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In this paper, the modification of multiple dependent state sampling plan is proposed and designed for assuring a mean lifetime of
the products under Birnbaum–Saunders distribution and Weibull distribution. (e optimal parameters of the proposed plan are
determined based on two points on the operating characteristic curve approach. Different combinations of producer’s risk and
consumer’s risk are considered for plan parameters determination. (e efficacy of the proposed plan is compared with those of
other existing sampling plans using an average sample number and operating characteristic function. (e economic designing of
the proposed plan is also considered and the comparative study is done based on the total cost of the inspection.

1. Introduction

Acceptance sampling is playing an important role to ensure
the quality of the product through proper inspection of the
raw material and finished products. Inspection of a lot of
products through the acceptance sampling will safeguard the
consumers and the producers by showing products’ quality
to select the products with confidence and by providing a
chance to prove the products quality with low cost, re-
spectively. At the time of inspection, a random sample of
items selected from the lot is tested and lot-sentencing is
done on the basis of information obtained from the sam-
ple(s). A lot of products are accepted if the total number of
nonconforming items or failures is less than or equal to the
allowable number of nonconforming items or failure items
or acceptance number.

Due to the high reliability of electronic products, it may
not be possible to test all items for ensuring average life of
the product. (erefore, the use of an acceptance sampling
plan is very helpful in making a decision about the lot before

it is supplied to the market. For example, in life testing, a
sample of items is selected and put on the test for some
specified time. (e failure time of the component/product is
modeled by some statistical distributions. An acceptance/
rejection decision is made using sample size and allowed
number of failure items for the test. (e lot of products is
accepted if the allowed or lesser number of failures is ob-
served before the inspection time is ended; otherwise, a lot of
products are rejected. Several sampling plans are available in
the literature; among those, single sampling plan (SSP) is the
simplest plan to implement in industries such as electronic
products manufacturing. In SSP, a decision about the lot-
sentencing is taken using single sample information. A
number of authors have investigated on designing of ac-
ceptance sampling plans for ensuring the lifetime of the
products under various lifetime distributions. including
[1, 2]. Jun et al. [1] proposed variables SSP and double
sampling plan (DSP) under Weibull distribution and they
utilized the concept of sudden death testing in order to
reduce the inspection time. In addition, they proved that the

Hindawi
Journal of Mathematics
Volume 2021, Article ID 7470196, 13 pages
https://doi.org/10.1155/2021/7470196

mailto:aslam_ravian@hotmail.com
https://orcid.org/0000-0003-0644-1950
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7470196


average sample number (ASN) can be reduced by DSP. In
order to reduce the inspection time as well as inspection cost,
Rao [2] proposed group acceptance sampling plans under
Weibull distribution and generalized exponential distribu-
tion, respectively. SSP has been designed under Birn-
baum–Saunders distribution and generalized exponential
distribution, respectively, by [3]. Rasay et al. [4] considered
the designing of a sequential sampling plan under Weibull
distribution based on time truncated life test. Obviously, the
inspection cost depends on the sample size selected from a
lot of the products. Lio et al. [3] have shown that SSP re-
quired a larger sample to make an acceptance/rejection
decision about the lot. (e larger sample size means it
consumes more time and cost for the life test experiment.
(erefore, some more efficient sampling schemes such as
multiple dependent state (MDS) sampling plan can be ap-
plied for the reduction of inspection cost and make a de-
cision by utilizing the current sample and/or previous
sample information. Wortham and Baker [5] introduced
MDS sampling. Balamurali and Jun [6] proved that the MDS
sampling plan is more efficient than the SSP in terms of
sample size. Balamurali et al. [7] designed an MDS sampling
plan to ensure the median life of the products under gen-
eralized inverted exponential distribution. Nadi and Gildeh
[8] proposed a group MDS sampling plan to assure the
actual Weibull distributed mean life of the product, which is
longer than the specified one. Aslam et al. [9] studied the
generalized MDS sampling plan to provide mean life as-
surance for the products under three lifetime distributions:
gamma distribution, Burr type XII distribution, and Birn-
baum-Saunders distribution. More details about such
sampling plans can be seen in [10–12].

(e MDS sampling plans available in the literature
utilize the sample information of current lot and/or pre-
ceding lots. AlthoughMDS sampling plan considers certain
amount of preceding lots’ sample information to dispose
the current lot having moderate quality using minimum
sample size, this plan calls for immediate rejection of the
current lot if any of the preceding lots has moderate quality
even when remaining lots are of good quality (i.e., any of
the samples from the specified number of preceding lots’
consists of failure items such as c1< d≤ c2). (is will def-
initely increase the producer’s risk. Hence, there is a ne-
cessity to introduce a new sampling plan to overcome the
aforementioned drawback of MDS sampling plan. For this
reason, in this paper, we introduce a modified version of the
MDS sampling plan to achieve more reduction in the
sample size with the desired protection. It is expected that
the modified MDS sampling plan will be more flexible and
more efficient than the existing MDS sampling plan in
terms of sample size and cost required for the inspection.
By exploring the literature and to the best of our knowl-
edge, there is no study on the design of sampling plans for
life tests using the modified MDS sampling. In this paper,
we attempt to design this sampling plan for some popular
distributions. We will also develop a cost model for the
modified MDS sampling plan. (e comparison of the
proposed plan with existing plans is given in terms of cost
and sample size.

2. Weibull and Birnbaum-
Saunders Distributions

2.1.Weibull Distribution. (eWeibull distribution has been
applied in numerous areas to model the time to failure of the
product and also this distribution is considered as a suitable
model for failure forecasting and prediction (see [13]). In
engineering fields, this distribution is used to fit the strength
reliability of components. In biology, the survival analysis
(see [14]) can be done under Weibull distribution. In ac-
ceptance sampling, this distribution plays an important role
when designing the sampling plan for providing a product’s
lifetime assurance. Nowadays, the Weibull distribution is
used in statistical quality control (SQC) to design the control
chart and to design the sampling plan (see, e.g., [1, 15–17]).
In this paper, we design a modified MDS sampling plan
under Weibull distribution for providing mean lifetime
assurance for the product. Let us assume that the time to
failure of a product follows a Weibull distribution and the
cumulative distribution function (CDF) is given as follows:

F(t; λ, δ) � 1 − exp −
t

λ
 

δ
 , t≥ 0, λ> 0, δ > 0, (1)

where δ is the known shape parameter and λ is an unknown
scale parameter. (e mean of the Weibull distribution is
obtained as

μ �
λ
δ

  Γ
1
δ

 , (2)

where Γ(·) is the complete gamma function. (e probability
that the product will fail before the experiment time t0 under
the Weibull distribution is obtained by the following
equation:

p � 1 − exp −
t0

λ
 

δ
 . (3)

We write the experiment time t0 in terms of specified
mean life µ0 such as t0 � aµ0 for a constant a (experiment
termination ratio). (erefore, the equation of obtaining the
failure probability of a product before the experiment time t0
under the Weibull distribution can be rewritten as

p � 1 − exp −a
δ μ0

μ
 

δ Γ(1/δ)

δ
 

δ
⎛⎝ ⎞⎠. (4)

Sometimes, the shape parameter of the product lifetime
distribution is unknown and such situations are handled by
estimating the unknown shape parameter using the past
history of product lifetime data. For any specified values of
the shape parameter, mean ratio, and experiment termi-
nation ratio, the failure probability can be calculated using
equation (4).

2.2. Birnbaum–Saunders Distribution. (e Birnbaum–Sa-
unders (BS) distribution was introduced by [18] to model the
failures due to cracks. (is distribution is also known as the
fatigue life distribution and is extensively used in reliability
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studies. (is distribution has been used in various fields
including electronics and food industry and medical and
construction fields. For example, [19] applied the process
capability indices for BS processes in the electronics and
food industries. Desousa et al. [20] utilized this distribution
and they have shown that this distribution is a good al-
ternative to describe the medical data. Leiva et al. [21] used
BS distribution to model the hardness of polymeric bone
cement. In addition, this distribution and generalized form
of this distribution have been applied in SQC to design the
sampling plan as well as the control chart (see, i.e., [22, 23]).
In this paper, we use the BS distribution to design a modified
MDS sampling plan for ensuring the product’s mean life-
time. (e CDF of BS distribution is

F(t;ω,σ) �Φ
1
ω

t

σ
 

(1/2)

−
σ
t

 
(1/2)

  , t≥0,ω>0,σ>0,

(5)

where ω is the shape parameter and it is assumed to be
known, σ is the unknown scale parameter, and Φ(·) is a
standard normal CDF. (e mean of the BS distribution is
given as follows:

μ � σ 1 +
ω2

2
 . (6)

(e failure probability of the product before the ex-
periment time t0 under BS distribution is

p � Φ
1
ω

t0

σ
 

(1/2)

−
σ
t0

 

(1/2)⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (7)

We can write the scale parameter in terms of mean value
and the experiment time t0 is expressed as a product of
experiment termination ratio and specified mean life μ0 such
as t0 � aµ0. (erefore, the failure probability of a product
before the experiment time t0 where the lifetime follows BS
distribution is given as

p � Φ
1
ω

a 1 + ω2/2( ( 

μ/μ0( 
 

(1/2)

−
μ/μ0( 

a 1 + ω2/2( )( )
 

(1/2)⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦.

(8)

(e above equation can be used to obtain the failure
probability of the product for different combinations of the
shape parameter, mean ratio, and experiment termination
ratio, where the lifetime follows BS distribution. In this
design, the sample item is classified as nonconforming if it
fails before the experiment time t0.

3. Designing of Modified MDS Sampling Plan
Based on Time Truncated Life Test

In the literature of acceptance sampling, to overcome the
drawbacks of zero acceptance number SSP, Dodge (1955) in-
troduced a sampling plan called chain sampling plan and
designated as ChSP-1. In 1976, the generalized version of ChSP-
1 was introduced by Wortham and Baker [5] and named as an
MDS sampling plan. (ese two sampling plans are also

categorized under special purpose sampling plans. Many au-
thors have investigated the performance of special purpose
sampling plans including ChSP-1 and MDS sampling plan. It
has been proved that the reduction of sample size with desired
protection for both producer and consumer can be achieved by
using the special purpose sampling plans.MDS sampling plan is
used to inspect the submitted lots which are coming serially in
the order of production and such plans will reduce the sample
size rather than conventional sampling plans such as SSP and
DSP. (erefore, in this paper, we consider the designing of a
modified version of the MDS sampling plan to achieve more
reduction in the sample size with the desired protection. (e
modified MDS sampling plan is also portrayed by four pa-
rameters as in MDS sampling plan, namely, n, c1, c2, and m,
where n is the sample size, c1 is the maximum number of
nonconforming items or failure items for unconditional ac-
ceptance c1≥ 0, c2 is the maximum number of additional
nonconforming items or failure items for conditional accep-
tance c2> c1, andm is the number of preceding lots required for
current lot disposition. However, there is a difference between
the operating procedures of the MDS sampling plan and the
modified MDS sampling plan. (at is, both sampling plans
provide an additional chance to the producer when the current
lot quality is moderate.(e difference is that theMDS sampling
plan will accept the current lot if preceding “m” samples (i.e.,
samples from preceding “m” lots) consist of nonconforming
items less than or equal to c1. In the modified MDS sampling
plan, the acceptance of the current lot will be allowed even if any
of the “m” preceding lots has moderate quality but the
remaining (m−1) samples out of m samples should satisfy the
condition as in the MDS sampling plan. (e conditions under
which the modified MDS sampling plan can be implemented
and the operating procedure based on time truncated life test
are as follows.

3.1. Conditions for Applications. (e development and ap-
plication of modified MDS sampling plan are the same as in
MDS sampling procedures; those are listed as follows: (1)
(e product to be inspected comprises a series of successive
lots produced by a continuing process. (2) Normally, lots are
expected to be of essentially the same quality. (3) A fixed
number of sample items are selected from each lot. (4) (e
consumer has faith in the integrity of the producer.

3.2. Operating Procedure.

Step 1. Select a random sample of size n from the
current lot and perform life test on the sample items for
specified time t0 and count the number of items that
failed before the time t0 (or count the number of
nonconforming items in the case of binomial distri-
bution); denote it as d.
Step 2. Accept the current lot if d≤ c1 and reject the
current lot if d> c2. Otherwise, go to Step 3.
Step 3. Accept the current lot if there is at most one
preceding lot that has the moderate quality and the
remaining (m−1) lots out ofm preceding lots have been
accepted with d≤ c1.
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It is obvious that the attributes MDS sampling plan is the
general case of SSP. Similarly, it should be noted that the
proposed modified MDS sampling plan also converges to
SSP under some conditions which are listed as follows:

(i) When m⟶∞ and/or c2 � c1 � c (say), modified
MDS sampling plan reduces to SSP with acceptance
number c1.

(ii) When m� 0, the modified MDS plan reduces to SSP
with acceptance number c2.

(e probability that the acceptance of current lot is based
on a single sample is denoted by L1(p) and given as follows:

L1(p) � P d≤ c1( . (9)

(e probability that the quality of the current lot will be
moderate is denoted by L2(p) and obtained as follows:

L2(p) � P c1 <d≤ c2( . (10)

(e probability of acceptance of preceding “m” lots
with the condition of d ≤ c1 is (P(d ≤ c1))m. Similarly, the
probability that any of the preceding “m” lots has
moderate quality is {m(P(d ≤ c1))m−1(P(c1< d ≤ c2))} and
also these two events are mutually exclusive. Based on the
information of preceding “m” lots, probability of ac-
ceptance of the current lot with moderate quality is
(P(c1< d ≤ c2))[(P(d ≤ c1))m + {m(P(d ≤ c1))
m−1(P(c1< d ≤ c2))}].

(erefore, the operating characteristic (OC) function of
modified MDS sampling plan is given by

Pa(p) � P d≤c1(  + P c1<d≤c2( 

· P d≤c1( ( 
m

+ m P d≤c1( ( 
m−1

P c1<d≤c2(  .

(11)

Under the binomial distribution, equation (11) can be
rewritten as

Pa(p) � 

c1

d�0

n

d
 p

d
(1− p)

n−d
+ 
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d�c1+1

n

d
 p

d
(1− p)

n−d

· 

c1

d�0

n

d
 p

d
(1− p)

n−d⎛⎝ ⎞⎠

m

+ m 

c1

d�0

n

d
 p

d
(1− p)

n−d⎛⎝ ⎞⎠

m−1



c2

d�c1+1

n

d
 p

d
(1− p)

n−d⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(12)

(e plan that reduces the inspection time and cost is
admirable and is called an economical sampling plan. One
can attain such a reduction in time and cost by minimizing
ASN. Hence, the main objective of this paper is to reduce the
ASN of the modified MDS sampling plan rather than the
ASN of the MDS sampling plan. Because of ASN reduction,
the proposed plan will be implemented with minimum cost.
It is important to note that the ASN of a modified MDS
sampling plan is its sample size. When designing the
sampling plan for assuring the mean lifetime, the ratio
between true mean lifetime and the specified lifetime of the
product μ/μ0 plays an important role. (e probability of
failure corresponding to the mean ratio is considered as the
quality of the products. In this designing, we consider the
probabilities of failure corresponding to the mean ratios
μ/μ0 � 2, 4, 6, 8, 10 as acceptable quality level (AQL or p1) and
the probability of failure when the true mean life and the

specified mean life are equal (i.e., μ/μ0 �1) is considered as
limiting quality level (LQL or p2). We select two points on
the OC curve approach to design the sampling plan that
considers both producer’s and consumer’s risks simulta-
neously. In order to determine the optimal parameters, we
use a nonlinear optimization problem in which the mini-
mization of ASN at p1 is considered as objective function and
the constraints are related to the probabilities of acceptance
of the lot at AQL and LQL. (e optimization problem is as
follows.

Minimize ASN(p1).
Subject to Pa(p1)≥ 1 − α,

Pa p2( ≤ β, n> 1, m≥ 1, c2 > c1 ≥ 0, (13)

where,

Pa p1(  � 
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d� 0

n

d
 p

d
1 1 − p1( 

n− d
+ 
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n

d
 p

d
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n− d

· 

c1

d� 0

n

d
  p

d
1 1 − p1( 

n− d⎛⎝ ⎞⎠

m

+ m 

c1

d� 0

n

d
 p

d
1 1 − p1( 

n− d⎛⎝ ⎞⎠

m− 1



c2

d� c1+1

n

d
 p

d
1 1 − p1( 

n− d⎛⎝ ⎞⎠
⎧⎪⎨
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⎫⎪⎬

⎪⎭
.

(14)
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Pa p2(  � 
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n
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(15)

Under binomial distribution, the proposed plan is
designed for specified values of p1 and p2. Under Weibull
and Birnbaum-Saunders distributions, the values of p1 and
p2 are calculated using equations (4)–(8), respectively, for
different ratios of a true mean lifetime and the specified
lifetime of the product μ/μ0.

We determine the values of n, c1, c2, andm of the proposed
modified MDS sampling plan under three distributions,
namely, binomial, Weibull, and BS distributions. (e optimal
parameters are selected so that the risks of both producer and
consumer are satisfied simultaneously with the minimum
sample size. Also, the optimal parameters are determined for
some randomly selected values of the producer’s risk, con-
sumer’s risk, shape parameter of the distributions, and ex-
periment termination ratio. In this design, the producer risk is
fixed as α� 0.05 with different values of consumer risks. (at
is, under binomial distribution, the consumer’s risk is taken as
the only β� 0.10 but, in the other two distributions, four values
of β are considered, 0.25, 0.10, 0.05, and 0.01, and also two
cases of experiment termination ratio are considered as a� 0.5
and a� 1.0. Under BS distribution, the values of shape pa-
rameter ω� 1.0 and ω� 1.5 are chosen and the values of shape
parameter for Weibull distribution are δ � 1.2, 1.5, and 2.0.
Optimal parameters of the proposed plan obtained under
binomial distribution for specified values of AQL and LQL are
provided in Table 1. From this table, we can observe that, for
the same AQL value, the sample size decreases when there is
an increment in LQL. Tables 2–6 report the optimal pa-
rameters of the proposed plan obtained under BS distribution
and Weibull distribution, respectively.

3.2.1. Observations from Tables 2 and 3. For fixed values of a
and µ/µ0, the sample size increases if there is either a decrement
in consumer’s risk or an increment in the shape parameter
value.(ere is no certain trend in sample size when a increases.
(e sample size is reduced if the mean ratio increases.

3.2.2. Observations from Tables 4–6. For fixed values of β and
µ/µ0, the sample size decreases if either experiment termi-
nation ratio or mean ratio increases. When β decreases, the
sample size is increased.(e sample size decreases or remains
constant if the shape parameter changes from 1.2 to 1.5. From
all tables, no certain trend can be observed in the value of m.

3.3. Example. In recent days, statistical distributions are fre-
quently used in modeling fatigue data or failure time data
because the lifetimes of a fatiguing material can vary due to
manufacturing variation or random flaws in the material. In
addition, BS distribution is considered as a suitable model for

fatigue data as well as failure time data representation among
other distributions and also this distribution is referred to as the
fatigue-life distribution (see [18]). (erefore, the quality in-
spector wants to implement the proposed modified MDS
sampling plan to inspect the breakdown times (in minutes) of
electrical insulating fluid at 38 kV under BS distribution based
on time truncated life test. (e target average breakdown time
of electrical insulating fluids is specified as μ0� 40 (i.e., µ0� 40)
minutes. It is assumed that the shape parameter of the dis-
tribution of breakdown time of electrical insulating fluids is
ω� 1.0. Suppose that the consumer will accept a lot of products
with probability 0.05 when the true breakdown time is equal to
μ0. (e producer would like the lot of products to be accepted
with a probability higher than 0.95 when μ� 160 minutes.
Suppose that the quality personnel prefer to utilize the pro-
posed modified MDS sampling plan to guarantee that the
average breakdown time of electrical insulating fluids is at least
μ0 by using a truncated life test during 20 minutes. (e
aforementioned information leads to α� 0.05, β� 0.05,
μ/μ0� 4, and a� 0.5. From Table 2, it can be selected that
modified MDS sampling plan parameters are n� 7, c1� 0,
c2�1, and m� 2. For implementation purpose, we consider a
real data set given by [24]. (e breakdown time of 8 electrical
insulating fluids is provided but for illustration purpose, the
breakdown time of 7 electrical insulating fluids is considered,
and we slightly modify the breakdown times of electrical in-
sulating fluids. It is found that the breakdown time of 7
electrical insulating fluids is well fitted to a BS distribution with
shape parameter 1.00054≈1.0, that is, ω� 1.0. (e imple-
mentation of the proposed plan for testing the breakdown time
of electrical insulating fluids is as follows.

A random sample of 7 electrical insulating fluids is
selected from the current lot and performs the life-testing
operations for 20 minutes. Observe and record the break-
down time of electrical insulating fluids. Suppose that the
breakdown time of electrical insulating fluids at 38 kV is
given as follows:

It is observed from the above data that the breakdown
time of none of the sampled electrical insulating fluids is less
than 20 minutes. (erefore, we accept the current lot, since
d� 0 (�c1).

4. Comparative Study

4.1. Comparison Using ASN. In order to show the better
performance of the proposed modified MDS sampling plan in
reducing the ASN compared to existing plans such as MDS
sampling plan and SSP, the ASN of these plans are reported in

0.29 0.39 0.47 1.28 2.38 2.73 3.5
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Table 7. ASN of the MDS sampling plan is obtained from [16].
Also, the ASN of SSP is calculated by substituting c2� c1� c
(say) in OC function of modified MDS sampling plan. (e
following trends can be observed in Table 7:

(i) ASN of the proposed plan is smaller than the ASN of
the MDS sampling plan when µ/µ0� 2. Also, for most
of the AQL and LQL combinations, the ASN of the
proposed plan is small when comparedwith the ASN of
SSP. For example, when α� 0.05, β� 0.01, δ � 2, a� 0.5,

and µ/µ0� 4, the ASN of the proposed plan is 24. (e
respective ASN of the MDS sampling plan and SSP are
35 and 44.

(ii) ASN of all those plans coincide when the mean ratio
increases. (is represents that all three plans require
the same sample size when the product’s quality is
good. However, the producer’s risk is greatly re-
duced under the proposed sampling plan when the
quality level is good.

Table 1: Plan parameters of modified MDS sampling plan for binomial distribution with β� 0.10.

p1 p2 n c1 c2 m Pa(p1) Pa(p2)

0.0025
0.025 92 0 2 4 0.9590 0.0983
0.030 76 0 1 4 0.9564 0.0990
0.050 45 0 1 4 0.9867 0.0997

0.005
0.04 59 0 2 3 0.9541 0.0961
0.05 46 0 2 4 0.9589 0.0953
0.10 22 0 1 4 0.9874 0.0987

0.010

0.05 77 1 3 4 0.9635 0.0978
0.10 22 0 2 4 0.9630 0.0996
0.15 15 0 1 2 0.9857 0.0985
0.20 11 0 1 2 0.9928 0.0972

0.03

0.09 60 2 7 3 0.9518 0.0970
0.12 32 1 4 3 0.9581 0.0981
0.15 25 1 3 3 0.9787 0.0971
0.30 7 0 1 2 0.9716 0.0941

0.05

0.15 35 2 6 3 0.9571 0.0970
0.20 19 1 4 3 0.9604 0.0904
0.25 14 0 2 1 0.9555 0.0918
0.50 4 0 1 2 0.9762 0.0713

Table 2: Plan parameters of modified MDS sampling plan for Birnbaum-Saunders distribution with ω� 1.0.

β μ/μ0
a� 0.5 a� 1.0

n c1 c2 M Pa(p1) Pa(p2) n c1 c2 m Pa(p1) Pa(p2)

0.25

2 11 2 4 2 0.9650 0.1978 9 4 6 2 0.9604 0.2441
4 3 0 1 4 0.9931 0.2416 4 0 2 1 0.9811 0.1860
6 ↑ ↑ ↑ ↑ 0.9998 ↑ 2 0 1 2 0.9925 0.1700
8 ↑ ↑ ↑ ↑ 1.0000 ↑ ↑ ↑ ↑ ↑ 0.9988 ↑
10 ↑ ↑ ↑ ↑ 1.0000 ↑ ↑ ↑ ↑ ↑ 0.9998 ↑

0.10

2 16 3 5 2 0.9558 0.0955 15 6 11 2 0.9558 0.0803
4 5 0 1 3 0.9814 0.0889 5 0 2 1 0.9562 0.0530
6 ↑ ↑ ↑ ↑ 0.9994 ↑ 3 0 1 2 0.9775 0.0444
8 ↑ ↑ ↑ ↑ 1.0000 ↑ ↑ ↑ ↑ ↑ 0.9962 ↑
10 ↑ ↑ ↑ ↑ 1.0000 ↑ ↑ ↑ ↑ ↑ 0.9993 ↑

0.05

2 19 3 7 2 0.9568 0.0460 19 8 12 2 0.9650 0.0415
4 7 0 1 2 0.9710 0.0343 7 0 3 1 0.9779 0.0351
6 ↑ ↑ ↑ ↑ 0.9989 ↑ 3 0 1 2 0.9775 0.0444
8 ↑ ↑ ↑ ↑ 0.9999 ↑ ↑ ↑ ↑ ↑ 0.9962 ↑
10 ↑ ↑ ↑ ↑ 1.0000 ↑ ↑ ↑ ↑ ↑ 0.9993 ↑

0.01

2 30 5 9 2 0.9552 0.0093 27 11 16 2 0.9513 0.0077
4 10 0 2 2 0.9777 0.0081 8 0 3 1 0.9602 0.0095
6 10 0 1 2 0.9976 0.0076 5 0 1 1 0.9512 0.0069
8 ↑ ↑ ↑ ↑ 0.9999 ↑ ↑ ↑ ↑ ↑ 0.9902 ↑
10 ↑ ↑ ↑ ↑ 1.0000 ↑ ↑ ↑ ↑ ↑ 0.9979 ↑

↑: use the plan above.
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From this comparison, we conclude that the proposed
plan will be very effective in protecting the producer when
the product has good quality.

4.2. Comparison Using the OC Curve. In order to investigate
the effect of the parameter m on the probability of accep-
tance of the proposed plan, we consider the OC curves of the

proposed plan having the same values of n, c1, and c2 but
with different values of m. To draw the OC curves, we
consider the optimal values of n, c1, c2, and m such that the
respective producer and consumer risks of 0.05 and 0.10 are
satisfied at AQL (or p1)� 0.005 and LQL (or p2)� 0.05. (e
corresponding plan for the aforementioned specifications is
n� 46, c1 � 0, c2 � 2, and m� 4 and OC curves for this plan

Table 3: Plan parameters of modified MDS sampling plan for Birnbaum-Saunders distribution with ω� 1.5.

β μ/μ0
a� 0.5 a� 1.0

n c1 c2 M Pa(p1) Pa(p2) n c1 c2 m Pa(p1) Pa(p2)

0.25

2 18 7 10 3 0.9525 0.2352 20 11 15 2 0.9614 0.2320
4 7 0 3 1 0.9669 0.2193 8 0 5 1 0.9614 0.2089
6 2 0 1 4 0.9602 0.2484 5 0 3 1 0.9787 0.2307
8 ↑ ↑ ↑ ↑ 0.9893 ↑ 4 0 2 1 0.9736 0.1311
10 ↑ ↑ ↑ ↑ 0.9970 ↑ 2 0 1 2 0.9656 0.1286

0.10

2 31 11 16 2 0.9505 0.0821 30 17 21 3 0.9525 0.0978
4 11 2 5 2 0.9693 0.0354 12 0 7 1 0.9625 0.0815
6 4 0 2 2 0.9588 0.0972 8 0 4 1 0.9612 0.0402
8 4 0 1 2 0.9690 0.0615 6 0 3 1 0.9840 0.0693
10 ↑ ↑ ↑ ↑ 0.9901 ↑ 3 0 2 2 0.9595 0.0509

0.05

2 39 14 19 2 0.9511 0.0462 38 21 29 3 0.9506 0.0467
4 11 2 5 2 0.9693 0.0354 14 5 9 2 0.9641 0.0122
6 7 0 2 1 0.9657 0.0454 8 0 4 1 0.9612 0.0402
8 5 0 2 2 0.9819 0.0373 7 0 3 1 0.9669 0.0173
10 5 0 1 2 0.9830 0.0277 5 0 2 1 0.9750 0.0303

0.01

2 60 21 29 2 0.9529 0.0087 ∗ ∗ ∗ ∗ ∗ ∗
4 16 3 6 2 0.9610 0.0080 16 6 9 2 0.9605 0.0083
6 10 1 3 2 0.9701 0.0085 11 0 5 1 0.9511 0.0068
8 7 0 2 2 0.9559 0.0067 10 0 4 1 0.9684 0.0025
10 7 0 1 1 0.9745 0.0086 6 0 2 1 0.9532 0.0061

∗plan does not exist. ↑: use the plan above.

Table 4: Plan parameters of modified MDS sampling plan for Weibull distribution with δ � 1.2.

β μ/μ0
a� 0.5 a� 1.0

n c1 c2 m Pa(p1) Pa(p2) n c1 c2 m Pa(p1) Pa(p2)

0.25

2 15 3 6 4 0.9500 0.2249 8 3 6 3 0.9545 0.2122
4 8 0 2 1 0.9756 0.2416 4 1 2 2 0.9807 0.2243
6 4 0 1 3 0.9716 0.2199 2 0 1 2 0.9794 0.2388
8 ↑ ↑ ↑ ↑ 0.9870 ↑ ↑ ↑ ↑ ↑ 0.9905 ↑
10 ↑ ↑ ↑ ↑ 0.9930 ↑ ↑ ↑ ↑ ↑ 0.9948 ↑

0.10

2 26 5 9 3 0.9610 0.0993 13 5 8 3 0.9544 0.0988
4 11 1 3 3 0.9732 0.0787 5 1 2 2 0.9540 0.0932
6 6 0 2 3 0.9604 0.0970 4 0 2 2 0.9513 0.0364
8 6 0 1 3 0.9658 0.0901 3 0 1 2 0.9718 0.0725
10 ↑ ↑ ↑ ↑ 0.9812 ↑ ↑ ↑ ↑ ↑ 0.9843 ↑

0.05

2 34 6 10 2 0.9523 0.0445 17 6 10 2 0.9556 0.0480
4 13 1 3 2 0.9687 0.0457 6 1 3 3 0.9510 0.0394
6 9 0 3 2 0.9581 0.0472 4 0 2 2 0.9513 0.0364
8 8 0 1 2 0.9538 0.0415 ↑ ↑ ↑ ↑ 0.9796 ↑
10 ↑ ↑ ↑ ↑ 0.9738 ↑ 4 0 1 2 0.9682 0.0255

0.01

2 52 9 15 2 0.9570 0.0098 26 9 15 2 0.9517 0.0095
4 22 0 4 1 0.9643 0.0096 11 0 4 1 0.9605 0.0087
6 15 0 2 1 0.9568 0.0086 7 0 2 1 0.9586 0.0097
8 12 0 2 2 0.9559 0.0083 ↑ ↑ ↑ ↑ 0.9843 ↑
10 ↑ ↑ ↑ ↑ 0.9777 ↑ 5 0 2 3 0.9570 0.0096

↑: use the plan above.
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with m� 1, 2, 3, and 4 are shown in Figure 1. It is observed
from this figure that the OC curves of the proposed plan with
m� 2, 3, and 4 are dominated by the OC curve of the plan
with m� 1. (is represents that the chance for accepting the
current lot is high if it depends only on the preceding lot
acceptance. When proportion nonconforming increases, the
OC curve with m� i moves toward the OC curve with
m� i+ 1, where i� 2 and 3. (is shows that the value of m

does not make a great impact on acceptance probability of
the current lot if proportion nonconforming increases. It is
to be mentioned that, for a large value of m, the OC curve
will approach an ideal OC curve. It is concluded from this
comparison that the impact of the parameter m in the
modified MDS sampling plan is significant.

Further, to compare the performance of the proposed
plan in discriminating lots based on the quality with existing

Table 5: Plan parameters of modified MDS sampling plan for Weibull distribution with δ � 1.5.

β μ/μ0
a� 0.5 a� 1.0

n c1 c2 m Pa(p1) Pa(p2) n c1 c2 m Pa(p1) Pa(p2)

0.25

2 15 2 4 3 0.9648 0.2350 6 2 4 4 0.9623 0.2290
4 5 0 1 3 0.9703 0.2455 2 0 1 3 0.9682 0.2059
6 ↑ ↑ ↑ ↑ 0.9925 ↑ ↑ ↑ ↑ ↑ 0.9924 ↑
8 ↑ ↑ ↑ ↑ 0.9972 ↑ ↑ ↑ ↑ ↑ 0.9973 ↑
10 ↑ ↑ ↑ ↑ 0.9987 ↑ ↑ ↑ ↑ ↑ 0.9988 ↑

0.10

2 24 3 6 3 0.9614 0.0985 10 3 5 2 0.9526 0.0957
4 8 0 2 3 0.9525 0.0962 4 0 2 2 0.9524 0.0513
6 8 0 1 3 0.9771 0.0900 3 0 1 2 0.9845 0.0928
8 ↑ ↑ ↑ ↑ 0.9914 ↑ ↑ ↑ ↑ ↑ 0.9940 ↑
10 ↑ ↑ ↑ ↑ 0.9960 ↑ ↑ ↑ ↑ ↑ 0.9971 ↑

0.05

2 29 3 7 2 0.9514 0.0493 13 4 7 3 0.9572 0.0490
4 11 0 2 2 0.9514 0.0466 7 0 2 1 0.9597 0.0169
6 10 0 1 3 0.9620 0.0484 4 0 1 2 0.9685 0.0345
8 ↑ ↑ ↑ ↑ 0.9855 ↑ ↑ ↑ ↑ ↑ 0.9877 ↑
10 ↑ ↑ ↑ ↑ 0.9932 ↑ ↑ ↑ ↑ ↑ 0.9941 ↑

0.01

2 47 5 10 2 0.9510 0.0091 21 6 10 2 0.9612 0.0076
4 23 1 3 2 0.9785 0.0087 9 1 3 2 0.9763 0.0061
6 16 0 2 2 0.9726 0.0082 6 0 2 2 0.9700 0.0063
8 16 0 1 2 0.9694 0.0078 6 0 1 1 0.9778 0.0083
10 ↑ ↑ ↑ ↑ 0.9851 ↑ ↑ ↑ ↑ ↑ 0.9886 ↑

↑: use the plan above.

Table 6: Plan parameters of modified MDS sampling plan for Weibull distribution with δ � 2.0.

β μ/μ0
a� 0.5 a� 1.0

n c1 c2 m Pa(p1) Pa(p2) n c1 c2 m Pa(p1) Pa(p2)

0.25

2 15 1 2 3 0.9501 0.2368 5 1 3 3 0.9676 0.1602
4 8 0 1 3 0.9930 0.2280 2 0 1 3 0.9949 0.2442
6 ↑ ↑ ↑ ↑ 0.9989 ↑ ↑ ↑ ↑ ↑ 0.9993 ↑
8 ↑ ↑ ↑ ↑ 0.9997 ↑ ↑ ↑ ↑ ↑ 0.9998 ↑
10 ↑ ↑ ↑ ↑ 0.9999 ↑ ↑ ↑ ↑ ↑ 0.9999 ↑

0.10

2 22 1 3 2 0.9520 0.0981 7 1 5 2 0.9520 0.0969
4 12 0 1 3 0.9818 0.0966 3 0 1 3 0.9847 0.0982
6 ↑ ↑ ↑ ↑ 0.9971 ↑ ↑ ↑ ↑ ↑ 0.9977 ↑
8 ↑ ↑ ↑ ↑ 0.9992 ↑ ↑ ↑ ↑ ↑ 0.9994 ↑
10 ↑ ↑ ↑ ↑ 0.9997 ↑ ↑ ↑ ↑ ↑ 0.9998 ↑

0.05

2 34 2 4 2 0.9614 0.0480 10 2 4 2 0.9565 0.0337
4 16 0 1 2 0.9747 0.0454 4 0 1 2 0.9783 0.0473
6 ↑ ↑ ↑ ↑ 0.9956 ↑ ↑ ↑ ↑ ↑ 0.9963 ↑
8 ↑ ↑ ↑ ↑ 0.9987 ↑ ↑ ↑ ↑ ↑ 0.9989 ↑
10 ↑ ↑ ↑ ↑ 0.9995 ↑ ↑ ↑ ↑ ↑ 0.9996 ↑

0.01

2 53 3 6 2 0.9680 0.0099 15 3 6 2 0.9673 0.0077
4 24 0 2 2 0.9794 0.0095 6 0 2 3 0.9562 0.0090
6 24 0 1 2 0.9892 0.0090 6 0 1 2 0.9903 0.0091
8 ↑ ↑ ↑ ↑ 0.9969 ↑ ↑ ↑ ↑ ↑ 0.9972 ↑
10 ↑ ↑ ↑ ↑ 0.9989 ↑ ↑ ↑ ↑ ↑ 0.9989 ↑

↑: use the plan above.
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sampling plans, the OC curve of the proposed plan along
with the same of MDS sampling plan and SSP is portrayed in
Figure 2. For this comparative study, the OC curves of
aforementioned plans are drawn using same values of pa-
rameters n� 15, c1 � 1, c2 � 2, and m� 3 for modified MDS
and MDS sampling plan and n� 15 and c� 1 for SSP. These
parameters are obtained from Table 6 to ensure Weibull
distributed mean life when the shape parameters δ � 2,
a� 0.5, α� 0.05, β� 0.25, and r1 � 2. It can be observed from
Figure 2 that the proposed plan yields more probability of
acceptance rather than MDS sampling plan and SSP for
small values of failure probability. (en the OC curve of
proposed plan coincides with the other two OC curves for
large values of failure probability. It is concluded from this
comparison that the discriminating power of the proposed
plan is better when compared to MDS sampling plan and
SSP.

5. Designing of Modified MDS Sampling
Plan with an Economic Perspective

Economic designing of sampling plans plays a significant role in
acceptance sampling because in statistical designing only the
two statistical errors, namely, rejection of good quality lot and
the acceptance of poor quality, are considered. It does not
consider the costs involved in the sampling plan imple-
mentation but, in economical designing, all the costs related to
the plan implementation such as inspection cost per item,
internal failure cost of an item, and the cost of an outgoing

failure item are considered. In addition, the changes (either
increment or decrement) in these costs and the plan parameters
affect the total cost (TC) of an inspection. (erefore, in this
section, we discuss the economical designing of a modified
MDS sampling plan for assuring Weibull distributed mean life
of the products. A number of authors have investigated the
economic designing of various sampling plans using distinct
approaches. For example, [25] presented a method for eco-
nomical designing of acceptance sampling plans by considering
continuous loss functions and inspection error. Aslam et al. [15]
proposed the economic designing of a group acceptance-
sampling plan to assure Weibull distributed lifetime of the
products using a Bayesian approach. Fallahnezhad et al. [26]
provided the designing of repetitive group acceptance sampling
plan with economic aspect by considering give-away cost per
unit of sold excess material and inspection error. Balamurali
et al. [27] proposed an economic model to select the optimal
quick switching sampling system that minimizes TC while
satisfying both the producer’s and consumer’s risk require-
ments. Hence, we consider the economic designing of the
proposed sampling plan in this section. Some of the perfor-
mancemeasures of the proposed plan are used in this economic
designing, which are Pa(p), the probability of acceptance, and
the average total inspection (ATI) (see [28]). ATI is defined as
follows:

ATI � n + 1 − Pa(p)( (N − n), (16)

where the acceptance probability of the lot under the pro-
posed modified MDS plan is obtained from equation (12).

Table 7: ASN of the proposed modified MDS (MMDS) plan, MDS sampling plan, and SSP for assuring Weibull distributed mean life with
shape parameters δ� 2 and a� 0.5.

β µ/µ0
MMDS MDS SSP

ASN Pa(p1) ASN Pa(p1) ASN Pa(p1)

0.25

2 15 0.9501 17 0.9560 28 0.9570
4 8 0.9930 8 0.9801 15 0.9859
6 ↑ 0.9989 ↑ 0.9957 8 0.9573
8 ↑ 0.9997 ↑ 0.9986 ↑ 0.9758
10 ↑ 0.9999 ↑ 0.9994 ↑ 0.9844

0.10

2 22 0.9520 29 0.9512 50 0.9684
4 12 0.9818 12 0.9583 21 0.9732
6 ↑ 0.9971 ↑ 0.9906 ↑ 0.9942
8 ↑ 0.9992 ↑ 0.9969 12 0.9639
10 ↑ 0.9997 ↑ 0.9987 ↑ 0.9767

0.05

2 34 0.9614 42 0.9527 64 0.9669
4 16 0.9747 16 0.9551 25 0.9629
6 ↑ 0.9956 ↑ 0.9900 ↑ 0.9918
8 ↑ 0.9987 ↑ 0.9967 16 0.9521
10 ↑ 0.9995 ↑ 0.9986 ↑ 0.9691

0.01

2 53 0.9680 62 0.9616 93 0.9656
4 24 0.9794 35 0.9871 44 0.9834
6 24 0.9892 24 0.9783 35 0.9844
8 ↑ 0.9969 ↑ 0.9927 ↑ 0.9948
10 ↑ 0.9989 ↑ 0.9969 24 0.9540

↑: use the plan above.
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Let us denote the detection and nondetection of failure items
by Dd and Dn, respectively. (en,

Dd � np + 1 − Pa(p)( (N − n)p,

Dn � pPa(p)(N − n).
(17)

(e costs involved in proposed plan implementation are
defined as follows: Ci � life testing cost per item; Cf � cost of
replacement; Co � cost of an outgoing failure item. It is
important to note that the value of p given in equations (16)
and (17) is unknown in most of the cases. Under this sit-
uation, the sampling plans are designed for the specified
value of p or it is estimated using Bayesian approach. For
example, [28] discussed the economic designing of SSP for
specified values of p. Aslam et al. [15] investigated the group
acceptance sampling plans with the economic aspect in
which the value of p has been estimated using the Bayesian
approach. In this designing, we define p as the failure
probability corresponding to the average mean ratios of
AQL and LQL.

(emathematical model for an economicmodifiedMDS
sampling plan is obtained as follows.

Minimize TC � Ci · ATI + Cf · Dd + Co · Dn.
Subject to

Pa p1( ≥ 1 − α,

Pa p2( ≤ β,

n> 1, m≥ 1, c2 > c1 ≥ 0,

(18)

where we have Pa(p1) and Pa(p2) are the probabilities of
acceptance of the lot at AQL and LQL given in equations (14)
and (15), respectively.

5.1. Descriptive Example. Optimal parameters of the pro-
posed modified MDS sampling plan such as n, c1, c2, and m
along with corresponding ATI, Dd, Dn, TC, and Pa(p) are
reported in Table 8. (e optimal parameters are determined
for specified values of a� 0.5, δ � 2, and lot sizeN� 1000 and
Ci � 1.0, Cf � 2.0, and Co � 10 as used by [28]. In general, the
probabilities of failure corresponding to the mean ratios
µ/µ0 � 2, 4, 6, 8, 10 are considered as AQL and the probability
of failure at the ratio µ/µ0 �1 is taken as LQL.(e fixed value
of the producer’s risk is α� 0.05 and the consumer’s risks are
assumed to be β� 0.25, 0.10, 0.05, 0.01. As mentioned earlier,
p is defined as the failure probability corresponding to the
average mean ratios of AQL and LQL. (erefore, the values
of p are the failure probabilities corresponding to the mean
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Figure 1: OC curves of the proposed plan with different m values.
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Figure 2: OC curves of the proposed plan, MDS sampling plan, and SSP.

10 Journal of Mathematics



ratios µ/µ0 �1.5, 2.5, 3.5, 4.5, and 5.5. We can observe from
the table that the values of n, ATI, Dd, Dn, and TC are
indirectly proportional to both the mean ratio and the
consumer’s risk.(at is, the values of n, ATI,Dd,Dn, and TC
are decreased if mean ratios increase but they are increased if
there is a decrement in consumer’s risk.(ere is no standard
trend observed in probabilities of acceptance of the lot. (at
is, probabilities of acceptance are fluctuating when the mean
ratio increases. In addition, the optimal parameters are
selected so that both the producer and consumer risks are
satisfied with minimum cost.

6. Industrial Application

Suppose that the ball bearing product manufacturer wants to
adopt the proposed sampling plan to ensure themean life of the
manufactured products. (e producer decides to conduct the
fatigue-testing operations to know the fatigue life of the ball
bearings, since the service life of ball bearings depends on the
fatigue life (see [29]). (e endurance life of ball bearings is
measured in terms of million revolutions. (e producer
specified that the average number of million revolutions to
fatigue of the ball bearing is μ0� 50 million revolutions and it is
decided to conduct the fatigue-testing operations for 25 million
revolutions, that is, t0� 25. (erefore, the termination ratio of
this test is calculated as a� 0.5. (e mean ratio is taken as
μ/μ0� 6 and the producer and consumer risks are assumed to be
α� 0.05 and β� 0.10. For these above-specified values, Table 8
gives the optimal parameters of the economic modified MDS
plan as follows: sample size n� 21, unconditional acceptance
number c1� 1, conditional acceptance number c2� 4, and
number of preceding lots required for current lot disposition
m� 3. (e operating procedure of the proposed plan is
explained with the fatigue life data of ball bearings given by [29].
(e following data represent the measurements of a number of
million revolutions of 23 ball bearings before the fatigue. It is

found that the data set is well fitted to a Weibull distribution,
and the estimated value of shape parameter of these data is
2.088≈ 2.0; that is, δ � 2. For the illustration purpose, we
consider 21 (i.e., from 3rd to 23rd) measurements from data.(e
modified MDS sampling plan can be operated as follows.

Select a random sample of 21 ball bearings from the
current lot and count the number of revolutions of ball
bearings before fatigue. Suppose that the lifetime of 21 ball
bearings is given as follows.

From these data, it is observed that the fatigue life of all
sampled ball bearings is greater than 25 million revolutions.
(erefore, the current lot is immediately accepted without
any condition, since d� 0< c1. (e TC involved under the
proposed sampling plan is 177.56.

7. Comparative Study Based on TC

To show the efficiency of the proposed modified MDS
sampling plan, the sample size and TC required for plan
implementation are compared with those of MDS sampling
plan proposed by [16] for assuringWeibull distributed mean
life of the product and SSP.(e values of sample size and TC
are given in Table 9 and such values are determined for the
specified values of shape parameters δ � 2 and a� 0.5. From
this table, it is observed that the sample sizes of the proposed
plan andMDS sampling plan coincide when β� 0.25 and the
mean ratios are µ/µ0 � 6, 10 but the TC required under
proposed plan is smaller than that of MDS sampling plan.
For all the remaining combinations of β and µ/µ0, the sample
size of the proposed plan is smaller than those of both the
MDS sampling plan and SSP. A consequence of the mini-
mum sample size, the TC of the proposed plan is minimum
when compared with those of the other two plans. It is

Table 8: Optimal parameters of economic modified MDS sampling plan for assuring Weibull distributed mean life with a� 0.5 and δ � 2.

β μ/μ0 n c1 c2 m ATI Dd Dn TC Pa(p)

0.25

2 48 6 12 4 53.50 4.47 79.10 853.40 0.9942
4 15 1 4 4 17.50 0.54 30.39 322.45 0.9975
6 15 1 4 4 15.07 0.24 15.66 172.16 0.9999
8 8 0 4 4 10.24 0.09 9.55 105.94 0.9977
10 8 0 4 4 8.72 0.06 6.41 72.97 0.9993

0.10

2 65 7 13 3 78.98 6.60 76.97 861.85 0.9851
4 21 1 4 3 28.26 0.87 30.05 330.54 0.9926
6 21 1 4 3 21.25 0.34 15.56 177.56 0.9997
8 14 0 2 2 16.38 0.16 9.49 111.61 0.9976
10 12 0 5 4 14.25 0.09 6.38 78.21 0.9977

0.05

2 82 8 14 2 99.24 8.29 75.27 868.56 0.9812
4 34 2 10 3 35.80 1.11 29.82 336.22 0.9981
6 25 1 4 3 25.64 0.41 15.49 181.39 0.9993
8 17 0 2 2 21.12 0.20 9.45 115.98 0.9958
10 17 0 2 2 18.32 0.12 6.35 82.07 0.9987

0.01

2 110 10 17 2 142.46 11.90 71.66 882.89 0.9635
4 45 2 6 2 49.59 1.53 29.39 346.60 0.9952
6 35 1 4 2 36.42 0.58 15.32 190.80 0.9985
8 30 0 2 1 33.64 0.32 9.32 127.54 0.9962
10 24 0 2 2 27.52 0.18 6.29 90.80 0.9964

33.00 41.52 42.12 45.60 48.48 51.84 51.96 54.12 55.56 67.80 60.64
68.64 68.88 84.12 93.12 98.64 105.12 105.84 127.92 128.04 173.40
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concluded from this comparison that the proposed plan is
better than MDS sampling plan and SSP in terms of both
sample size and TC.

8. Conclusions

In this paper, a modified version of theMDS sampling plan has
been proposed and investigated to assure products’ quality. In
addition, the proposed modified MDS sampling plan is
designed to ensure the mean life of the products underWeibull
and Birnbaum-Saunders distributions. A nonlinear optimiza-
tion problem has been used to determine the optimal pa-
rameters. (e comparison between the proposed plan and
existing sampling plans MDS and SSP shows that the proposed
plan will reduce the producer’s risk when product quality is
good.(e proposed plan withminimumASNwill also be more
effective in reducing the cost of the inspection. So, it is rec-
ommended to use the proposed sampling plan for the in-
spection of products when the decision on the lot is based on the
lifetime of the products.
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↑: use the plan above.
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