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In this article, we develop and study a new complex function space formed by varying the weights and exponents under a definite
function. We investigate the geometric and topological characteristics of mapping ideals created using s-numbers and this
complex function space. Also, the action of shift mappings on this complex function space has been discussed. Finally, we
introduced an extension of Caristi’s fixed point theorem on it.

1. Introduction

Numerous researchers are attempting to extend the
Banach fixed point theorem [1] in a realistic manner.
Kannan [2] recognized a subclass of mappings that exe-
cute the same fixed point operations as contractions but
are not continuous. Ghoncheh [3] pioneered the study of
Kannan mappings in modular vector spaces. Lebesgue
spaces with variable exponents, L(r), include Nakano
sequence spaces. Across the second half of the twentieth
century, it was thought that these variable exponent
spaces offered an adequate framework for the mathe-
matical components of a variety of problems for which the
traditional Lebesgue spaces were inadequate. Due to the
importance of these areas and their consequences, they
have developed a reputation as an effective instrument for
resolving a wide variety of problems; presently, the study
of L(r)(Ω) spaces is a developing field of research, with
implications reaching across a broad range of mathe-
matical disciplines [4]. (e investigation of variable ex-
ponent Lebesgue spaces was accelerated further by the
mathematical description of non-Newtonian fluid hy-
drodynamics [5, 6]. Non-Newtonian fluids, also known as
electrorheological fluids, have a wide range of applications

in a number of fields ranging from military science to civil
engineering to orthopedics and beyond. Mapping ideal
theory has a diverse range of applications in Banach space
geometry, fixed point theory, spectral theory, and other
areas of mathematics, as well as other fields of knowledge
(for further information, see [7–13]). Bakery and
Mohamed [14] studied the notion of a pre-quasi norm on
Nakano sequence space with a variable exponent in the
range (0, 1]. (ey explored the conditions under which it
generates pre-quasi Banach and closed space when
endowed with a particular pre-quasi norm as well as the
Fatou property of various pre-quasi norms on it. Addi-
tionally, they showed the existence of a fixed point for
Kannan pre-quasi norm contraction mappings on it as
well as on the pre-quasi Banach operator ideal formed
from this sequence space’s s-numbers. In [15], they in-
vestigated some fixed points results of Kannan non-ex-
pansive mappings on generalized Cesàro backward
difference sequence space of non-absolute type.

We will mark the complex and non-negative integers as
C and N � 0, 1, 2, . . .{ }, respectively. By CC, we denote the
space of all complex functions with complex variable. As-
suming that r � (ry)v∈N ∈ (0,∞)N, Bakery and El Dewaik
[16] defined the following function space:
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Hw rv( 􏼁( 􏼁ψ � h ∈ CC
: h(x) � 􏽘

∞

y�0

􏽢hyx
y ∈ C; andψ(ϖh)<∞, for someϖ> 0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (1)

where

ψ(h) � 􏽘
∞

y�0

􏽢hy

y + 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ry

. (2)

(ey studied several of the topological and geometric
properties for (Hw((rv)))ψ and even a pre-quasi ideal
construction based on the (Hw((rv)))ψ and s-numbers.
Upper bounds for s-numbers of infinite series of the
weighted v-th power forward shift operator on (Hw((rv)))ψ
were also introduced for some entire functions. Further, they
evaluated Caristi’s fixed point theorem in (Hw((rv)))ψ. For
extra information on formal power series spaces and their
behaviors, see [17–20]. We denote the space of every, finite
rank, approximable, and compact bounded linear mappings

from a Banach space X into a Banach space Y by L(X, Y),
F(X, Y), Λ(X, Y), and Lc(X, Y), and if X � Y, we mark
L(X), F(X), Λ(X), and Lc(X), respectively. (e ideal of all,
finite rank, approximable, and compact mappings are
denoted by L, F, Λ, and Lc. We will indicate the sequence of
s-numbers, approximation numbers, and Kolmogorov
numbers for any bounded linear mapping G by (sa(G))a∈N,
(αa(G))a∈N, and (da(G))a∈N. (e mapping ideals con-
structed by the sequence of s-numbers, approximation
numbers, and Kolmogorov numbers in sequence space V

are marked by SV, S
app
V , and SKol

V . For any Banach spaces X

and Y, we will use the following notations.

Notations 1 (see [16])

SH ≔ SH(X, Y)􏼈 􏼉, where SH(X, Y) ≔ P ∈ L(X, Y): hs ∈H, where, hs(x) � 􏽘
∞

v�0
sv(P)x

v ∈ C
⎧⎨

⎩

⎫⎬

⎭.

S
app
H ≔ S

app
H (X, Y)􏼈 􏼉, where S

app
H (X, Y) ≔ P ∈ L(X, Y): happ ∈H, where, happ(x) � 􏽘

∞

v�0
αv(P)x

v ∈ C
⎧⎨

⎩

⎫⎬

⎭.

S
Kol
H ≔ S

Kol
H (X, Y)􏽮 􏽯, where S

Kol
H (X, Y) ≔ P ∈ L(X, Y): hKol ∈H, where, hKol(x) � 􏽘

∞

v�0
dv(P)x

v ∈ C
⎧⎨

⎩

⎫⎬

⎭.

SHρ
􏼒 􏼓

λ
≔ SHρ

􏼒 􏼓
λ
(X, Y)􏼨 􏼩, where

SHρ
􏼒 􏼓

λ
(X, Y) ≔ T ∈ L(X, Y): hλ ∈Hρ, where, hλ(x) � 􏽘

∞

v�0
λv(P)x

v ∈ C and P − λv(P)I
����

���� � 0, ∀v ∈ N
⎧⎨

⎩

⎫⎬

⎭.

(3)

(e purpose of this study is straightforward, as follows.
In Section 3, we introduce and investigate the complex
function space (H((bv), (pv)))ρ under the definite function
ρ. In Section 4, themapping ideals constructed by s-numbers
and (H((bv), (pv)))ρ are presented. We have studied their
geometric and topological properties. Specifically, we ex-
plore in Section 5 the upper limits of s-numbers for infinite
series of the weighted v-th power forward and backward
shift mapping on (H((bv), (pv)))ρ and their applications to
various entire functions. Finally, in Section 6, we present an
extension of Caristi’s fixed point theorem in (H((bv),

(pv)))ρ.

2. Definitions and Preliminaries

Let RN, ℓ∞, ℓr, and c0 denote the spaces of each, bounded,
r-absolutely summable, and null sequences of real numbers,
respectively.

Definition 1 (see [16]). (e function space
H � h ∈ CC: h(y) � 􏽐

∞
v�0

􏽢hvyv􏽮 􏽯 is called a special space of
formal power series (or in short ssfps), if it shows the fol-
lowing settings:

(1) e(b) ∈H, for all b ∈ N, where e(b)(y) � 􏽐
∞
v�0

􏽣
e

(b)
v yv � yb.

(2) If g ∈H and | 􏽢hv|t≤ n|q 􏽢gv|, for all v ∈ N, one has
h ∈H.

(3) Suppose h ∈H, then h[.] ∈H, where h[.](y)

� 􏽐
∞
b�0

􏽤h[b/2]y
b and [b/2] marks the integral part of

[b/2].

Theorem 1 (see [16]). SH is a mapping ideal, when H is a
ssfps.
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We denote the space of finite formal power series by F,
i.e., if h ∈ F, one has k ∈ N with h(y) � 􏽐

k
v�0

􏽢hvyv. Also, θ
indicates the zero function of H.

Definition 2 (see [16]). A subspaceHρ of the ssfps is said to
be a pre-quasi normed ssfps, if there is a function
ρ: H⟶ [0,∞) which verifies the next conditions:

(i) For h ∈H, we have ρ(h)≥ 0 and
h � θ⟺ ρ(h) � 0.

(ii) Suppose h ∈H and λ ∈ C, then there are l≥ 1 with
ρ(λh)≤ |λ|lρ(h).

(iii) Let f, g ∈H; then, there are K≥ 1 such that
ρ(f + g)≤K(ρ(f) + ρ(g))Z.

Recall that if the spaceHρ is complete, thenHρ is called
a pre-quasi Banach ssfps.

Definition 3 (see [16]). A subspaceHρ of the ssfps is called a
pre-modular ssfps, if there is a function ρ: H⟶ [0,∞)

which verifies the next conditions:

(i) For h ∈H, we have ρ(h)≥ 0 and
h � θ⟺ ρ(h) � 0.

(ii) Suppose h ∈H and λ ∈ C, then there are l≥ 1 with
ρ(λh)≤ |λ|lρ(h).

(iii) Let f, g ∈H; then, there are K≥ 1 such that
ρ(f + g)≤K((ρ(f) + ρ(g)).

(iv) Suppose | 􏽢fb|t≤ n|q 􏽢gb|, for every b ∈ N; then,
ρ(f)≤ ρ(g)F .

(v) (ere are K0 ≥ 1 so that ρ(f)≤ ρ(f[.])≤K0ρ(f).
(vi) F � Hρ.
(vii) One has ξ > 0 with ρ(λe(0))≥ ξ|λ|ρ(e(0)), where

λ ∈ C.

Theorem 2 (see [16]). Every pre-modular ssfps Hρ is a pre-
quasi normed ssfps.

Definition 4 (see [21]). A function s: L(X, Y)⟶ [0,∞)N

is called an s-number, if the sequence (sb(B))∞a�0, for any
B ∈ L(X, Y), satisfies the following setup:

(a) If B ∈ L(X, Y), then ‖B‖ � s0(B)≥ s1(B)≥ s2(B)

≥ . . . ≥ 0.
(b) sb+a−1(B1 + B2)≤ sb(B1) + sa(B2), for every B1, B2
∈ L(X, Y), b, a ∈ N.

(c) (e inequality sa(AB D)≤ ‖A‖sa(B)‖≥ ‖ holds, if
D ∈ L(X0, X), B ∈ L(X, Y), and A ∈ L(Y, Y0);
suppose that X0 and Y0 are any two Banach spaces.

(d) For A ∈ L(X, Y) and λ ∈ R, then sa(λA) � |λ|sa(A).
(e) Suppose rank(A)≤ b; then, sb(A) � 0, whenever

A ∈ L(X, Y),
(f ) Assume that Ib represents the unit map on the

b-dimensional Hilbert space ℓb
2; then, sr≥b(Ib) � 0 or

sr<b(Ib) � 1.

(e following are some instances of s-numbers:

(i) (e k-th approximation number, αk(A), is presented
as

αk(A) � inf ‖A − B‖: B ∈ L(X, Y) and rank(B)≤ k{ }.

(4)

(ii) (e k-th Kolmogorov number, dk(A), is presented
as

dk(A) � inf
dim(Y)
≤ ksup‖u‖≤1 inf

v∈Y
‖Au − v‖. (5)

Lemma 1 (see [7]). Assume that B ∈ L(X, Y) and
B ∉ Λ(X, Y), and we have maps D ∈ L(X) and M ∈ L(Y)

with MB Deb � eb, for each b ∈ N.

Definition 5 (see [7]). A Banach space Y is named simple if
L(Y) contains one and only one non-trivial closed ideal.

Theorem 3 (see [7]). Suppose Z is a Banach space with
dim(Z) �∞, and we have

F(Z)⫋Λ(Z)⫋Lc(Z)⫋ L(Z). (6)

Definition 6 (see [7]). A class U⊆L is said to be a mapping
ideal if every component U(X, Y) � U∩L(X, Y) satisfies
the next setups:

(i) F⊆U.
(ii) U(X, Y) is linear space on R.
(iii) Assume D ∈ L(X0, X), B ∈ U(X, Y), and A ∈ L

(Y, Y0); then, AB D ∈ U(X0, Y0).

Definition 7 (see [10]). A function g: U⟶ [0,∞) is called
a pre-quasi norm on the ideal U if it satisfies the following
setups:

(1) Suppose B ∈ L(X, Y), g(B)≥ 0, and g(B) � 0⟺
B � 0.

(2) (ere is M≥ 1 with g(υA)≤M|υ|g(A), for all υ ∈ C
and A ∈ U(X, Y).

(3) One has K≥ 1 so that g(A1 + A2)≤K[g(A1)

+ g(A2)], for every A1, A2 ∈ U(X, Y).
(4) We get C≥ 1 so that if A ∈ L(X0, X), B ∈ U(X, Y),

and D ∈ L(Y, Y0), then g(DB A)≤C‖D‖g(B)‖A‖,
where X0 and Y0 are normed spaces.

Theorem 4 (see [10]). Every quasi norm is a pre-quasi norm
on the same ideal.

With finite non-zero coordinates, we denote the space of
every sequence by F.

Theorem 5 (see [22]). Suppose s−type Vυ:� f �􏼈

(sr(T)) ∈ RN: T ∈ L(X, Y) and υ(f)<∞}. If SVυ
is a

mapping ideal, we have
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(1) F ⊂ s−type Vυ.
(2) Assume (sr(T1))

∞
r�0 ∈ s−type Vυ and (sr(T2))

∞
r�0

∈ s−type Vυ; then, (sr(T1 + T2))
∞
r�0 ∈ s−type Vυ.

(3) If λ ∈ C and (sr(T))∞r�0 ∈ s−type Vυ, then |λ|(sr

(T))∞r�0 ∈ s−type Vυ.
(4) Vυ is solid, i.e., if (sx(J))∞x�0 ∈ s−type Vυ and

sx(H)≤ sx(J), for all x ∈ N and H, J ∈ L(X, Y), then
(sx(H))∞x�0 ∈ s−type Vυ.

By card (G), we denote the number of elements of G.

Lemma 2 (see [23]). Suppose ξi􏼈 􏼉i∈Ψ is a bounded family of
R. Hence,

inf
card(G)�b

sup
i∉G

ξi � sup
card(G)�b+1

inf
i∈G

ξi. (7)

We will apply the next inequality [24]. For all
(ra), (ta) ∈ CN and (qa) ∈ (0,∞)N, we have

ra + ta

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qa ≤K ra

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qa + ta

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qa􏼐 􏼑, (8)

where K � max 1, 2ϖq− 1􏼈 􏼉 and ϖq � max 1, supaqa􏼈 􏼉.

Definition 8 (see [16]). Assume Hρ is a pre-quasi normed
ssfps. A mapping Vy: Hρ⟶Hρ is called forward shift, if

Vyh � yh, for all h ∈Hρ, where Vyh(y) � 􏽐
∞
v�0

􏽢hvyv+1 ∈ C
and ρ(Vyh)<∞.

Definition 9 (see [16]). Suppose Hρ is a pre-quasi normed
ssfps. A mapping By: Hρ⟶Hρ is called backward shift, if
Byh(y) � h(y) − h(0)/y, for all h ∈Hρ, where Byh(y) �

􏽐
∞
v�0

􏽤hv+1y
v ∈ C and ρ(Byh)<∞.

Definition 10 (see [20]). If g(y) � 􏽐
∞
m�0 amym, then Vg(y)

(h(y)) :� (􏽐
∞
m�0 amVm

y )(h(y)).

Definition 11 (see [20]). If g(y) � 􏽐
∞
m�0 amym, then Bg(y)

(h(y)) :� (􏽐
∞
m�0 amBm

y )(h(y)).

3. Pre-Modular ssfps

(is section contains the space’s definition (H((bn), (pn)))ρ
under the function ρ, where ρ(h) � 􏽐

∞
v�0 |bv

􏽢hv|pv , for all
h ∈ H((bn), (pn)). We offer enough setups on (H((bn),

(pn)))ρ to become pre-modular ssfps, which implies that
(H((bn), (pn)))ρ is a pre-quasi Banach ssfps.

Let p � (pv)v∈N, (bv)v∈N ∈ (0,∞)N, and we define the
following function space:

H bv( 􏼁, pv( 􏼁( 􏼁 � h ∈ CC
: h(y) � 􏽘

∞
v�0

􏽢hvy
v and ρ(ch)<∞, for some c> 0􏽮 􏽯. (9)

Theorem 6. If (pv) ∈ ℓ∞, then

H bv( 􏼁, pv( 􏼁( 􏼁 � h ∈ CC
: h(y) � 􏽘

∞
v�0

􏽢hvy
v and ρ(ch)<∞, for all c> 0􏽮 􏽯. (10)

Proof.

H bv( 􏼁, pv( 􏼁( 􏼁 � h ∈ CC
: h(y) � 􏽘

∞

v�0

􏽢hvy
v and ρ(ch)<∞, for some c> 0

⎧⎨

⎩

⎫⎬

⎭

� h ∈ CC
: h(y) � 􏽘

∞

v�0

􏽢hvy
v and 􏽘

∞

v�0
cbv

􏽢hv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pv <∞, for some c> 0

⎧⎨

⎩

⎫⎬

⎭

� h ∈ CC
: h(y) � 􏽘

∞

v�0

􏽢hvy
v and inf

v
|c|

pv 􏽘

∞

v�0
bv

􏽢hv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pv <∞, for some c> 0

⎧⎨

⎩

⎫⎬

⎭

� h ∈ CC
: h(y) � 􏽘

∞

v�0

􏽢hvy
v and 􏽘

∞

v�0
bv

􏽢hv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pv <∞, for any c> 0

⎧⎨

⎩

⎫⎬

⎭

� h ∈ CC
: h(y) � 􏽘

∞

v�0

􏽢hvy
v and ρ(ch)<∞, for any c> 0

⎧⎨

⎩

⎫⎬

⎭.

(11)

□
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Hereafter, we will denote the space of all monotonic
decreasing and monotonic increasing sequences of positive
reals by md↘ and mi↗, respectively.

Theorem 7. H((bn), (pn)) is a ssfps, if it verifies the next
setups:

(a1) (pn) ∈ mi↗ ∩ ℓ∞.
(a2) (bn) ∈ md↘, or (bn) ∈ mi↗ with C≥ 1 so that b2n+1
≤Cbn.

Proof

(1-i) Assume f, g ∈ H((bn), (pn)); then, f(z) �

􏽐
∞
n�0

􏽢fnzn ∈ Cand g(z) � 􏽐
∞
n�0 􏽢gnzn ∈ C. We have

(f + g)(z) � 􏽐
∞
n�0(

􏽢fn + 􏽢gn)zn ∈ C. Since (pn) is
bounded, we get

􏽘

∞

n�0
bn

􏽢fn + bn 􏽢gn

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pn ≤K 􏽘

∞

n�0
bn

􏽢fn

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pn

+ 􏽘
∞

n�0
bn 􏽢gn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pn⎛⎝ ⎞⎠<∞,

(12)

and then f + g ∈ H((bn), (pn)).
(1-ii) Let λ ∈ C and f ∈ H((bv), (pv)). We have
(λf)(z) � 􏽐

∞
v�0 λ 􏽢fvzv ∈ C. Since (pv) is bounded,

we have

􏽘

∞

v�0
|λbv

􏽢fv|
pv ≤ supv|λ|

pv 􏽘

∞

v�0
|bv

􏽢fv|
pv <∞. (13)

(en, λf ∈ H((bv), (pv)). (erefore, by using com-
ponents (1-i) and (1-ii), H((bv), (pv)) is linear.
Clearly, e(k) ∈ H((bv), (pv)), for all k ∈ N, where

e(k)(z) � 􏽐
∞
v�0

􏽣
e

(k)
v zv � zk and 􏽐

∞
v�0 |bv

􏽣
e

(k)
v |pv � b

pk

k .
(2) Let | 􏽢fv|t≤ n|q 􏽢gv|, for all v ∈ N and g ∈ H((bv), (pv)).

(en, g(z) � 􏽐
∞
v�0 􏽢gvzv ∈ C. Since bv > 0, for all

v ∈ N, then

􏽘

∞

v�0
bv

􏽢fv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pv ≤ 􏽘
∞

v�0
bv 􏽢gv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pv <∞. (14)

Hence, f(z) � 􏽐
∞
v�0

􏽢fvzv ∈ C and ρ(f)<∞.
(erefore, f ∈ H((bv), (pv)).

(3) Let f ∈ H((bv), (pv)), (bv) be an increasing se-
quence, and there exists C> 0 such that b2v+1 ≤Cbv

and (pv) is increasing. (erefore, f(z) � 􏽐
∞
v�0

􏽢fvzv ∈ C and ρ(f)<∞. One has

ρ f[.]􏼐 􏼑 � 􏽘
∞

v�0
bv

􏽣fv/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pv

� 􏽘
∞

v�0
b2v

􏽢fv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p2v

+ 􏽘
∞

v�0
b2v+1

􏽢fv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p2v+1

≤ 􏽘
∞

v�0
b2v

􏽢fv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pv

+ 􏽘
∞

v�0
b2v+1

􏽢fv

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pv

≤max 1, 2supvC
pv􏼈 􏼉ρ(f).

(15)

(is implies that f[.](z) � 􏽐
∞
v�0

􏽤f[v/2]z
v ∈ C and

ρ(f[.])<∞. Hence, f[.] ∈ H((bv), (pv)). □

Theorem 8. Let conditions (a1) and (a2) be satisfied; then,
the space (H((bn), (pn)))ρ is a pre-modular Banach ssfps.

Proof

(i) Evidently, for all f ∈ H((bn), (pn)), then ρ(f)≥ 0
and ρ(f) � 0⟺f � θ.

(ii) We have l � max 1, supn|η|pn− 1􏽮 􏽯≥ 1, for all
η ∈ R∖ 0{ } and l≥ 1, for η � 0 such that

ρ(ηf) � 􏽘
∞

n�0
ηbn

􏽢fn

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pn ≤ supn|η|

pn 􏽘

∞

n�0
bn

􏽢fn

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pn ≤ l|η|ρ(f),

(16)

for every f ∈ H((bn), (pn)).
(iii) For some K � max 1, 2supnpn− 1􏼈 􏼉, we obtain

ρ(f + g) � 􏽘
∞

n�0
bn

􏽢fn + 􏽢gn􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pn ≤K(ρ(f) + ρ(g)),

(17)

for all f, g ∈ H(bn), (pn).
(iv) It is clear from the proof part (2) of (eorem 7.
(v) From the proof part (3) of (eorem 7, we have that

K0 � max 1, 2supnCpn􏼈 􏼉≥ 1.
(vi) It is apparent that F � H((bn), (pn)).
(vii) (ere is ζ with 0< ζ ≤ ηp0− 1 such that ρ(ηe(0))

≥ ζ|η|ρ(e(0)), for each η≠ 0 and ζ > 0, if η � 0.

(erefore, the space (H((bv), (pv)))ρ is pre-modular
ssfps. To show that (H((bv), (pv)))ρ is a pre-modular Banach
ssfps, suppose f(n) is a Cauchy sequence in (H((bv), (pv)))ρ;
then, for all ε ∈ (0, 1), there is n0 ∈ N such that, for all
n, m≥ n0, we get

ρ f
(n)

− f
(m)

􏼐 􏼑 � 􏽘
∞

v�0
bv

􏽤
f

(n)
v −

􏽤
f

(m)
v􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pv

< εϖp . (18)

For n, m≥ n0 and v ∈ N, we obtain

|
􏽤
f

(n)
v −

􏽤
f

(m)
v |< ε. (19)

Hence, ( 􏽤
f

(m)
v ) is a Cauchy sequence inC, for fixed v ∈ N,

so limm⟶∞
􏽤
f

(m)
v �

􏽤
f

(0)
v , for fixed v ∈ N. (erefore, ρ(f(n)

−f(0))< εϖp , for each n≥ n0. Finally, to explain that
f(0) ∈ H((bv), (pv)), we have

ρ f
(0)

􏼐 􏼑 � ρ f
(0)

− f
(n)

+ f
(n)

􏼐 􏼑≤K ρ f
(n)

− f
(0)

􏼐 􏼑􏼑􏼐

+ ρ f
(n)

􏼐 􏼑􏼑<∞.
(20)

So, f(0) ∈ H((bv), (pv)). (is implies that
(H((bv), (pv)))ρ is a pre-modular Banach ssfps. □
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Taking into consideration (eorem 2, we put forward
the following theorem.

Theorem 9. Let conditions (a1) and (a2) be satisfied. Hen,
the space (H((bn), (pn)))ρ is a pre-quasi Banach ssfps.

Theorem 10. Let conditions (a1) and (a2) be satisfied. Hen,
the space (H((bn), (pn)))ρ is a pre-quasi closed ssfps.

Proof. Assume that the setups are verified. From (eorem
9, the space (H((bn), (pn)))ρ is a pre-quasi normed ssfps. To
show that (H((bn), (pn)))ρ is a pre-quasi closed ssfps, as-
sume h(m)􏼈 􏼉

∞
m�0 ∈ (H((bn), (pn)))ρ and limm⟶∞ρ(h(m)

−h(0)) � 0; then, for every ε ∈ (0, 1), there is m0 ∈ N such
that for all m≥m0, one has

ε> ρ h
(m)

− h
(0)

􏼐 􏼑 � 􏽘
∞

a�0
ba

􏽤
h

(m)
a −

􏽣
h

(0)
a􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pa

⎡⎣ ⎤⎦
1/ϖp

. (21)

Hence, for m≥m0 and a ∈ N, we get

􏽤
h

(m)
a −

􏽣
h

(0)
a

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌< ε. (22)

So, 􏽤
(h

(m)
a ) is a convergent sequence in C, for fixed a ∈ N.

(erefore, limm⟶∞
􏽤
h

(m)
a �

􏽣
h

(0)
a , for fixed a ∈ N. Finally to

prove that h(0) ∈ (H((bn), (pn)))ρ, we consider

ρ h
(0)

􏼐 􏼑 � ρ h
(0)

− h
(m)

+ h
(m)

􏼐 􏼑≤K ρ h
(m)

− h
(0)

􏼐 􏼑􏼐 􏼑􏼐

+ ρ h
(m)

􏼐 􏼑􏼑<∞,

(23)

so h(0) ∈ (H((bn), (pn)))ρ. (is finishes the proof. □

4. Pre-Quasi Ideal

In this section, the mapping ideals constructed by s-numbers
and ((H(bn), (pn)))ρ are presented. We have studied their
geometric and topological structures. We will use the no-
tation for B ∈ SH((bv),(pv))ρ

, that is, g(B) � ρ(fs), fs(z)

� 􏽐
∞
v�0 sv(B)zv ∈ C, and ρ(fs) � 􏽐

∞
v�0(bvsv(B))pv , for every

fs ∈ H((bv), (pv))ρ.
In view of (eorems 1 and 7, we conclude the next

theorem.

Theorem 11. Let conditions (a1) and (a2) be satisfied. Hen,
SH((bn),(pn)) is a mapping ideal.

4.1. Ideal of Finite Rank Mappings. In this section, enough
setups (not necessary) on H((bn), (pn))ρ so that F is dense in
SH((bn),(pn))ρ

are investigated. (is explains the non-linearity
of the s−type H((bn), (pn))ρ spaces (Rhoades open problem
[25]).

Example 1. (e sequence (bn) � (n + 1/n + 2)n∈N satisfies
(bn) ∈ mi↗ and b2n+1 ≤Cbn, for some C≥ 2.

Theorem 12. F(X, Y) � SH((bn),(pn))ρ
(X, Y), whenever con-

ditions (a1) and (a2) are satisfied.

Proof. It is clear that F(X, Y) ⊂ SH((bn),(pn))ρ
(X, Y), since the

space SH((bn),(pn))ρ
is a mapping ideal. Currently, we sub-

stantiate that SH((bn),(pn))ρ
(X, Y)⊆F(X, Y). On taking

T ∈ SH((bn),(pn))ρ
(X, Y), fs ∈ H((bn), (pn))ρ, with fs(z) �

􏽐
∞
n�0 sn(T)zn ∈ C. Hence, ρ(fs)<∞, and assume ε ∈ (0, 1),

so there is m ∈ N − 0{ } such that ρ(fs − 􏽐
m−1
n�0 e(n))< ε/4C2,

for some C≥ 1. While (sn(T))n∈N is decreasing, we get

􏽘

2m

n�m+1
bns2m(T)( 􏼁

pn ≤ 􏽘
2m

n�m+1
bnsn(T)( 􏼁

pn

≤ 􏽘
∞

n�m

bnsn(T)( 􏼁
pn <

ε
4C

2.

(24)

Hence, there exist A ∈ F2m(X, Y), rank(A)≤ 2m, and

􏽘

3m

n�2m+1
bn‖T − A‖( 􏼁

pn ≤ 􏽘
2m

n�m+1
bn‖T − A‖( 􏼁

pn <
ε

4C
2. (25)

Since (pn) is bounded,

􏽘

m

n�0
bn‖T − A‖( 􏼁

pn <
ε

4C
2. (26)

Let (bn) be monotonically increasing such that there
exists a constant C≥ 1 for which b2n+1 ≤Cbn. (en, we have
for n≥m that

b2m+n ≤ b2m+2n+1 ≤Cbm+n ≤Cb2n ≤Cb2n+1 ≤C
2
bn. (27)

Since T − A ∈ SH((bn),(pn))ρ
(X, Y), then hs ∈ H((bn),

(pn))ρ, where hs(z): � 􏽐
∞
n�0 sn(T − A)zn ∈ C. Since (pn) is

increasing, inequalities (2)–(5) give

d(T, A) � ρ hs( 􏼁 � 􏽘
3m−1

n�0
bnsn(T − A)( 􏼁

pn + 􏽘
∞

n�3m

bnsn(T − A)( 􏼁
pn

≤ 􏽘
3m

n�0
bn‖T − A‖( 􏼁

pn + 􏽘
∞

n�m

bn+2msn+2m(T − A)( 􏼁
pn+2m

≤ 3 􏽘
m

n�0
bn‖T − A‖( 􏼁

pn + C
2supnpn 􏽘

∞

n�m

bnsn(T)( 􏼁
pn < ε.

(28)
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Since I8 ∈ S(H(n+1),(1/n+1))ρ
(X, Y) which gives a counter

example of the converse statement, this finishes the
proof. □

According to (eorem 12, if (a1) and (a2) are fulfilled,
then every compact mapping is represented by finite rank
mappings; however, the reverse is not necessarily true.

4.2.ClosedandBanach. In this part, we have investigated the
sufficient conditions on H((bv), (pv))ρ such that the pre-
quasi mapping ideal SH((bv),(pv))ρ

is Banach and closed.

Theorem 13. If X and Y are Banach spaces and conditions
(a1) and (a2) are satisfied, then the function g(B) � ρ(fs) is
a pre-quasi norm on SH((bv),(pv))ρ

.

Proof. Suppose the conditions are verified, so g verifies the
next setups:

(1) Let B ∈ SH((bv),(pv))ρ
(X, Y), then we have

g(B) � ρ(fs)≥ 0, and it is clear that
g(B) � ρ(fs) � 0, if and only if, sv(B) � 0, for all
v ∈ N, if and only if, B � 0.

(2) We have l≥ 1 with g(λB) � ρ(λfs)≤ l|λ|ρ(fs) �

l|λ|g(B), for every B ∈ SH((bv),(pv))ρ
(X, Y) and λ ∈ C.

(3) One has KK0 ≥ 1 for B1, B2 ∈ SH((bv),(pv))ρ
(X, Y).

(erefore, f1s(z) � 􏽐
∞
v�0 sv(B1)z

v ∈ C and f2s(z) �

􏽐
∞
v�0 sv(B2)z

v ∈ C. (erefore, for hs(z) � : 􏽐
∞
v�0

sv(B1 + B2)z
v, one can see that

g B1 + B2( 􏼁 � ρ hs( 􏼁≤ ρ f1s( 􏼁[.] + f2s( 􏼁[.]􏼐 􏼑≤K ρ f1s( 􏼁[.]􏼐 􏼑

+ ρ f2s( 􏼁[.]􏼐 􏼑≤KK0 g B1( 􏼁 + g B2( 􏼁( 􏼁.

(29)

(4) We have C≥ 1; suppose A ∈ L(X0, X), B ∈
SH((bv),(pv))ρ

(X, Y), and D ∈ L(Y, Y0). (erefore, fs

(z) � 􏽐
∞
v�0 sv(B)zv ∈ C. (en, for hs(z) � : 􏽐

∞
v�0

sv(DB A)zv, one can see that

g(DB A) � ρ hs( 􏼁≤ ρ ‖A‖‖D‖fs( 􏼁≤C ‖A‖g(B) ‖D‖.

(30)
□

Theorem 14. If X and Y are Banach spaces and conditions
(a1) and (a2) are satisfied, then (SH((bv),(pv))ρ

, g) is a pre-quasi
Banach mapping ideal.

Proof. Suppose the conditions are verified, then the
function g(B) � ρ(fs) is a pre-quasi norm on SH((bv),(pv))ρ

.
Let (Bm) be a Cauchy sequence in SH((bv),(pv))ρ

(X, Y).
(erefore, f(m)

s ∈ H((bv), (pv))ρ ∈ C and f(m)
s (z) � 􏽐

∞
v�0

sv(Bm)zv ∈ C. Assume hs(z) � : 􏽐
∞
v�0 sv(Bi − Bj)z

n; then,
by using conditions (iv) and (vii) of Definition 3 and since
L(X, Y)⊇SH((bv),(pv))ρ

(X, Y), we get

g Bi − Bj􏼐 􏼑 � ρ hs( 􏼁≥ ρ s0 Bi − Bj􏼐 􏼑e
(0)

􏼐 􏼑

� ρ Bi − Bj

�����

�����e
(0)

􏼒 􏼓≥ ξ Bi − Bj

�����

�����ρ e
(0)

􏼐 􏼑.
(31)

(us, (Bm)m∈N is a Cauchy sequence in L(X, Y). While
the space L(X, Y) is a Banach space, there exists B ∈ L(X, Y)

with limm⟶∞‖Bm − B‖ � 0 and since f(m)
s ∈ H((bv), (pv))ρ,

for each m ∈ N, using (eorem 13 and the continuity of ρ at
θ, we obtain

g(B) � g B − Bm + Bm( 􏼁≤KK0 g Bm − B( 􏼁 + g Bm( 􏼁( 􏼁

� KK0ρ Bm − B
����

���� 􏽘

∞

m�0
e

(m)⎛⎝ ⎞⎠ + KK0ρ f
(m)
s􏼐 􏼑< ε.

(32)

(us, we have fs ∈ H((bv), (pv))ρ; then, B ∈
SH((bv),(pv))ρ

(X, Y). □

Theorem 15. If X and Y are Banach spaces and conditions
(a1) and (a2) are satisfied, then (SH((bv),(pv))ρ

, g) is a pre-quasi
closed mapping ideal.

Proof. Suppose the conditions are verified; then, the
function g(B) � ρ(fs) is a pre-quasi norm on SH((bv),(pv))ρ

.
Assume Bm ∈ SH((bv),(pv))ρ

(X, Y), with m ∈ N and
limm⟶∞g(Bm − B) � 0. (erefore, f(m)

s ∈ H((bv), (pv))ρ

∈ C and f(m)
s (z) � 􏽐

∞
v�0 sv(Bm)zv ∈ C. Suppose hs(z)

� : 􏽐
∞
v�0 sv(Bi − Bj)z

v; then, from conditions (iv) and (vii) of
Definition 3 and since L(X, Y)⊇SH((bv),(pv))ρ

(X, Y), we get

g B − Bj􏼐 􏼑 � ρ hs( 􏼁≥ ρ s0 B − Bj􏼐 􏼑e
(0)

􏼐 􏼑 � ρ B − Bj

�����

�����e
(0)

􏼒 􏼓

≥ ξ B − Bj

�����

�����ρ e
(0)

􏼐 􏼑,

(33)

and then (Bm)m∈N is a convergent sequence in L(X, Y).
While the space L(X, Y) is a Banach space, there exists
B ∈ L(X, Y) with limm⟶∞‖Bm − B‖ � 0 and since
f(m)

s ∈ H((bv), (pv))ρ, for each m ∈ N, using (eorem 13
and the continuity of ρ at θ, one can see that

g(B) � g B − Bm + Bm( 􏼁≤KK0 g Bm − B( 􏼁 + g Bm( 􏼁( 􏼁

� KK0ρ Bm − B
����

���� 􏽘

∞

m�0
e

(m)⎛⎝ ⎞⎠ + KK0ρ f
(m)
s􏼐 􏼑< ε,

(34)

and we have fs ∈ H((bv), (pv))ρ; then, B ∈
SH((bv),(pv))ρ

(X, Y). □

We deduce the following characteristics of the s−type
H((bv), (pv))ρ using (eorem 5.

Theorem 16. For s−type H((bv), (pv))ρ :�

(sn(T)) ∈ RN: T ∈ SH((bv),(pv))ρ
(X, Y)􏼚 􏼛, the following holds:

(1) We have s−type H((bv), (pv))ρ
F.
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(2) If (sr(T1))
∞
r�0 ∈ s−type H((bv), (pv))ρ and (sr

(T2))
∞
r�0 ∈ s−type H((bv), (pv))ρ, then (sr(T1+

T2))
∞
r�0 ∈ s−type H((bn), (pn))ρ.

(3) For all λ ∈ C and (sr(T))∞r�0 ∈ s−type H((bn), (pn))ρ,
then |λ|(sr(T))∞r�0 ∈ s−type H((bn), (pn))ρ.

(4) He s−type H((bn), (pn))ρ is solid.

4.3. Smallness. We give here some inclusion relations
concerning the space SH((bn),(pn))ρ

for different (bn) and (pn).

Theorem 17. If X and Y are Banach spaces with
dim(X) � dim(Y) �∞, 0<pn < qn, 0< an < bn, for all
n ∈ N, and setups (a1) and (a2) are satisfied, it is true that

SH bn( ), pn( )( )ρ
(X, Y) ⊂ ≠ SH an( ), qn( )( )ρ

(X, Y) ⊂ ≠ L(X, Y).

(35)

Proof. Suppose T ∈ SH((bn),(pn))ρ
(X, Y). (erefore, fs ∈ H

((bn), (pn))ρ and fs(z) � 􏽐
∞
n�0 sn(T)zn ∈ C. One can see

that

􏽘

∞

n�0
ansn(T)( 􏼁

qn <􏽘
∞

n�0
bnsn(T)( 􏼁

pn <∞, (36)

hence T ∈ SH((an),(qn))ρ
(X, Y). Next, if we take T with

sn(T) � ((n + 1)− 1/pn /bn), then T ∉ SH((bn),(pn))ρ
(X, Y) and

T ∈ SH((an),(qn))ρ
(X, Y). Clearly, SH((an),(qn))ρ

(X, Y) ⊂ L(X, Y).
By choosing T with sn(T) � ((n + 1)− 1/qn /an), then
T ∉ SH((an),(qn))ρ

(X, Y) and T ∈ L(X, Y). (is finishes the
proof. □

In this part, we investigate the setups for which
S
app
H((bn),(pn))ρ

is small.

Theorem 18. If X and Y are Banach spaces with
dim(X) � dim(Y) �∞, assume that the conditions (a1),
(a2), and (bn) ∉ ℓ(pn) are satisfied, and hence (S

app
H((bn),(pn))ρ

, g)

is small, where g(U) � 􏽐
∞
j�0 (bjαj(U))pj .

Proof. Let S
app
H((bn),(pn))ρ

(X, Y) � L(X, Y). (erefore, one gets
V> 0 so that g(U)≤V‖U‖, for every U ∈ L(X, Y).
According to Dvoretzky’s theorem [26] with r ∈ N, there are
quotient spaces X/λr and subspaces ηr of Y that mapped
onto ℓr

2 by isomorphisms Dr and Br with ‖Dr‖‖D−1
r ‖≤ 2 and

‖Br‖‖B−1
r ‖≤ 2. Let Ir be the identity mapping on ℓr

2, ζr be the
quotient mapping from X onto X/λr, and Jr be the natural
embedding mapping from ηr into Y. Let ha, for all a ∈ N, be
the Bernstein numbers [27]; we have then

1 � ha Ir( 􏼁 � ha BrB
−1
r IrDrD

−1
r􏼐 􏼑≤ Br

����
����ha B

−1
r IrDr􏼐 􏼑 D

−1
r

����
����,

� Br

����
����ha JrB

−1
r IrDr􏼐 􏼑 D

−1
r

����
����≤ Br

����
����r

da JrB
−1
r IrDr􏼐 􏼑 D

−1
r

����
����

� Br

����
����da JrB

−1
r IrDrζr􏼐 􏼑 D

−1
r

����
����≤ Br

����
����r
αa JrB

−1
r IrDrζr􏼐 􏼑 D

−1
r

����
����,

(37)

for 0≤ j≤ r. We have l≥ 1 so that

b
pj

j ≤ Br

����
���� D

−1
r

����
����􏼐 􏼑

pj
bjαj JrB

−1
r IrDrζr􏼐 􏼑􏼐 􏼑

pj
,

b
pj

j ≤ l Br

����
���� bjαj JrB

−1
r IrDrζr􏼐 􏼑􏼐 􏼑

pj
D

−1
r

����
����,

􏽘

r

j�0
b

pj

j ≤ l Br

����
���� D

−1
r

����
���� 􏽘

r

j�0
bj αj JrB

−1
r IrDrζr􏼐 􏼑􏼐 􏼑

pj
,

􏽘

r

j�0
b

pj

j ≤ l Br

����
���� D

−1
r

����
����g JrB

−1
r IrDrζr􏼐 􏼑,

􏽘

r

j�0
b

pj

j ≤ lV Br

����
����‖D‖

−1
r JrB

−1
r IrDrζ

����
����r

,

􏽘

r

j�0
b

pj

j ≤ lV Br

����
���� D

−1
r

����
���� Jr

����
����B

−1
r ‖I‖r Drζr

����
����

� lV Br

����
���� D

−1
r

����
���� B

−1
r

����
���� Ir

����
���� Dr

����
����,

􏽘

r

j�0
b

pj

j ≤ 4lV.

(38)

As r⟶∞, then 􏽐
∞
j�0 b

pj

j <∞. (is contradicts
(bn) ∉ ℓ(pn). (erefore, dim(X)<∞ and dim(Y)<∞.
Hence, the space S

app
H((bn),(pn))ρ

is small. □

By the same manner, we can easily conclude the next
theorem.

Theorem 19. If X and Y are Banach spaces with
dim(X) � dim(Y) �∞, assume that conditions (a1), (a2),
and (bn) ∉ ℓ(pn) are satisfied, and hence (SKol

H((bn),(pn))ρ
, g) is

small, where g(U) � 􏽐
∞
j�0 (bjdj(U))pj .

4.4. Simpleness. We introduce an answer of the next
question; for which H((bn), (pn))ρ, is the space SH((bn),(pn))ρ
simple?

Theorem 20. If (pn), (qn) verify 1≤pn < qn and 0< an < bn,
for all n ∈ N, and the setups (a1), (a2) are satisfied, then

L SH an( ), qn( )( )ρ
, SH bn( ), pn( )( )ρ

􏼒 􏼓

� Λ SH an( ), qn( )( )ρ
, SH bn( ), pn( )( )ρ

􏼒 􏼓.

(39)
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Proof. Suppose there is T ∈ L(SH((an),(qn))ρ
, SH((bn),(pn))ρ

). and
T ∉ Λ(SH((an),(qn))ρ

, SH((bn),(pn))ρ
). According to Lemma 1, we

can find G ∈ L(SH((an),(qn))ρ
) and B ∈ L(SH((bn),(pn))ρ

) with
BTGIm � Im. For every m ∈ N, one has

Im

����
����SH bv( ), pv( )( )ρ

� 􏽘
∞

v�0
bvαv Im( 􏼁( 􏼁

pv⎛⎝ ⎞⎠

1/suppv( )

� 􏽘
m−1

v�0
bv

⎛⎝ ⎞⎠

1/suppv( )

≤ ‖BTG‖ Im

����
����SH av( ), qv( )( )ρ

≤ 􏽘
∞

v�0
avαv Im( 􏼁( 􏼁

qv⎛⎝ ⎞⎠

1/supqv( )

� 􏽘
m−1

v�0
av

⎛⎝ ⎞⎠

1/supqv( )

.

(40)

(is contradicts (eorem 17. □

Corollary 1. If (pn), (qn) verify 1≤pn < qn and 0< an < bn,
for all n ∈ N, and the setups (a1), (a2) are satisfied,
then L((SH((an),(qn))ρ

, SH((bn),(pn))ρ
)) � LC((SH((an),(qn))ρ

, SH((bn),

(pn))ρ)).

Proof. It is clear from Λ⊆Lc. □

Theorem 21. If setups (a1), (a2) are satisfied with p0 ≥ 1,
then the space SH((bn),(pn))ρ

is simple.

Proof. Assume T ∈ LC(SH((bn),(pn))ρ
) and T ∉ Λ

(SH((bn),(pn))ρ
). From Lemma 1, one has G, B ∈ L(SH((bn),(pn))ρ

)

so that BTGIk � Ik. We have IH((bn),(pn))ρ
∈ LC(SH((bn),(pn))ρ

).
(erefore, L(SH((bn),(pn))ρ

) � LC(SH((bn),(pn))ρ
). (is implies

that there is one non-trivial closed ideal Λ(SH((bn),(pn))ρ
) in

L(SH((bn),(pn))ρ
). □

4.5. Spectrum. In this part, we expound the sufficient
conditions on H((bn), (pn))ρ such that (SH((bn),(pn))ρ

)λ equals
SH((bn),(pn))ρ

.

Theorem 22. If X and Y are Banach spaces with dim(X) �

dim(Y) �∞ and suppose setups (a1), (a2) are satisfied and
inf

n
b

pn
n > 0, then

SH bn( ), pn( )( )ρ
􏼒 􏼓

λ
(X, Y) � SH bn( ), pn( )( )ρ

(X, Y). (41)

Proof. Let T ∈ (SH((bn),(pn))ρ
)λ(X, Y), and hence fλ ∈ H

((bn), (pn))ρ, where fλ(z) � 􏽐
∞
n�0 λn(T)zn ∈ C with

ρ(fλ) � 􏽐
∞
n�0 |bnλn(T)|pn <∞, and ‖T − λl(T)I‖ � 0, for all

l ∈ N. We have T � λl(T)I, with l ∈ N, so sl(T) � sl

(λl(T)I) � |λl(T)|, with l ∈ N. (erefore, fs ∈ H((bn),

(pn))ρ, so T ∈ SH((bn),(pn))ρ
(X, Y).

Secondly, assume T ∈ SH((bn),(pn))ρ
(X, Y). (erefore,

fs ∈ H((bn), (pn))ρ. Hence, we have

∞> 􏽘
∞

r�0
brsr(T)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pr ≥ inf

r
b

pr

r 􏽘

∞

r�0
sr(T)􏼂 􏼃

pr . (42)

Since inf
r

b
pr
r > 0, then limr⟶∞sr(T) � 0. Assume ‖T −

sr(T)‖I− 1 exists, for every r ∈ N. (erefore, (‖T−

sr(T)I‖− 1)r∈N ∈ ℓ∞. So, limr⟶∞‖T − sr(T)I‖− 1 � ‖T‖− 1

exists and is bounded. From the pre-quasi mapping ideal of
(SH((bn),(pn))ρ

, g), we obtain

I � TT
− 1 ∈ S

H br( ), pr( )( )ρ􏼐 􏼑
(X, Y)⇒􏽘

∞

r�0
e

(r)

∈ H br( 􏼁, pr( 􏼁( 􏼁ρ⇒􏽘
∞

r�0
b

pr

r <∞.

(43)

(is contradicts inf
r

b
pr
r > 0. (erefore, ‖T − sr(T)I‖ � 0,

for every r ∈ N. (is gives T ∈ (SH((bn),(pn))ρ
)λ(X, Y). (is

provides the proof. □

5. Application of Shift
Mappings on H((br), (pr))ρ

Specifically, we explore the upper limits of s-numbers for
infinite series of the weighted r-th power forward and
backward shift mapping on H((br), (pr))ρ and their appli-
cations to various entire functions in this section, where
ρ(f) � [􏽐

∞
r�0 |br

􏽢fr|
pr ](1/ϖp), for all f ∈ H((br), (pr))ρ.

Theorem 23. Let conditions (a1) and (a2) be satisfied,
inf

n
bn ≥ 1, and supr(br+1/br)

pr+1/ϖp <∞; then, Vz ∈
L(H((br), (pr))ρ) with ‖Vz‖ � supr(br+1/br)

(pr+1/ϖp).

Proof. Assume that the conditions are satisfied. For
f ∈ H((br), (pr))ρ, since (pr) is increasing and bounded
from above with pr > 0, for all r ∈ N, then

ρ Vzf( 􏼁 � ρ(zf) � 􏽘
∞

r�0
br+1

􏽢fr

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pr+1⎡⎣ ⎤⎦

1/ϖp

≤ supr

br+1

br

􏼠 􏼡

pr+1/ϖp

􏽘

∞

r�0
|br

􏽢fr|
pr+1⎡⎣ ⎤⎦

1/ϖp

≤ supr

br+1

br

􏼠 􏼡

pr+1/ϖp

ρ(f).

(44)

(is gives Vz ∈ L(H((br), (pr))ρ) with
‖Vz‖≤ supr(br+1/br)

(pr+1/ϖp). Since Vz ∈ L(H((br), (pr))ρ),
then there is A> 0 with ρ(Vzf)≤Aρ(f), for all
f ∈ H((br), (pr))ρ. Hence, ρ(Vze(r))≤Aρ(e(r)), and one
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gets supr(br+1/br)
(pr+1/ϖp) ≤ ‖Vz‖. (is completes the

proof. □

Theorem 24. Let conditions (a1) and (a2) be satisfied,
supnbn ≥ 1, and supr(br/br+1)

(pr/ϖp) <∞; then, Bz ∈
L(H((br), (pr))ρ) with ‖Bz‖ � supr(br/br+1)

(pr/ϖp).

Proof. Assume the conditions are satisfied. For
f ∈ H((br), (pr))ρ, since (pr) is increasing and bounded
from above with pr > 0, for all r ∈ N, then

ρ Bzf( 􏼁 � 􏽘
∞

r�0
br

􏽤fr+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pr⎡⎣ ⎤⎦

1/ϖp

≤ supr

br

br+1
􏼠 􏼡

pr/ϖp

􏽘

∞

r�0
br+1

􏽤fr+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pr⎡⎣ ⎤⎦

1/ϖp

≤ supr

br

br+1
􏼠 􏼡

pr/ϖp

ρ(f).

(45)

(is gives Bz ∈ L(H((br), (pr))ρ) with ‖Bz‖≤
supr(br/br+1)

(pr/ϖp). Since Bz ∈ L(H((br), (pr))ρ), then there
is A> 0 with ρ(Bzf)≤Aρ(f), for all f ∈ H((br), (pr))ρ.
Hence, ρ(Bze(r))≤Aρ(e(r)), and one gets supr(br/
br+1)

pr/ϖp ≤ ‖Bz‖. (is completes the proof. □

By U, we denote the open unit disc in C.

Theorem 25. Let conditions (a1) and (a2) be satisfied with
p0 ≥ 1. If limsup

���
b

pr
r

r
􏽰

� 1, then every function in
H((br), (pr))ρ is analytic on U. Furthermore, the convergence
in H((br), (pr))ρ implies the uniform convergence on B⊆U,
where B is compact.

Proof. Let limsup
���
b

pr
r

r
􏽰

� 1, and h ∈ H((br), (pr))ρ. (en,
h(y) � 􏽐

∞
r�0

􏽢hry
r ∈ C, with y ∈ C and ρ(h) � [􏽐

∞
r�0

|br
􏽢hr|

pr ]1/ϖp <∞. (erefore, limsup
������

|br
􏽢hr|

pr
r

􏽱

< 1. (is gives

limsup
�����

􏽢hr

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
prr

􏽲

<
1

limsup
�����

br

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
prr

􏽱 � 1. (46)

As (pr) ∈ mi↗ ∩ ℓ∞, one gets limsup
���

| 􏽢hr|
r

􏽱

|y|< |y|< 1,
with y ∈ U. Hence, h(y) � 􏽐

∞
r�0

􏽢hry
r ∈ C, with y ∈ U. As-

sume hk(y) ∈ B, with k ∈ N. Suppose limk⟶∞
ρ(hk − h) � 0, where h ∈ H((br), (pr))ρ, and we have

h
k
(y) − h(y)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 􏽘
∞

r�0

􏽢
h

k
r − 􏽢hr􏼒 􏼓y

r

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽘
∞

r�0

􏽢
h

k
r − 􏽢hr

������

������y
r

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
∞

n�0

􏽢hk
r − 􏽢hr

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pr

b
pr

r
⎡⎣ ⎤⎦

1/ϖp

� 􏽘
∞

r�0

|y|rqr

b
qr
r

⎡⎣ ⎤⎦
1/ϖq

ρ h
k

− h􏼐 􏼑, 􏽘
∞

r�0

|y|rqr

b
qr
r

⎡⎣ ⎤⎦
1/ϖq

,

(47)

where (qr) is increasing and bounded with q0 ≥ 1 and
(1/pr) + (1/qr) � 1, for all r ∈ N. Clearly, limsupr⟶∞

(|y|qr /b(qr/r)
r )< 1; then, 􏽐

∞
r�0 |y|rqr /bqr

r <∞. So, limk⟶∞
hk(y) � h(y) ∈ B. □

Theorem 26. If Vz is the forward shift mapping on
H((br), (pr))ρ, we have

supcardξ�r+1 inf
k∈ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁 1
An

≤ sr V
n
z( 􏼁

≤ supcardξ�r+1 inf
k∈ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁

,

(48)

where An � [[􏽐
∞
k�0 |bk

􏽢fk|pk ](1/ϖp)/[􏽐
∞
k�0 |bk

􏽢fk|pk+n ](1/ϖp)].

Proof. Let card ξ � r + 1 and Vn
zf ∈ H((br), (pr))ρ, for all

f ∈ H((br), (pr))ρ, for which f(y) � 􏽐
∞
k�0

􏽢fkyk ∈ C with
y ∈ C and ρ(f) � [􏽐

∞
k�0 |bk

􏽢fk|pk ](1/ϖp) <∞. (erefore,
Vn

zf(z) � 􏽐
∞
k�0

􏽢fkzk+n and ρ(Vn
zf) � [􏽐

∞
k�0 |bk+n

􏽢fk|pk+n ](1/ϖp) <∞.
Let Pξ be a mapping on H((br), (pr))ρ with rank Pξ �

r + 1 defined by

Pξg􏼐 􏼑(z) � Pξ 􏽘

∞

k�0

􏽢fkz
k+n⎛⎝ ⎞⎠ � 􏽘

∞

k∈ξ

􏽢fkz
k+n

. (49)

Since ρ(Pξg) � [ 􏽐
k ∈ ξ

|bk+n
􏽢fk| pk+n ](1/ϖp) ≤ [􏽐

∞
k�0 |bk+n

􏽢fk|pk+n ](1/ϖp) � ρ(g), this gives ‖Pξ‖≤ 1. Define a mapping Sn
z

by (Sn
zh)(z) � Sn

z( 􏽐
k∈ξ

􏽢fkzk+n) � 􏽐
∞
k�0

􏽢fkzk, and we have

ρ S
n
zh( 􏼁 � 􏽘

∞

k�0
bk

􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk⎡⎣ ⎤⎦

1/ϖp( 􏼁

≤Un 􏽘
k∈ξ

bk+n
􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk+n⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/ϖp( 􏼁

� Unρ(g).

(50)

(is implies that ‖Sn
z‖≤Un, where 1≤Un �

[􏽐
∞
k�0 |bk

􏽢fk|pk ](1/ϖp)/[􏽐k∈ξ |bk+n
􏽢fk|pk+n ](1/ϖp) <∞. (en, the

identity mapping will be Ir+1 � PξV
n
zSn

z, and from the def-
inition of s-numbers, we have

sr Ir+1( 􏼁 � 1≤ Pξ
����

����sr V
n
z( 􏼁 S

n
z

����
����≤ sr V

n
z( 􏼁 S

n
z

����
����⇒

sr V
n
z( 􏼁≥

1
‖S‖

n
z

≥
1

Un

�
􏽐k∈ξ bk+n

􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk+n

􏼔 􏼕
1/ϖp( 􏼁

􏽐
∞
k�0 bk

􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk

􏼔 􏼕
1/ϖp( 􏼁

≥ inf
k∈ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁 1
An

.

(51)

Since for all card ξ � r + 1, the last inequality is verified,
so one can see that

sr V
n
z( 􏼁≥ sup

cardξ�r+1
inf
k∈ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁 1
An

. (52)

In contrary, let card ξ � r, where ξ ⊂ N. Define the
mapping Rn

z as (Rn
zv)(z) � Rn

z(􏽐
∞
k�0

􏽢fkzk) � 􏽐k∈ξ
􏽣fk
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zk+n􏽐k∈ξ
􏽢fkzk+n. From the definition of approximation

numbers, we have

sr V
n
z( 􏼁≤ αr V

n
z( 􏼁≤ V

n
z − R

n
z

����
����≤ sup|f(z)|≠0

V
n
z − R

n
z( 􏼁f(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|f(z)|
� sup

|f(z)|≠0

􏽐k∉ξ
􏽢fkz

k+n

|f(z)|

≤ sup
|f(z)|≠0

􏽐k∉ξ bk+n
􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk+n

􏼔 􏼕
1/ϖp( 􏼁

|f(z)|
≤ sup

k∉ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁

(53)

Since for all card ξ � r, the last inequality holds and by
using Lemma 2, one has

sup
cardξ�r+1

inf
k∈ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁 1
An

≤ sr V
n
z( 􏼁≤ inf

cardξ�r
sup
k∉ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁

� sup
cardξ�r+1

inf
k∈ξ

bk+n

bk

􏼠 􏼡

pk+n/ϖp( 􏼁

. (54)

(is completes the proof. □

Theorem 27. If Bz is the backward shift mapping on
H((br), (pr))ρ, then

supcardξ�r+1 inf
k∈ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁 1
Gn

≤ sr B
n
z( 􏼁

≤ supcardξ�r+1 inf
k∈ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁

,

(55)

where Gn � [􏽐
∞
k�0 |bk

􏽢fk|pk ](1/ϖp)/[[􏽐k∈ξ |bk+n
􏽤fk+n|pk ](1/ϖp)].

Proof. Assume card ξ � r + 1 and Bn
zf ∈ H((br), (pr))ρ, for

every f ∈ H((br), (pr))ρ, where f(y) � 􏽐
∞
k�0

􏽢fkyk ∈ C with
y ∈ C and ρ(f) � [􏽐

∞
k�0 |bk

􏽢fk|pk ](1/ϖp) <∞. (erefore,
Bn

zf(z) � 􏽐
∞
k�0

􏽤fk+nzk and ρ(Bn
zf) � [􏽐

∞
k�0 |bk

􏽤fk+n|pk ](1/ϖp)

<∞.
Suppose Pξ is a mapping on H((br), (pr))ρ with rank

Pξ � r + 1 evident by

Pξg􏼐 􏼑(z) � Pξ 􏽘

∞

k�0

􏽤fk+nz
k⎛⎝ ⎞⎠ � 􏽘

∞

k∈ξ

􏽤fk+nz
k
. (56)

As ρ(Pξg) � [􏽐k∈ξ |bk
􏽤fk+n|pk ](1/ϖp) ≤ [􏽐

∞
k�0

|bk
􏽤fk+n|pk ](1/ϖp) � ρ(g). (is implies that ‖Pξ‖≤ 1. Define a

mapping Sn
z by (Sn

zh)(z) � Sn
z(􏽐k∈ξ

􏽤fk+nzk) � 􏽐
∞
k�0

􏽢fkzk, and
one gets

ρ S
n
zh( 􏼁 � 􏽘

∞

k�0
bk

􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk⎡⎣ ⎤⎦

1/ϖp( 􏼁

≤Un 􏽘
k∈ξ

bk
􏽤fk+n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/ϖp( 􏼁

� Unρ(h).

(57)

(erefore, ‖Sn
z‖≤Un, where 1≤Un �

[􏽐
∞
k�0 |bk

􏽢fk|pk ](1/ϖp)/[􏽐k∈ξ |bk
􏽤fk+n|pk ](1/ϖp) <∞. Hence, the

identity mapping will be Ir+1 � PξB
n
zSn

z, and in view of the
definition of s-numbers, one has

sr Ir+1( 􏼁 � 1≤ Pξ
����

����sr B
n
z( 􏼁 S

n
z

����
����≤ sr B

n
z( 􏼁 S

n
z

����
����⇒

sr B
n
z( 􏼁≥

1
S

n
z

����
����
≥

1
Un

�
􏽐k∈ξ bk

􏽤fk+n

pk
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕
1/ϖp( 􏼁

􏽐
∞
k�0 bk

􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk

􏼔 􏼕
1/ϖp( 􏼁

≥ inf
k∈ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁 1
Gn

.

(58)

Since for every card ξ � r + 1, the last inequality is
confirmed, and one obtains

sr B
n
z( 􏼁≥ sup

cardξ�r+1
inf
k∈ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁 1
Gn

. (59)

In contrary, let card ξ � r, where ξ ⊂ N. Define the
mapping Rn

z as (Rn
zv)(z) � Rn

z(􏽐
∞
k�0

􏽢fkzk) � 􏽐k∈ξ
􏽤fk+nzk.

From the definition of approximation numbers, one gets
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sr B
n
z( 􏼁≤ αr B

n
z( 􏼁≤ B

n
z − R

n
z

����
����≤ sup

|f(z)|≠0

B
n
z − R

n
z( 􏼁f(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|f(z)|
� sup

|f(z)|≠0

􏽐k∉ξ
􏽤fk+nz

k
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|f(z)|

≤ sup
|f(z)|≠0

􏽐k∉ξ bk
􏽤fk+n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk

􏼔 􏼕
1/ϖp( 􏼁

|f(z)|
≤ sup

k∉ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁

.

(60)

Since for all card ξ � r, the last inequality holds, and by
using Lemma 2, one has

sup
cardξ�r+1

inf
k∈ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁 1
Gn

≤ sr B
n
z( 􏼁

≤ inf
cardξ�r

sup
k∉ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁

� sup
cardξ�r+1

inf
k∈ξ

bk

bk+n

􏼠 􏼡

pk/ϖp( 􏼁

.

(61)

(is finishes the proof. □

Theorem 28. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1, let 􏽐

∞
m�0 cmVm

z be a shift mapping on the space
H((br), (pr))ρ and (cm)∞m�0 ∈ ℓ

((pm)/ϖp); then,

supj 􏽘

∞

m�0
cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pm+j

b
pm+j

m+j

b
pj

j

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/ϖp( 􏼁

≤ 􏽘
∞

m�0
cmV

m
z

���������

���������

≤ sup
m,j

bm+j

bj

􏼠 􏼡

pm+j/ϖp( 􏼁

􏽘

∞

m�0
cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

pm/ϖp( 􏼁
.

(62)

Proof. For f ∈ H((br), (pr))ρ, we have 􏽐
∞
m�0 cmVm

z

f(z) � 􏽐
∞
j�0 􏽐
∞
j�0 cm

􏽢fjz
j+m. One has

􏽘

∞

m�0
cmV

m
z

���������

���������
≥
ρ 􏽐
∞
m�0 cmV

m
z e

(j)
􏼐 􏼑

ρ e
(j)

􏼐 􏼑
�

􏽐
∞
m�0 cmbm+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pm+j

b
pj

j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

1/ϖp( 􏼁

≥ supj 􏽘

∞

m�0
cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pm+j

b
pm+j

m+j

b
pj

j

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦1 1/ϖp( 􏼁
.

(63)

Since ρ satisfies the triangle inequality, we have

􏽘

∞

m�0
cmV

m
z

���������

���������
� sup

ρ(f)≠0

ρ 􏽐
∞
m�0 cmV

m
z f( 􏼁

ρ(f)
≤ sup

ρ(f)≠0

􏽐
∞
m�0 􏽐

∞
j�0 cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢fj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌bm+j􏼒 􏼓
pm+j

􏼔 􏼕
1/ϖp( 􏼁

􏽐
∞
j�0

􏽢fjbj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj

􏼔 􏼕
1/ϖp( 􏼁

≤ sup
m,j

bm+j

bj

􏼠 􏼡

pm+j/ϖp( 􏼁􏽐
∞
m�0 􏽐

∞
j�0 cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢fj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌bj􏼒 􏼓
pm+j

􏼔 􏼕
1/ϖp( 􏼁

􏽐
∞
j�0

􏽢fjbj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj

􏼔 􏼕
1/ϖp( 􏼁

≤ sup
m,j

bm+j

bj

􏼠 􏼡

pm+j/ϖp( 􏼁

􏽘

∞

m�0
cm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

pm/ϖp( 􏼁
.

(64)

□
Theorem 29. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1, let 􏽐

∞
j�0 cjB

j
z be a shift mapping on the space

H((br), (pr))ρ and (cj)
∞
j�0 ∈ ℓ

((pj)/ϖp); then,

supk 􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk b

pk

k

b
pk+j

k+j

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/ϖp

≤ 􏽘
∞

j�0
cjB

j
z

����������

����������

≤ supj,k

bk

bk+j

􏼠 􏼡

pk/ϖp

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp

.

(65)

Proof. Suppose f ∈ H((br), (pr))ρ, and one has
􏽐
∞
j�0 cjB

j
zf(z) � 􏽐

∞
k�0 􏽐
∞
j�0 cj

􏽤fk+jz
k. We have

􏽘

∞

j�0
cjB

j
z

����������

����������
≥
ρ 􏽐
∞
j�0 cjB

j
ze

(k)
􏼐 􏼑

ρ e
(k)

􏼐 􏼑
�

􏽐
∞
j�0 bk− jcj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk−j

b
pk

k

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

1/ϖp( 􏼁

≥ supk 􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk b

pk

k

b
pk+j

k+j

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

1/ϖp( 􏼁

.

(66)
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As ρ verifies the triangle inequality, one can see that

􏽘

∞

j�0
cjB

j
z

����������

����������
� sup

ρ(f)≠0

ρ 􏽐
∞
j�0 cjB

j
zf􏼐 􏼑

ρ(f)
≤ sup

ρ(f)≠0

􏽐
∞
j�0 􏽐

∞
k�0 bk cj

􏽤fk+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
pk

􏼔 􏼕
1/ϖp( 􏼁

􏽐
∞
k�0 bk

􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk

􏼔 􏼕
1/ϖp( 􏼁

≤ sup
j,k

bk

bk+j

􏼠 􏼡

pk/ϖp( 􏼁􏽐
∞
j�0 􏽐

∞
k�0 bk+j cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽤fk+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
pk

􏼔 􏼕
1/ϖp( 􏼁

􏽐
∞
k�0 bk

􏽢fk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk

􏼔 􏼕
1/ϖp( 􏼁

≤ sup
j,k

bk

bk+j

􏼠 􏼡

pk/ϖp( 􏼁

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp

.

(67)

□
Theorem 30. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1, let 􏽐

∞
r�0 crV

r
z be a shift mapping on H((br), (pr))ρ;

then, the s-numbers of this mapping are given by

sr 􏽘

∞

j�0
cjV

j
z

⎛⎝ ⎞⎠≤ sup
cardξ�r+1

inf
k∈ξ

supj

bj+k

bk

􏼠 􏼡

pj+k/ϖp

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp

, for all cj􏼐 􏼑
∞
j�0 ∈ ℓ

pj( 􏼁/ϖp .

(68)

Proof. Let card ξ � r, where ξ ⊂ N. Define the mapping R as
Rf(z) � R(􏽐

∞
k�0

􏽢fkzk) � 􏽐k∈ξ 􏽐
k
j�0 cj

􏽤fk−jz
k. Since the tri-

angle inequality holds by ρ, we have

sr 􏽘

∞

j�0
cjV

j
z

⎛⎝ ⎞⎠≤ αr 􏽘

∞

j�0
cjV

j
z

⎛⎝ ⎞⎠≤ 􏽘
∞

j�0
cjV

j
z − R

����������

����������
≤ sup

ρ(f)≠0

ρ 􏽐
∞
j�0 cjV

j
zf − Rf􏼐 􏼑

ρ(f)

≤ sup
ρ(f)≠0

􏽐
∞
j�0 􏽐k∉ξ cj

􏽢fkbk+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pk+j

􏼔 􏼕

ρ(f)
≤ sup

k∉ξ,j

bj+k

bk

􏼠 􏼡

pj+k/ϖp( 􏼁

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp( 􏼁

.

(69)

As for all card ξ � r, the last inequality is verified, and
one has

sr 􏽘

∞

j�0
cjV

j
z

⎛⎝ ⎞⎠≤ inf
cardξ�r

sup
k∉ξ,j

bj+k

bk

􏼠 􏼡

pj+k/ϖp

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp

� sup
cardξ�r+1

inf
k∈ξ

supj

bj+k

bk

􏼠 􏼡

pj+k/ϖp

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp

. (70)

(is completes the proof. □

Theorem 31. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1, let 􏽐

∞
j�0 cjB

j
z be a shift mapping on H((br), (pr))ρ;

then, the s-numbers of this mapping are given by

sr 􏽘

∞

j�0
cjB

j
z

⎛⎝ ⎞⎠≤ sup
cardξ�r+1

inf
k∈ξ

supj

bk

bk+j

􏼠 􏼡

pk/ϖp

􏽘

∞

j�0
c

pj/ϖp

j , for all cj􏼐 􏼑
∞
j�0 ∈ ℓ

pj( 􏼁/ϖp .

(71)
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Proof. Let card ξ � r, where ξ ⊂ N. Define the mapping R as
Rf(z) � R(􏽐

∞
k�0

􏽢fkzk) � 􏽐k∈ξ 􏽐
k
j�0 cj

􏽤fk−jz
k. Since the tri-

angle inequality holds by ρ, one gets

sr 􏽘

∞

j�0
cjB

j
z

⎛⎝ ⎞⎠≤ αr 􏽘

∞

j�0
cjB

j
z

⎛⎝ ⎞⎠≤ 􏽘
∞

j�0
cjB

j
z − R

����������

����������
≤ sup

ρ(f)≠0

ρ 􏽐
∞
j�0 cjB

j
zf − Rf􏼐 􏼑

ρ(f)

≤ sup
ρ(f)≠0

􏽐
∞
j�0 􏽐k∉ξ bk cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽤fk+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
pk

􏼔 􏼕
1/ϖp( 􏼁

ρ(f)

≤ sup
k∉ξ,j

bk

bk+j

􏼠 􏼡

pk/ϖp( 􏼁

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp( 􏼁

.

(72)

As for all card ξ � r, the last inequality is verified, and
one has

sr 􏽘

∞

j�0
cjB

j
z

⎛⎝ ⎞⎠≤ inf
cardξ�r

sup
k∉ξ,j

bk

bk+j

􏼠 􏼡

pk/ϖp( 􏼁

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp( 􏼁

� sup
cardξ�r+1

inf
k∈ξ

supj

bk

bk+j

􏼠 􏼡

pk/ϖp( 􏼁

􏽘

∞

j�0
cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pj/ϖp( 􏼁

.

(73)

(is completes the proof. □

(e following theorems are direct actions of (eorem 30
and Definition 10.

Theorem 32. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1, let Vez be a shift mapping on H((br), (pr))ρ and
ez � 􏽐

∞
r�0 zr/r!. He upper estimation of the s-numbers of Vez

is given by

sa Vez( 􏼁≤ sup
cardξ�a+1

inf
j∈ξ

supr

br+j

bj

􏼠 􏼡

pr+j/ϖp

􏽘

∞

r�0

1
r!

􏼒 􏼓
pr/ϖp

.

(74)

Theorem 33. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1, let Vsin(z) be a shift mapping on H((br), (pr))ρ and
sin(z) � 􏽐

∞
m�0 (−1)m(z2m+1/(2m + 1)!). He upper estima-

tion of the s-numbers of Vsin(z) is given by

sa Vsin(z)􏼐 􏼑≤ sup
cardξ�a+1

inf
j∈ξ

supr

br+j

bj

􏼠 􏼡

pr+j/ϖp

􏽘

∞

r�0

1
(2r + 1)!

􏼠 􏼡

pr/ϖp

.

(75)

(e following theorems are direct actions of (eorem 31
and Definition 11.

Theorem 34. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1, then the mapping Bez on H((br), (pr))ρ holds the
following inequality:

sr Bez( 􏼁≤ sup
cardξ�r+1

inf
k∈ξ

supm

bk

bk+m

􏼠 􏼡

pk/ϖp

􏽘

∞

m�0

1
m!

􏼒 􏼓
pm/ϖp

.

(76)

Theorem 35. If conditions (a1) and (a2) are satisfied with
p0 ≥ 1 and the mapping Bsin(z) is defined on H((br), (pr))ρ,
then the upper estimation of the s-numbers of Bsin(z) is given
by

sr Bsin(z)􏼐 􏼑≤ sup
cardξ�r+1

inf
k∈ξ

supm

bk

bk+m

􏼠 􏼡

pk/ϖp

􏽘

∞

m�0

1
(2m + 1)!

􏼠 􏼡

pm/ϖp

.

(77)

6. Caristi’s Generalization of Fixed
Point Theorem

In modular spaces, the Ekeland variational principle [28]
cannot be applied because the modular does not really prove
the triangle inequality. In this part, we consider an extension
of Caristi’s fixed point theorem in H((br), (pr))ρ in light of
Farkas [28].

Definition 12

(a) (e pre-quasi normed ssfps ρ on H((br), (pr))ρ is
called ρ-convex, if ρ(ωv + (1 − ω)t)≤ωρ(v) + (1−

ω)ρ(t), for each ω ∈ [0, 1] and v, t ∈ H((bn), (pn))ρ.
(b) v(a)􏼈 􏼉a∈N ⊆H((bn), (pn))ρ is ρ-convergent to v ∈ H

(bn), (pn)ρ, if and only if, lima⟶∞ρ(v(a) − v) � 0. If
the ρ-limit exists, then it is unique.

(c) v(a)􏼈 􏼉a∈N ⊆H((bn), (pn))ρ is ρ-Cauchy, when
lima,b⟶∞ρ(v(a) − v(b)) � 0.

(d) Υ ⊂ H((bn), (pn))ρ is ρ-closed, if for all ρ-converging
u(a)􏼈 􏼉a∈N ⊂ Υ to u, and hence u ∈ Υ.
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(e) Υ ⊂ H((bn), (pn))ρ is ρ-bounded, when δρ(Υ) �

sup ρ(v − t): v, t ∈ Υ􏼈 􏼉<∞.
(f ) (e ρ-ball of radius d≥ 0 and center v, for every

v ∈ H((bn), (pn))ρ, is defined as

Bρ(v, d) � t ∈ H bn( 􏼁, pn( 􏼁( 􏼁ρ: ρ(v − t)≤d􏽮 􏽯. (78)

(g) A pre-quasi normed ssfps ρ on H((bn), (pn))ρ sat-
isfies the Fatou property, if for any sequence
t(u)􏼈 􏼉⊆H((bn), (pn))ρ with limu⟶∞ρ(t(u) − t) � 0
and any v ∈ H((bn), (pn))ρ,

ρ(v − t)≤ supm inf
u≥m

ρ v − t
(u)

􏼐 􏼑. (79)

Consider the fact that the ρ-closedness of the ρ-balls is
determined by the Fatou property.

Theorem 36. Suppose setups (a1) and (a2) are satisfied;
then, ρ(f) � [􏽐

∞
r�0 |br

􏽢fr|
pr ](1/ϖp), for all f ∈ H((bn), (pn))ρ,

holds the Fatou property.

Proof. Assume the setups are fulfilled and
f(i)􏼈 􏼉⊆H((bn), (pn))ρ with limi⟶∞ρ(f(i) − f) � 0. Since
the space H((bn), (pn))ρ is a pre-quasi closed space, then
f ∈ H((bn), (pn))ρ.(en, for any g ∈ H((bn), (pn))ρ, one can
see that

ρ(g − f) � 􏽘
∞

a�0
ba 􏽢ga − 􏽣fa􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pa⎡⎣ ⎤⎦

1/ϖp

≤ 􏽘
∞

a�0
ba 􏽢ga −

􏽣
f

(i)
a􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pa

⎡⎣ ⎤⎦
1/ϖp

+ 􏽘
∞

a�0
ba

􏽣
f

(i)
a − 􏽣fa􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pa

⎡⎣ ⎤⎦
1/ϖp

≤ supj inf
i≥j

ρ g − f
(i)

􏼐 􏼑. (80)

□
Theorem 37. He function ρ(f) � 􏽐

∞
r�0 |br

􏽢fr|
pr , for all

f ∈ H((bn), (pn))ρ, does not satisfy the Fatou property, if
setups (a1) and (a2) are satisfied with p0 > 1.

Proof. Let the conditions be fulfilled and
f(i)􏼈 􏼉⊆H((bn), (pn))ρ with limi⟶∞ρ(f(i) − f) � 0. Since
the space H((bn), (pn))ρ is a pre-quasi closed space, then
f ∈ H((bn), (pn))ρ. (en, for any g ∈ H((bn), (pn))ρ, we
have

ρ(g − f) � 􏽘
∞

a�0
ba 􏽢ga − 􏽣fa􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pa ≤ 2supapa− 1

􏽘

∞

a�0
ba 􏽢ga −

􏽣
f

(i)
a􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pa

+ 􏽘
∞

a�0
ba

􏽣
f

(i)
a − 􏽣fa􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pa

⎡⎣ ⎤⎦

≤ 2supapa− 1supj inf
i≥j

ρ g − f
(i)

􏼐 􏼑.

(81)

Hence, ρ does not satisfy the Fatou property. □

Example 2. (e space of functions H((ar), (qr))ρ is a pre-
quasi normed ssfps, not quasi normed ssfps, and not a
normed ssfps, where δ(h) � [􏽐

∞
r�0 |ar

􏽢hr|
qr ](1/ϖq), for all

h ∈ H((ar), (qr))ρ.

Example 3. (e space of functions H((ar), (q)), with
0< q< 1, is a pre-quasi normed ssfps, quasi normed ssfps,
and not a normed ssfps, where δ(h) � [􏽐

∞
r�0 |ar

􏽢hr|
q](1/q), for

each h ∈ H((ar), (qr))δ.

Example 4. (e space of functions H((ar), (qr)) is a pre-
quasi normed ssfps, a quasi normed ssfps, and a normed
ssfps, where δ(h) � inf ι> 0: 􏽐

∞
r�0 |ar

􏽢hr/ι|
qr ≤ 1􏽮 􏽯, for all

h ∈ H((ar), (qr))δ.

Definition 13. (e function J: H((br), (pr))δ⟶ (−∞,∞]

is said to be lower semicontinuous at h(0) ∈ H((br), (pr))δ if
supV∈V(h(0)) inf

h∈V
J(h) � J(h(0)), for which V(h(0)) denotes

h(0)’s neighborhood system.

Definition 14. (e function J: H((br), (pr))δ⟶ (−∞,∞]

is said to be proper, when

D(J) � f ∈ H br( 􏼁, pr( 􏼁( 􏼁δ: J(f)<∞􏼈 􏼉≠∅. (82)

Theorem 38. If Ξ≠∅ and Ξ is a δ-closed subset of
H((bx), (px))δ, with δ(h) � [􏽐

∞
x�0 |bx

􏽢hx|px ](1/ϖp), for all
h ∈ H((bx), (px))δ, and J: Ξ⟶ (−∞,∞] is a proper,
δ-lower semicontinuous function with inf

h∈Ξ
J(h)> −∞, as-

sume that λ> 0, ηx􏼈 􏼉 ⊂ (0,∞), and h(0) ∈ Ξ with
J(h(0))≤ inf

h∈Ξ
J(h) + λ. So, we have h(x)􏼈 􏼉 ∈ Ξ which δ-con-

verges to few h(λ), under the following conditions:

(i) δ(h(λ) − h(x))≤ (λ/2xη0), for every x ∈ N.
(ii) J(h(λ)) + 􏽐

∞
x�0 ηxδ(h(λ) − h(x))≤ J(h(0)).

(iii) When h≠ h(λ), then J(h(λ)) + 􏽐
∞
x�0 ηxδ(h(λ)−

h(x))< J(h) + 􏽐
∞
x�0 ηxδ(h − h(x)).

Proof. Set S(h(0)) � h ∈ Ξ: J(h) + η0δ(h − h(0))≤ J(h(0))􏼈 􏼉.
Since h(0) ∈ S(h(0)), then S(h(0))≠∅. As J is δ-lower
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semicontinuous, δ satisfies the Fatou property, and Ξ is
δ-closed, we have that S(h(0)) is δ-closed. Select
h(1) ∈ S(h(0)) with

J h
(1)

􏼐 􏼑 + η0δ h
(1)

− h
(0)

􏼐 􏼑≤ inf
h∈S h(0)( )

J(h) + η0δ h − h
(0)

􏼐 􏼑􏽮 􏽯

+
λη1
2η0

.

(83)

Next set

S h
(1)

􏼐 􏼑 � h ∈ S h
(0)

􏼐 􏼑: J(h) + 􏽘

1

i�0
ηiδ h − h

(i)
􏼐 􏼑≤ J h

(1)
􏼐 􏼑 + η0δ h

(1)
− h

(0)
􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭. (84)

Similar to S(h(0)), one has S(h(1))≠∅ and δ-closed.
Suppose that we have built h(0), h(1), h(2), . . . , h(x)􏼈 􏼉 and
S(h(0)), S(h(1)), S(h(2)), . . . , S(h(x))􏼈 􏼉. After that, select

h(x+1) ∈ S(h(x)) with

J h
(x+1)

􏼐 􏼑 + 􏽘
x

i�0
ηiδ h

(x+1)
− h

(i)
􏼐 􏼑

≤ inf
h∈S h(x)( )

J(h) + 􏽘
x

i�0
ηiδ h − h

(i)
􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭ +
ληx

2xη0
.

(85)

Suppose

S h
(x+1)

􏼐 􏼑 : � h ∈ S h
(x)

􏼐 􏼑: J(h) + 􏽘
x+1

i�0
ηiδ h − h

(i)
􏼐 􏼑≤ J h

(x+1)
􏼐 􏼑 + 􏽘

x

i�0
ηiδ h

(x+1)
− h

(i)
􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭. (86)

(erefore, we construct the sequences h(x)􏼈 􏼉 and
S(h(x))􏼈 􏼉 by induction. For constant x ∈ N, assume

y ∈ S(h(x)). One can see that

J(y) + 􏽘
x

i�0
ηiδ y − h

(i)
􏼐 􏼑≤ J h

(x)
􏼐 􏼑 + 􏽘

x−1

i�0
ηiδ h

(x)
− h

(i)
􏼐 􏼑,

(87)

which gives

ηxδ y − h
(x)

􏼐 􏼑≤ J h
(x)

􏼐 􏼑 + 􏽘
x−1

i�0
ηiδ h

(x)
− h

(i)
􏼐 􏼑 − J(y) + 􏽘

x−1

i�0
ηδ y − h

(i)
􏼐 􏼑

i
⎡⎣ ⎤⎦

≤ J h
(x)

􏼐 􏼑 + 􏽘
x−1

i�0
ηiδ h

(x)
− h

(i)
􏼐 􏼑 − inf

h∈S h(x−1)( )
J(h) + 􏽘

x−1

i�0
ηiδ h − h

(i)
􏼐 􏼑⎡⎣ ⎤⎦≤

ληx

2xη0
.

(88)

16 Journal of Mathematics



Since S(h(x))􏼈 􏼉 is decreasing with h(x) ∈ S(h(x)), for each
x ∈ N, one has

δ h
(x+q)

− h
(x)

􏼐 􏼑≤
λ

2xη0
, (89)

for each x, q ∈ N, which gives that h(x)􏼈 􏼉 is δ− Cauchy. Since
H((bx), (px))δ is δ− Banach space, h(x)􏼈 􏼉 has δ− limits h(λ)

and ∩
x∈N

S(h(x)) � h(λ)􏼈 􏼉 satisfies. As h(x+1) ∈ S(h(x)), one has

J h
(x+1)

􏼐 􏼑 + 􏽘
x

i�0
ηiδ h

(x+1)
− h

(i)
􏼐 􏼑≤ J h

(x)
􏼐 􏼑

+ 􏽘
x−1

i�0
ηiδ h

(x)
− h

(i)
􏼐 􏼑,

(90)

which implies that J(h(x)) + 􏽐
x−1
i�0 ηiδ(h(x) − h(i))􏽮 􏽯 is de-

creasing. After that, assume h≠ h(λ). So, we get r ∈ N for
which h ∉ S(h(x)), for each x≥ r, i.e.,

J h
(x)

􏼐 􏼑 + 􏽘
x−1

i�0
ηiδ h

(x)
− h

(i)
􏼐 􏼑< J(h) + 􏽘

x

i�0
ηiδ h − h

(i)
􏼐 􏼑.

(91)

As h(λ) ∈ S(h(x)), with x≥ r, one can see that

J h
(λ)

􏼐 􏼑 + 􏽘

x

i�0
ηiδ h

(λ)
− h

(i)
􏼐 􏼑≤ J h

(x)
􏼐 􏼑 + 􏽘

x−1

i�0
ηiδ h

(x)
− h

(i)
􏼐 􏼑

≤ J h
(r)

􏼐 􏼑 + 􏽘
r−1

i�0
ηiδ h

(r)
− h

(i)
􏼐 􏼑.

(92)

As x⟶∞ in the previous inequality, one gets

J h
(λ)

􏼐 􏼑 + 􏽘
∞

i�0
ηiδ h

(λ)
− h

(i)
􏼐 􏼑≤ J h

(r)
􏼐 􏼑 + 􏽘

r−1

i�0
ηiδ h

(r)
− h

(i)
􏼐 􏼑< J(h) + 􏽘

r

i�0
ηiδ h − h

(i)
􏼐 􏼑≤ J(h) + 􏽘

∞

i�0
ηiδ h − h

(i)
􏼐 􏼑. (93)

(is implies that

J h
(λ)

􏼐 􏼑 + 􏽘
∞

x�0
ηxδ h

(λ)
− h

(x)
􏼐 􏼑< J(h) + 􏽘

∞

x�0
ηxδ h − h

(x)
􏼐 􏼑.

(94)

(is finishes the proof. □

We discuss the concept of Caristi’s fixed point theorem
in H((bx), (px))δ using (eorem 38.

Theorem 39. If Ξ≠∅ and Ξ is a δ-closed subset of
H((bx), (px))δ, under δ(h) � [􏽐

∞
x�0 |bx

􏽢hx|px ]1/ϖp , with
h ∈ H((bx), (px))δ, let λ> 0 and ηn􏼈 􏼉 with 0< ] �

􏽐
∞
x�0 ηx <∞.U: Ξ⟶ Ξ is a mapping and there is a function

J: Ξ⟶ (−∞,∞] which is a proper and δ-lower semi-
continuous under inf

h∈Ξ
J(h)> −∞ and

(1) δ(U(h) − g) − δ(h − g)≤ δ(U(h) − h), for any
h, g ∈ Ξ.

(2) δ(U(h) − h)≤ J(h) − J(U(h)), for any h ∈ Ξ.

Hence, there is a fixed point of U in Ξ.

Proof. As 0< ] � 􏽐
∞
x�0 ηx <∞, we have that J1: � ]J is

proper, bounded from below, and δ-lower semicontinuous.
If h ∈ Ξ, one has

]δ(U(h) − h)≤ J1(h) − J1(U(h)). (95)

As inf
h∈Ξ

J1(h)> −∞, there is h(0) ∈ Ξ with
J1(h(0))< inf

h∈Ξ
J1(h) + λ. From (eorem 38, there is h(x)􏼈 􏼉

which δ-converges to few h(λ) ∈ Ξ, with

J1 h
(λ)

􏼐 􏼑 + 􏽘
∞

x�0
ηxδ h

(λ)
− h

(x)
􏼐 􏼑< J1(h) + 􏽘

∞

x�0
ηxδ h − h

(x)
􏼐 􏼑,

(96)

for all h≠ h(λ). Suppose that U(h(λ))≠ h(λ), and one has

J1 h
(λ)

􏼐 􏼑 + 􏽘
∞

x�0
ηxδ h

(λ)
− h

(x)
􏼐 􏼑< J1 U h

(λ)
􏼐 􏼑􏼐 􏼑

+ 􏽘
∞

x�0
ηxδ U h

(λ)
􏼐 􏼑 − h

(x)
􏼐 􏼑,

(97)

which gives

J1 h
(λ)

􏼐 􏼑 − J1 U h
(λ)

􏼐 􏼑􏼐 􏼑< 􏽘
∞

x�0
ηxδ U h

(λ)
􏼐 􏼑 − h

(x)
􏼐 􏼑 − 􏽘

∞

x�0
ηxδ h

(λ)
− h

(x)
􏼐 􏼑 � 􏽘

∞

x�0
ηx δ U h

(λ)
􏼐 􏼑 − h

(x)
􏼐 􏼑 − δ h

(λ)
− h

(x)
􏼐 􏼑􏼐 􏼑. (98)

From condition (6), one can see that
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J1 h
(λ)

􏼐 􏼑 − J1 U h
(λ)

􏼐 􏼑􏼐 􏼑< 􏽘
∞

x�0
ηxδ U h

(λ)
􏼐 􏼑 − h

(λ)
􏼐 􏼑

� ]δ U h
(λ)

􏼐 􏼑 − h
(λ)

􏼐 􏼑.

(99)

Inequality (6) gives

]δ U h
(λ)

􏼐 􏼑 − h
(λ)

􏼐 􏼑≤ J1 h
(λ)

􏼐 􏼑 − J1 U h
(λ)

􏼐 􏼑􏼐 􏼑

< ]δ U h
(λ)

􏼐 􏼑􏼐 􏼑 − h
(λ)

.
(100)

We have a contradiction. Hence, U(h(λ)) � h(λ). (is
completes the proof. □
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Mathematicae, vol. 3, pp. 133–181, 1922.

[2] R. Kannan, “Some results on fixed points-II,” He American
Mathematical Monthly, vol. 76, no. 4, pp. 405–408, 1969.

[3] S. J. H. Ghoncheh, “Some Fixed point theorems for Kannan
mapping in the modular spaces,” Ciencia e Natura, vol. 37,
pp. 462–466, 2015.

[4] L. Diening, P. Harjulehto, P. Hästö, and M. Ruẑiĉka, Lebesgue
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