized k-fractional integration associated
with S-function, then (22) holds true:

kz,u z H]l ( ) —9-e-¢lk

9,:,}/( —9-elk 9.6y ek . L vk ))
1759 ks veosay by, byic
( —k (@0 ayiby et ") ? T(a) T(y')
(a)kk)...(a,k.k), (', ek), (9+&+6v), (9+e+y,v),
X p13¥au3 kex™"%|.
(bikk) ... (b k), (¢, 9), (9+&v), 29+ e+c+7,v),

Proof. The proof is parallel to that of Theorem 1. Therefore,
we omit the details. O

The results given in (18) and (22), being very general, can
yield a large number of special cases by assigning some

(s— ¢/k)-1

956, s/k € v/k
(103( B (et )))(x) SNCIR.

Corollary 2. If ¢ = k = 1, in (18), we obtain the subsequent
result in term of S-function as

‘1

(22)
suitable values to the involved parameters. Now, we dem-

onstrate some corollaries as follows.

Corollary 1. If we put p=q=0, then (18) leads to the
subsequent result of S-function:

Y, k), (&,v), (e+y — V),
kl: ( ) kex"¥|. (23)

(6, 9), (e=v), (e+9+7y,v),

L)

9¢y( ,e-1,-9.6
<10+ <t K (an-

ayiby,. .. ,bq;ct"))> (x) =

x p+3

Corollary 3. If we set e=1,y' =1, andk = 1, in equation
(18), we obtain the following formula:

q
9, 1y Y
(071w (e

X p3¥

I'(b
,ap;bl,...,bq;ctv)»( ) = Jl ((1))

1T(a) T(Y)

(al,l)...(ap,l), (v,

1), (&), (e+y—¢6W),

v

43 cx’ |

(01,1) ... (bpp1), (6, 9'), (2= 6 ¥), (e+ 9+, ),

(24)

e—¢—1

(a;,1)... (ap, 1), (&v), (e+y—¢v), (1,1),

v

3 cx |

(b11) ... (b 1), (¢, 9), (6= G v), (e + 9+7,v),

(25)



Corollary 4. Letting p = q = 0 in equation (22), then
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26
. (Y, ek), O+e+¢v), O+e+y,v), " (26
x ;3 kex™""|.
(¢",9), O+ev), 29+e+c+y,v),
Corollary 5. Settinge = 1, k = 1, then equation (22) becomes
_9o_ U _ qul r(b) x_9_£_c
Is’c‘y(tseKS’c’y sees@pibyy .o b tv>) = !
(1 KG Coaibobiad™) ))) = Tr  r
(a;,1)...(a,1), (¥',1), O+ e+ v), (9+e+y,v),
><p+3\yq+3 fov
(b11) ... (b 1), (¢, 9), D+ &v), 29+ +c+7,),
(27)
Corollary 6. If we put e = 1,9 =1, andk = 1 in equation
(22), then equation becomes
o 1 F(b.)
I'f)’c’y(t_s_sM9 < yees@piby . byt )) ki N PVt
( - (pa (@15 58,3b1 get ) )@ 3 F(a,.)x
(ap,1)... (ap, 1), O+e+ev), O+e+y,v), (1,1),
><p+3\qu+3 cx”
(b1,1)... (b 1), (¢,9'), O+ &v), 29+ e+c+p,v),
(28)

3. Saigo k-Fractional Differentiation in Terms of
k-Wright Function

In this section, the results are displayed based on the
k-fractional derivatives associated with the S-function.

Theorem 3. Let 9,¢,7,9,¢',y,e,e € C;k e R, c € R, and
v>0, such that R)>0, RWI)>0, R(e)>max[0,
R(I-c—-P),R(e+y+6¢)>0, a;,(i=1,2,...,p), bj(j =
L,2,...,9,R()>kR (¢), and p<q+ 1. If condition (17) is
satisfied and Dgf:Z is the left-sided differential operator of the
generalized k-fractional integration associated with S-func-
tion, then (29) holds true:

K (ererh)-1 H?:l F(bj)’,\Zj:,hf pr:-“"

9.6, —1o9.¢ 5y ek
(D C}'(te/k S G LY HE: (ap“

ort (o Sapiby,.. b 'ctwk)))(x) =

»Ygs

k
X i3

Proof. For the sake of convenience, let the left-hand side of
(29) be denoted by I,. Using definition (10), we arrive at

T (v") Hzp=1 I'(a;)

!
(ark, k) ... (apk, k), (¥, €k), (&,v), (e+c+y +9,v), .

(bik, k) ... (byk, k), (', 9'), (e +y,v), (e + 8,1~k +),

(29)
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Now, applying equation (8) and (11), we obtain

— & (611),,...(611))”(),')”8,}{ N Sep (e 1
R A e F G L
(30)

xR 0 (), (a,), T (v + enk) T (e+vmli(e+g+y+9+wm)

I, =
2 I.y) & (bl)n,,,(bq)nrk(q’Jrs’n) l"k(£+y+vn)l"k(e+c+n—nk+vn)n!\

CX(VH/k)_l)n. (31)

Using (12) and simplifications on the above equation, we

obtain

(e+¢/k)-1 oo r
k

(y' + nek)

— (b1+~--+bq)—(al+-~-+a (q) X
L=k F(a ( )

Ty (ak +nk) ...

Fk(apk + nk)l‘k (e+vm)[(e+c+y+I+vn)

F Y) nOrk(C +9,1’1)

(32)

T, (byk +nk)...T

In accordance with (16), we obtain the required result
(29). This completed the proof of Theorem 3. O

Theorem 4. Let 9,6,9,9,¢',y',e,e € C;k € R*,c € R, and
v>0, such that R (9) >0, R (9) >0, R(e) >max[R (O +¢) +

19y 90—tk Y6y ek
(D k (t St (al,‘..,

(a,k, k). ..

k
X p+3\Pq+3

(bik, k). ..
Proof. The proof is parallel to that of Theorem 3. Therefore,
we omit the details. O

The results given in (29) and (33) are reduced as special
cases by assigning some suitable values to the involved

k(bqk + nk)Fk (e+y+wm)(e+c+n—nk+ vn)n!\

ap; by,....bg;ct - v/k))) (x) =

(a)k.k), (v, ek), (e = 9= 8,v+ k1), (e+7,v),

[Cx(erl/k)— 1)"

n—RW), andR O +¢—y) +n+0, wheren=[R(9) + 1],
a;(i=12,. ..,p)b(]—12 ..,q)m(9)>k9{(s) and
p<q+1l Ifcondztzon (17) is satisfied and D V' is the right-
sided differential operator of the genemlzzed k-fractional
integration associated with S-function, then (33) holds true:

xs_ e+clk H?:I F(bj)’ ijlbj’ Zilﬂi
I (') TIL T(a)

(33)
xR 1

(b k), (¢ 9'), (e=9,v), (e = 9= c+y,v),

parameters. Now, we demonstrate some corollaries as

follows.

Corollary 7. If p=g=0, then (29) holds the following
formula:

(e+¢/k)-1

(o e o

(y', k), (&,v), (e+c+y+9,v),
« 3\},1;[ ex -1 |
(6", 9), (e+py.v), (e+8,1-k+v),

Corollary 8. If we put e = 1 and k =1, then (29) gives the
result in term of S-function as follows:
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<y
(pa)
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< T (b))

L(y') TIZi T (a)

(a;,1)... (ap, 1), (¥, 1), (&v), (e+c+y+9,v),
cx”|.

q+3
(b,1). .. (bq, 1), (", 9), (e +y.v), (e+68,v),
(35)
Corollary 9. If we put ¢ = 1,y' = 1, and k = 1, in equation
(29), then
o 7, 1(b;)
96y [ ,(elk)=1 4 9, . . _1lj=1 J +o-1
<D0+ (t € M(pfq)(al, e ,ap, bl’ e ,bq, Ctv)>) (x) = er ¢
(a;,1)... (ap, 1), (&), (e+c+y+9,v),(1,1),
><p+3\Pq+3 cx”|.
(by1)... (by 1), (¢, 9'), (e +7,v), (£+6,),
(36)
Corollary 10. If we set p=q =0, then (33) provides the
result as
96y [ 9-elk ' Ik x O
oy [ (9-elk ny' e - _
(D25 (Bl (et ))) ="
(37)
!
) kl: (Y k), (e=9-8,v+k—1), (e+y,v), ot
=, cx .
(¢, 9), (e=9,v), (e=9—-c+y,v),
Corollary 11. By letting e =1 and k =1, in equation (33),
then
L 9-e+0 q», I‘(b)
D?’”(tSﬂK “Vila,...,a,:b,.. b ct” > (x):x e AN
( i (oot b)) =y e
(a;,1)...(ap1), (¥, 1), (6= 9= v), (e+p,v),
X p+3\yq+3 Cx_v
®,1)... (bq, 1), (¢",9), (e=9,v), (e=9—c+yp,v),
(38)

Corollary 12. When ¢ =1,y =1, andk = 1, in equation
(33), then equation becomes
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" 1, 1(b;)
I)agy( epd e Gyiby, bt )) =LA S-erd
( - (Pq)(al 4p; 01 9> € ) (x) IP=1 I"(a,»)x
(a;,1)...(a,1), (6= 9-8,v), (e +,), (1,1),
X i3 ¥, cx "
(01,1) ... (b 1), (¢, 9), (6= 9,v), (e =9 -+ p,v),
(39)
g h\ (gl
4. Image Formulas Associated with By (g,h) = ( K k) T T (g+h) (41)
Integral Transforms
Now, we define k-beta function in the form
In this section, we establish some theorems involving the 1l
results obtained in previous sections pertaining with the B, (f(2);g,h) =~ J 2901 (1= 2) WP £ (2)dz,
integral transform. Here, we defined k-beta function as kJo (42)

follows.
The k-beta function [32] is defined as

g>0,h>0.

LY (g1 (hk)-1
Bk(g,h):%Jozg (1-2) dz,  g>0,h>0. Theorem 5. Let 9,¢,7,9,¢', 6,9, e € C;k e R*,c € R, and
(40) v>0, such that R(I)>0, R(e)>max[0,R(c—-y)],
andR (e +y — ) > 0; then, the leading fractional order in-
They have the following important identities: tegral holds true:
(e ¢/k)-1 q P
ro r h a;
Bk((lgf’Z( (et} 1S(Pc K Sk(al,...,ap;bl,...,bq;c(zt)V/k)>)(x);g,h> = (h) H] ! ( ’) Lz) b Z
’ e (¥') 1T(a)
43
(a)k k). (a,k k), (¥, €k), (&), (e+y = 6 V), (g,V), (43)
X P+4\PZ+4 kex"
(bik, k) ... (b, k), (¢',9'), (e =G, v), (e+ 9+,v), (g + h,v),
Proof. Let I; be the left-hand side of (43), and using (42), we
have
1 ISR v
=g jo @h=1 (1 - )‘h’k)‘l(lgj,t(t‘f”‘) 'St K@ apiby, . byc(at) ’k)>> (x)dz, (44)
which, using (10) and changing the order of integration and
summation, is valid under the conditions of Theorem 1 and
yields
5 (‘11)-()()’,)1( 9 - 1! - hik)-
I = n nek €Sy ermk-1y oy 1 J LlarmiR=1 (k=1 g (45)
L B o A @ 4=

From Lemma 1 and substituting (41) in (45), we obtain
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ayrora) X T (B) - T(by) QTi(ark +nk)...Ti(apk +nk)
Le(y) T(ay)...T(a,) S (bik+nk)...Ty(bk +nk)

= o)

(46)
Tp (v +nek)Ty (e + va)Ty (e + y — ¢ + v)T (g + va)Ty (h) (kCXWk)n
L (¢ + 9 (e—c+vm(e+ 9+ y + va)[ (g + h + vn) nl

Using the definition of (16) in the right-hand side of (46), Theorem 6. Let 9,¢,9,9,¢',y,e,e € C;k e R, c € R, and
we arrive at result (43). O v>0, such that R(9)>0, RY) >0, and R(e+9)>
max [-R (¢), R (p)], with R () # R (y); then, the following

fractional integral holds true:

q P q -9-e-¢/k
e g i N7 G T(b)) T, (hyx e
B <<19’<’V<t k) S YR (aLayiby,. . be(zt) >) ; ,h>:kzjzlbf 2ol Tb;) I :
k\\ * -k (p9) (al @i 4i¢ (=) ) (x):9 P T(a) L(y')
: (47)
(a)k.k) ... (a,k k), (g, =), (v €k), (9 + &+, v), (9+&+7,v),

-vik

X pra¥gra kex

(bik, k). (bk, k), (g+h=v), (5 9), O+&v), 29+e+c+y,v),

Proof. The proof is similar of Theorem 5. Therefore, we omit ~ Theorem 7. Let 9,¢,7,9',¢',y',e,e € C;k € R¥,c € R, and

the details. O v>0, such that RO)>0, RWI)>0, R(e)>max[0,
R(IV-¢—p)], andR(e+y+¢)>0; then, the following
fractional derivative holds true:

USANNG q-_ F b ! — ? a;
Bk<<DS,c,y(t(s/k)—139 <y ’E’k(al,...,ap;bl,...,bq;c(zt)”k)»(x);g,h) _ L(h) [T ( J)x(sﬂ/k)flkzj:lb] Zizl ;

ok () () TIL T (a)
) (48)
(a,k, k). .. (apk, k), (y', €k), (&,v), (e+c+y+9,v), (g, V),
k (r+17k)-1
X p+4\Pq+4 cx :
(bik, k). (bk, k), (' 9"), (e+p,v), (g +h,v), (e+ 8,1 -k +),
Proof. Let I, be the left-hand side of (48), and using the
definition of Beta transform, we have
1! - — 196y L (e)-1 Y6y ek v
L= Joz@f’k) L1 2) DR (£ S K arapibi e byie (™) ) (90dz, (49)
which, using (10) and changing the order of integration and
summation, is reasonable under the conditions of Theorem 3
and yields
O (al)n' o (ap) (yl)nek ' 9, 1!
I = n k€ psy(plermi-1y oy 1 J L1 (g _ -1, (50)
! r;) 1), -- (bq)nrk (¢ +9'v) n! 0+)k( ) kJo
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From Lemma 3 and substituting equation (41) in (50),
we obtain

11

I, - k(b]—a])+..-+(bq—ap)r(bl) E r(bq) x(“dk?_l < [y (y: + n:sk)l“,< (ak +nk) ...
F(al).,_l"(ap) I (v) &S T(¢ +9n)ly (bik +nk). ..

Fk(apk + nk)Fk (e+ ) (e+c+y+ 9+ (g+ vy (h)

(51)

Fk(bqk + nk)l"k (e+y+w)(e+c+n—nk+vl (g+h+ vn)n!\

Using the definition of (16) in the above equation, we
obtain the required result (48). This completed the proof of
Theorem 7. O

96y ([ 9-elk 96y ek
Bk<D_,k <t Sio an.a

(a,k, k) ... (apk

(bik, k). (

k
X p+4\Pq+4

Proof. The proof is identical to that of Theorem 7. As a
result, we exclude the specifics. |

5. Conclusion

The strength of generalized k-fractional calculus opera-
tors, also known as general operators by many scholars, is
that they generalize classical Riemann-Liouville (R-L)
operators and Saigo’s fractional calculus operators. For
k — 1, operators (1) to (5) reduce to Saigo’s [9] frac-
tional integral and differentiation operators. If we set
& = -9, operators (1) to (5) reduce to k-Riemann-Liouville
operators as follows:

(g+2y )(x) (0+kf)(x)
(127 ) ) =(15f) (o),

(53)
(DY £) () =(Dhaf) (),

(D37 £) (x) =(D% i f) (x).

On the account of the most general character of the
S-function, numerous other interesting special cases of re-
sults (18), (22), (29), 2and (33) can be obtained, but for lack
of space, they are not represented here.
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k), (v ek), (6= 9-8,v+k—1), (g,-V) (e + v,

{va+1/k— 1)".

Theorem 8. Let 9,¢,,9,¢',y,e,e € C;k e R, c € R, and
v>0, such that R(9)>0, R(9) >0, R(e) >max[R (O +¢) +
n-R)], and RO +¢—-y) +n+#0, wheren=[R() +1];
then, the following fractional derivative holds true:

q
P;bl,---,bq;C(Zt)_V/k)>>(X) _ rk(h) H] 1r( ) (9- e+¢lk)- 1kZ) 1 le

L) T T(a)
(52)
Cx(—v+1/k)—1 ]

bqk) k)a (Cla 9’)’ (g + ha _V)’ (8 - ‘9) V)) (S -9~ ¢ty V))
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