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In this study, we consider the number of polynomial solutions of the Pell equation x2 − p(t)y2 � 2 is formulated for a nonsquare
polynomial p(t) using the polynomial solutions of the Pell equation x2 − p(t)y2 � 1. Moreover, a recurrence relation on the
polynomial solutions of the Pell equation x2 − p(t)y2 � 2. )en, we consider the number of polynomial solutions of Diophantine
equation E: X2 − p(t)Y2 + 2K(t)X + 2p(t)L(t)Y � 0. We also obtain some formulas and recurrence relations on the polynomial
solution (Xn, Yn) of E.

1. Introduction

A Diophantine equation is an indeterminate polynomial
equation that allows the variables to be integers only.
Diophantine problems have fewer equations with unknown
variables and involve finding integers that work correctly for
all equations. )e equation ax + by � 1 is known as the liner
Diophantine equation. In general, the Diophantine equation
is the equation given by

ax
2

+ bxy + cy
2

+ dx + ey + f � 0. (1)

)e equation x2 − Dy2 � N, with given integers D and
N and unknowns x and y, is called Pell’s equation.)e most
interesting case of the equation arises when D≠ 1 be a
positive nonsquare. Pell’s equation x2 − Dy2 � 1 was solved
by Lagrange in terms of simple continued fractions. We
recall that there are many studies in which there are different
types of Pell’s equation. Many authors such as Tekcan [1],
Matthews [2], Chandoul [3], and Li [4] have researched. In
[5], the equation x2 − Dy2 � 2 was considered, and some
formulas of its integer solutions were obtained. In [6, 7], the
number of integer solutions of Diophantine equation x2 −

(t2 − 1)y2 − (4t − 2)x + (4t2 − 4t)y � 0 and Diophantine

equation x2 − (t2 − 1)y2 − (16t − 4)x + (16t2 − 16t)y � 0
over Z is considered, where t≥ 2. In [3, 8], the number of
polynomial solutions of Diophantine equation

x
2

− p(t)
2

− p(t)􏼐 􏼑y
2

− (4p(t) − 2)x + 4p(t)
2

− 4p(t)􏼐 􏼑y � 0

(2)

and Diophantine equation

x
2

− p(t)y
2

− 2p′(t)x + 4p(t)y + p′(t)( 􏼁
2

− 4p(t) − 1 � 0
(3)

over Z was considered, where p(t) be a polynomial in
Z[t]/ 0, 1{ }.

2. Preliminaries

In this section, we introduce the objects we need later and
collect some important facts about them.

In [4], Li proved that the Pell equation x2 − Dy2 � 1 has
infinitely positive solutions. If (x1, y1) is the fundamental
solution, then for n � 2, 3, . . ., xn + yn

��
D

√
� (x1 + y1

��
D

√
)2.

)e pairs (xn, yn) are all the positive solutions of the Pell
equation.)e xn ’s and yn ’s are strictly increasing to infinity
and satisfy the recurrence relations:
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xn+2 � 2x1xn+1 − xn,

yn+2 � 2x1yn+1 − yn.
(4)

Theorem 1 (Tekcan (see [5])). Let (X1, Y1) � (K, L) be the
fundamental solution of the Pell equation x2 − Dy2 � 2 and
(x1, y1) � (a, b) be the fundamental solution of the Pell
equation x2 − Dy2 � 1. $en, the other solutions of the Pell
equation x2 − Dy2 � 2 are (Xn, Yn):

(1) For n≥ 2,

Xn

Yn

􏼠 􏼡 �
K L D

L K
􏼠 􏼡

xn− 1

yn− 1
􏼠 􏼡. (5)

(2) For n≥ 1,

Xn+1

Yn+1
􏼠 􏼡 �

aXn + b DYn

bXn + aYn

􏼠 􏼡. (6)

(3) For n≥ 4,

Xn+1 � 2K
2

+ 1􏼐 􏼑 Xn− 1 − Xn− 2( 􏼁 + Xn− 3,

Yn+1 � 2K
2

+ 1􏼐 􏼑 Yn− 1 − Yn− 2( 􏼁 + Yn− 3 .

⎧⎪⎨

⎪⎩
(7)

3. New Results

Our principal result is the following.

Theorem 2. Let (x1, y1) � (a(t), b(t)) be the fundamental
solution of the Pell equation:

x
2

− p(t)y
2

� 1. (8)

$en, the other solutions of the Pell equation
x2 − p(t)y2 � 1 are (xn, yn), where

(1) For n≥ 1,

xn

yn

􏼠 􏼡 �
a(t) b(t)p(t)

b(t) a(t)
􏼠 􏼡

n 1

0
􏼠 􏼡. (9)

(2) For n≥ 2,

xn � a(t)xn− 1 + b(t)p(t)yn− 1,

yn � b(t)xn− 1 + a(t)yn− 1.
􏼨 (10)

(3) For n≥ 4,

xn � (2a(t) − 1) xn− 1 + xn− 2( 􏼁 − xn− 3,

yn � (2a(t) − 1) yn− 1 + yn− 2( 􏼁 − yn− 3.
􏼨 (11)

Proof

(1) We prove it using the method of mathematical in-
duction. Let n � 1, and we get (x1, y1) � (a(t), b(t)),
which is the fundamental solution of equation (8).
Now, we assume that (9) is satisfied for n, that is,

xn

yn

􏼠 􏼡 �
a(t) b(t)p(t)

b(t) a(t)
􏼠 􏼡

n 1

0
􏼠 􏼡. (12)

We try to show that this equation is also satisfied for
n + 1. Applying (9), we find that

xn+1

yn+1
􏼠 􏼡 �

a(t) b(t)p(t)

b(t) a(t)
􏼠 􏼡

n+1 1

0
􏼠 􏼡

�
a(t) b(t)p(t)

b(t) a(t)
􏼠 􏼡

a(t) b(t)p(t)

b(t) a(t)
􏼠 􏼡

n 1

0
􏼠 􏼡

�
a(t) b(t)p(t)

b(t) a(t)
􏼠 􏼡

xn

yn

􏼠 􏼡

�
a(t)xn + b(t)p(t)yn

b(t)xn + a(t)yn

􏼠 􏼡.

(13)

Hence, we conclude that

x
2
n+1 − p(t)y

2
n+1 � a(t)xn + b(t)p(t)yn( 􏼁

2

− p(t) b(t)xn + a(t)yn( 􏼁
2

� x
2
n − p(t)y

2
n

� 1.

(14)

So, (xn+1, yn+1) is also solution of equation (8).
(2) Using (13), we find that

xn � a(t)xn− 1 + b(t)p(t)yn− 1,

yn � b(t)xn− 1 + a(t)yn− 1,
􏼨 (15)

For n≥ 2.
(3) We prove it using the method of mathematical in-

duction. For n � 4, we get

x1 � a(t),

x2 � 2a(t)
2

− 1,

x3 � 4a(t)
3

− 3a(t),

x4 � 8a(t)
4

− 8a(t)
2

+ 1.

(16)
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Hence,

(2a(t) − 1) x3 + x2( 􏼁 − x1 � (2a(t) − 1) 4a(t)
3

− 3a(t) + 2a(t)
2

− 1􏼐 􏼑 − a(t)

� 8a(t)
4

− 8a(t)
2

+ 1

� x4.

(17)

So, xn � (2a(t) − 1)(xn− 1 + xn− 2) − xn− 3 is satisfied for
n � 4. Let us assume that this relation is satisfied for n, that is,

xn � (2a(t) − 1) xn− 1 + xn− 2( 􏼁 − xn− 3, (18)

then, using (13) and (18), we conclude that

xn+1 � (2a(t) − 1) xn + xn− 1( 􏼁 − xn− 2, (19)

completing the proof.
Similarly, we prove that

yn � (2a(t) − 1) yn− 1 + yn− 2( 􏼁 − yn− 3 , ∀n≥ 4. (20)

Now, we give a relation between (K(t), L(t)) and
(a(t), b(t)). □

Theorem 3. If (K(t), L(t)) be the fundamental solution of
the equation

x
2

− p(t)y
2

� 2, (21)

then (K(t)2 − 1, K(t)L(t)) be a solution of the equation (8)
and

K(t)
2

+ p(t)L(t)
2

2
, K(t)L(t)􏼠 􏼡 � K(t)

2
− 1, K(t)L(t)􏼐 􏼑.

(22)

Proof. Hence, it is easily seen that

K(t)
2

− 1􏼐 􏼑
2

− p(t)(K(t)L(t))
2

� K(t)
2

K(t)
2

− p(t)L(t)
2

􏼐 􏼑 − 2K(t)
2

+ 1 � 1,

K(t)
2

+ p(t)L(t)
2

2
, K(t)L(t)􏼠 􏼡 �

K(t)
2

+ K(t)
2

− 2
2

, K(t)L(t)􏼠 􏼡

� K(t)
2

− 1, K(t)L(t)􏼐 􏼑,

(23)

since (K(t), L(t)) is the fundamental solution of the
equation x2 − p(t)y2 � 2, i.e, K(t)2 − p(t)L(t)2 � 2. □

Theorem 4. Let (U1, V1) � (K(t), L(t)) be the fundamental
solution of the equation (21) and (x1, y1) � (a(t), b(t)) be
the fundamental solution of the equation (8). $en,

(1)

Un

Vn

􏼠 􏼡 �
K(t) L(t)p(t)

L(t) K(t)
􏼠 􏼡

xn− 1

yn− 1
􏼠 􏼡, ∀n≥ 2. (24)

(2)

Un+1 � a(t)Un + b(t)p(t)Vn,

Vn+1 � b(t)Un + a(t)Vn

, ∀ n≥ 1.􏼨 (25)

(3) $e solution (Un, Vn) satisfies the recurrence relations

Un � 2a(t)Un− 1 − Un− 2,

Vn � 2a(t)Vn− 1 − Vn− 2
, ∀n≥ 3.􏼨 (26)

(4) $e solution (Un, Vn) satisfies the recurrence relations

Un � 2K(t)
2

− 1􏼐 􏼑 Un− 1 − Un− 2( 􏼁 + Un− 3,

Vn � 2K(t)
2

− 1􏼐 􏼑 Vn− 1 − Vn− 2( 􏼁 + Vn− 3

, ∀n≥ 4.
⎧⎪⎨

⎪⎩

(27)

Proof

(1) From (24), we get

Un

Vn

􏼠 􏼡 �
K(t)xn− 1 + L(t)p(t)yn− 1

L(t)xn− 1 + K(t)yn− 1
􏼠 􏼡. (28)
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Hence, it is easily seen that

U
2
n − p(t)V

2
n � K(t)xn− 1 + L(t)p(t)yn− 1( 􏼁

2
− p(t) L(t)xn− 1 + K(t)yn− 1( 􏼁

2

� K(t)
2

x
2
n− 1 − p(t)y

2
n− 1􏼐 􏼑 − p(t)L(t)

2
x
2
n− 1 − p(t)y

2
n− 1􏼐 􏼑

� K(t)
2

− p(t)L(t)
2

� 2.

(29)

Since x2
n− 1 − p(t)y2

n− 1 � 1, and K(t)2 − p(t)L(t)2 �

2.
(2) From (24), we get

Un

Vn

􏼠 􏼡 �
K(t) L(t)p(t)

L(t) K(t)
􏼠 􏼡

xn− 1

yn− 1
􏼠 􏼡. (30)

)en,

xn− 1

yn− 1

⎛⎝ ⎞⎠ �

K(t) L(t)p(t)

L(t) K(t)

⎛⎝ ⎞⎠

− 1
Un

Vn

⎛⎝ ⎞⎠

�

K(t)L(t)Un + 2 − K(t)
2

􏼐 􏼑Vn

2L(t)

− L(t)Un + K(t)Vn

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(31)

)en,

xn− 1 �
K(t)L(t)Un + 2 − K(t)

2
􏼐 􏼑Vn

2L(t)
,

yn− 1 �
− L(t)Un + K(t)Vn

2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(32)

On the other hand, by using (10) and (32), we get

Un+1

Vn+1
􏼠 􏼡 �

K(t) L(t)p(t)

L(t) K(t)
􏼠 􏼡

xn

yn

􏼠 􏼡

�
K(t) L(t)p(t)

L(t) K(t)
􏼠 􏼡

a(t)xn− 1 + b(t)p(t)yn− 1

b(t)xn− 1 + a(t)yn− 1
􏼠 􏼡

�
xn− 1(K(t)a(t) + p(t)L(t)b(t)) + yn− 1(K(t)b(t) + p(t)L(t)a(t))

xn− 1(L(t)a(t) + b(t)K(t)) + yn− 1(b(t)L(t)p(t) + a(t)K(t))
􏼠 􏼡.

(33)

Applying (32) and (33), we find

Un+1 � xn− 1(K(t)a(t) + p(t)L(t)b(t)) + yn− 1(K(t)b(t) + p(t)L(t)a(t))

�
K(t)L(t)Un + 2K(t)

2
+ 1􏼐 􏼑Vn

2L(t)
⎛⎝ ⎞⎠(a(t)K(t) + b(t)L(t)p(t))

+
− L(t)Un + K(t)Vn

2
􏼠 􏼡(b(t)L(t)p(t) + a(t)K(t))

�
2a(t)Un + 2b(t)p(t)L(t)Vn

2L(t)

� a(t)Un + b(t)p(t)vn.

(34)
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Similarly, we prove that

Vn+1 � b(t)Un + a(t)Vn , ∀n≥ 3. (35)

(3) From (25), we get

Un � a(t)Un− 1 + b(t)p(t) b(t)Un− 2 + a(t)Vn− 2( 􏼁

� a(t)Un− 1 + b(t)
2
p(t)Un− 2 + a(t)b(t)vn− 2

� a(t)Un− 1 + a(t)
2

− 1􏼐 􏼑Un− 2 + a(t)b(t)Vn− 2

� a(t)Un− 1 + a(t) a(t)Un− 2 + b(t)p(t)vn− 2( 􏼁 − Un− 2

� 2a(t)Un− 1 − Un− 2.

(36)

Similarly, we prove that

Vn � 2a(t)Vn− 1 − Vn− 2 , ∀n≥ 3. (37)

(4) From (22) and (26), we get

Un � Un − Un− 1 + Un− 1

� 2a(t)Un− 1 − Un− 2 − 2a(t)Un− 2 + Un− 3 + Un− 1

� (2a(t) + 1) Un− 1 − Un− 2( 􏼁 + Un− 3

� 2K(t)
2

− 1􏼐 􏼑 Un− 1 − Un− 2( 􏼁 + Un− 3.

(38)

Similarly, we prove that

Vn � 2K(t)
2

− 1􏼐 􏼑 Vn− 1 − Vn− 2( 􏼁 + Vn− 3 , ∀n≥ 4, (39)

and we consider the number of polynomial solutions of
Diophantine equation. Now,

E: x
2

− p(t)y
2

− 2K(t)x + 2p(t)L(t)y � 0, (40)

where (K(t), L(t)) is the fundamental solution of equation
(21).

We have to transform E into an appropriate Diophantine
equation which can be easily solved. To get this, let

T:
x � U + M,

y � V + N.
􏼨 (41)

be a translation for some M and N.
By applying the transformation T to E, we get

T(E) � (U + M)
2

− p(t)(V + N)
2

− 2K(t)(U + M) + 2p(t)L(t)(V + N) � 0. (42)

In (42), we obtain U(2M − 2K(t)) and
V(− 2p(t)N + 2p(t)L(t)). So we get M � K(t) and
N � L(t). Consequently, for x � U + K(t), y � V + L(t), we
have the Diophantine equation

􏽥E: U
2

− p(t)V
2

� 2, (43)

which is Pell equation.
Now, we try to find all polynomial solutions (Un, Vn) of

T(E), and then, we can retransfer all results from T(E) to E

by using the inverse of T. □

Theorem 5. Let E be the Diophantine equation in (40),
where (K(t), L(t)) is the fundamental solution of equation
(43); then,

(1) $e fundamental (minimal) solution of E is

X1, Y1( 􏼁 � (2K(t), 2L(t)). (44)

(2) Define the sequence

xn, yn( 􏼁􏼈 􏼉n≥ 1 � Un + K(t), Vn + L(t)( 􏼁􏼈 􏼉, (45)

where (Un, Vn)􏼈 􏼉 is defined in (24).$en, (Xn, Yn) is a
solution of E. So, it has infinitely many integer so-
lutions (Xn, Yn) ∈ Z × Z.

(3) $e solutions (Xn, Yn) satisfy the recurrence relations

Xn+1 � a(t)Xn + b(t)p(t)Yn +(1 − a(t))K(t) − b(t)p(t)L(t),

Yn+1 � b(t)Xn + a(t)Yn − b(t)K(t) +(1 − a(t))L(t),
􏼨 (46)

For n≥ 1.
(4) $e solutions (Xn, Yn) satisfy the recurrence relations

Xn � 2a(t)Xn− 1 − Xn− 2 + 2(1 − a(t))K(t),

Yn � 2a(t)Yn− 1 − Yn− 2 + 2(1 − a(t))L(t),
􏼨 (47)

Journal of Mathematics 5



For n≥ 3.
(5) $e solutions (Xn, Yn) satisfy the recurrence relations

Xn � 2K(t)
2

− 1􏼐 􏼑 Xn− 1 − Xn− 2( 􏼁 + Xn− 3,

Yn � 2K(t)
2

− 1􏼐 􏼑 Yn− 1 − Yn− 2( 􏼁 + Yn− 3.

⎧⎪⎨

⎪⎩
(48)

For n≥ 4.

Example 1. Let p(t) � t2 − 2; then, (U1, V1) � (t, 1) is the
fundamental solution of

􏽥E: U
2

− t
2

− 2􏼐 􏼑V
2

� 2. (49)

By )eorem 3, (x1, y1) � (t2 − 1, t) is the fundamental
solution of

x
2

− t
2

− 2􏼐 􏼑y
2

� 1. (50)

By )eorem 4, it is easily seen that some other solutions
of equation 􏽥E are

U2

V2
􏼠 􏼡 �

2t
3

− 3t

2t
2

− 1
⎛⎝ ⎞⎠,

U3

V3
􏼠 􏼡 �

4t
5

− 10t
3

+ 5t

4t
4

− 6t
2

+ 1
⎛⎝ ⎞⎠,

U4

V4
􏼠 􏼡 �

8t
7

− 30t
5

+ 29t
3

− 9t

8t
6

− 20t
4

+ 12t
2

− 1
⎛⎝ ⎞⎠,

U5

V5
􏼠 􏼡 �

16t
9

− 76t
7

+ 112t
5

− 69t
3

+ 11t

16t
8

− 56t
6

+ 60t
4

− 20t
2

+ 1
⎛⎝ ⎞⎠.

(51)

It can be concluded now that the fundamental solution
of

E: x
2

− t
2

− 2􏼐 􏼑y
2

− 2tx + 2t
2

− 4􏼐 􏼑y � 0 (52)

is (2t, 2). By )eorem 5, it is easily seen that some other
solutions of equation E are

X2

Y2
􏼠 􏼡 �

2t
3

− 2t

2t
2

⎛⎝ ⎞⎠,

X3

Y3
􏼠 􏼡 �

4t
5

− 10t
3

+ 6t

4t
4

− 6t
2

+ 2
⎛⎝ ⎞⎠,

X4

Y4
􏼠 􏼡 �

8t
7

− 30t
5

+ 29t
3

− 8t

8t
6

− 20t
4

+ 12t
2

⎛⎝ ⎞⎠,

X5

Y5
􏼠 􏼡 �

16t
9

− 76t
7

+ 112t
5

− 69t
3

+ 12t

16t
8

− 56t
6

+ 60t
4

− 20t
2

+ 2
⎛⎝ ⎞⎠.

(53)
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