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We study the identification and estimation of graphical models with nonignorable nonresponse. An observable variable correlated to
nonresponse is added to identify themean of response for the unidentifiable model. An approach to estimating themarginal mean of
response is proposed, based on simulation imputation methods which are introduced for a variety of models including linear,
generalized linear, and monotone nonlinear models. )e proposed mean estimators are

��
N

√
-consistent, where N is the sample size.

Finite sample simulations confirm the effectiveness of the proposedmethod. Sensitivity analysis for the untestable assumption on our
augmented model is also conducted. A real data example is employed to illustrate the use of the proposed methodology.

1. Introduction

)e problem of missing data in practice has attracted much
attention for decades. Rubin [1] gave the weakest general
conditions under which the nonresponse is ignorable; that is,
ignoring the process that causes missing can still result in
correct inference when both missing and observing are at
random. Alternatively, the nonresponse is said to be non-
ignorable (Little and Rubin [2]) if it depends on the value of the
possibly unobserved outcome. Groves, Presser, and Dipko [3]
illustrated that if the missing mechanism is not ignorable, then
a complete-case analysis which excludes missing data could
result in highly biased estimates. For more discussions about
nonresponse bias, one can refer to the work of Little and Rubin
[2], Ibrahim and Lipsitz [4], and Goves [5], among others.

To address the problems of nonignorable nonresponse,
weighting adjustments, which adjust the estimates by rescaling
each unit’s sample weight proportionally to the inverse of its
response probability, are frequently used.)emethods used for
adjusting include poststratification by Holt and Smith [6],
Calibration by Kott [7], and raking-ratio estimation by Deville,
Särndal, and Sautory [8]. Weighting adjustments are model-
based approaches, that is, the population values are treated as

realizations of random variables that are distributed according
to a superpopulation [9], and auxiliary information is incor-
porated into various models to describe nonrespondent be-
havior with respect to the variables of target. For instance,
Greenlees, Reece, and Zieschang [10] conducted linear re-
gression to analyze the unobserved income data assuming that
nonresponse income depends on the unobserved value. Fay
[11] and Baker and Laird [12] provided a family of estimable
hierarchical log-linear models for the joint distribution of the
data and the response indicator.

As pointed out by Little [13], the fully parametric ap-
proach is sensitive to failure of the assumed parametric
model. Based on the exponential tilting model, Kim and Yu
[14] proposed a semiparametric estimation method of mean
functionals with nonignorable missing data. Riddles, Kim
and Im [15] presented an approach of maximum likelihood
estimation that uses parametric model assumptions about
the variable of interest among the respondents only. Zhao,
Tang, Qu, and Jiang [16] considered the parametric pro-
pensity model and studied semiparametric estimating
equations inference by the nonparametric imputation
method. Guo,Ma, andWang [17] generalized the propensity
model to semiparametric form and investigated the
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estimation of the parametric copula model. )ere are also
some works using graphic models to depict nonresponse
mechanisms in the literature on the modeling approach. For
examples, Ma, Geng, and Hu [18] used graphic models with
temporal structure to describe nonresponse mechanisms for
binary income in a longitudinal study. Wang, Chen, Geng,
and Zhou [19] extended the work of Ma, Geng, and Hu [18]
to derive the maximum likelihood estimator for the pa-
rameter of the binomial proportion and its associated var-
iance. More existing works along this line can be found in
the work of Little [13], Fay [11], and Forster and Smith [20].

In this paper, we present a new method to tackle the
problem of nonignore nonresponse. A completely observ-
able variable correlated to Y is added to identify the mean of
the response Y. Adjustments are applied by a fixing response
approach which divides the population into two strata: one
consists of respondents and the other of nonrespondents
[21]. )en, an approach to estimating the marginal mean of
response Y is proposed based on simulation imputation
methods under linear, generalized linear, and monotone
nonlinear models, respectively. It is shown that the proposed
estimators are

��
N

√
-consistent, where N is the sample size.

)e effectiveness of the method is demonstrated via simu-
lations. Application to real data of the method is also
considered. Simulations show that our new method is
successful in modeling the mean of response Y. Since the
assumptions on the models are untestable, we propose to
assess sensitivity to the assumption of our methods.

)e outline of this paper is as follows. In Section 2, we
introduce the graphical models. Section 3 develops the
simulation imputation methods for linear, generalized lin-
ear, and monotone nonlinear models. In Section 4, the
generalized linear model is extended to cope with other
covariates. Section 5 introduces empirical standard errors to
monitor the accuracy of bootstrap imputations. A simula-
tion study is conducted in Section 6. Sensitivity analysis is
given in Section 7. Section 8 illustrates an application to the
mental health dataset. Proofs are given in Appendix.

2. Graphical Models

)e response variable is denoted by Y. We assume that
Yi 

N
i�1 are independent and identically distributed response

variables for N subjects in the study and Ri 
N
i�1 are the

respective status indexes for the responses, where Ri � 1 or 0,
which depends on Yi response or nonresponse, respectively.
Identifying the marginal mean E(Y) of Y is an important
problem in itself, and the treatment effect can be obtained
once the marginal mean is available. However, if one uses
only observed Yi’s with Ri � 1 to estimate E(Y), it may result
in a large biased estimator.

Example 1. We consider the mixture model with
Yi �Yi1Ri+Yi2(1 − Ri), where Yi1 ∼ N(0, 1), Yi2 ∼ N(− 4, 1),
and Ri is a binary variable independent of Yi1 and Yi2 and
satisfies that P(Ri � 1)� 1 − P(Ri � 0)� 0.5, for i� 1, . . ., n.
)en, the marginal mean of Y is E(Y)� − 2, and the mean of
observed Y is 0.)us, if one ignores those nonresponses with
Ri � 0, then the bias is 2.

To deal with this problem, we introduce the following
three graphical models:

Ri Ri Ri

Yi Yi Zi Yi

(a) (b) (c)

)e graphical models have the following statistical
meanings:

(i) Model (a): E(Yi|Ri) � E(Yi), which means that Yi
is uncorrelated to Ri.

(ii) Model (b): E(Yi|Ri) � E(Yi); that is, Yi is corre-
lated to Ri.

(iii) Model (c) (model (c) is untestable; i.e., one cannot
test if E(Zi Yi, Ri)� E(Zi Yi) holds. )e assumption is
proposed based on the information from specific
experts. We will perform sensitivity analysis on the
assumption for our results): E(Zi|Yi, Ri) � E

(Zi|Yi), which shows that Zi is uncorrelated to Ri
conditional on Yi.

)e marginal mean of the response Y is identifiable for
model (a), but not for model (b), since one observes only
those values of response variable with Ri � 1 (the response
group). To solve this problem, we now introduce a surrogate
Z of Y, which is completely observable in model (c), to
identify the marginal mean of Y. We call model (c) the
augmented model of model (b), which is identifiable for the
marginal mean under certain conditions. )e motivation for
adding such a completely observed variable Z is from a study
conducted by us for the income of the inhabitants in an area
of Beijing. Since the income variable Y is relevant to private
matters, it is subject to informative missing. Neglecting of
the missing values may result in very biased estimation for
the income levels in the area. )is motivates us to add a
completely observed variable Z, the size of houses that every
inhabitant possesses. Note that, conditional on the income
variable Y, the missing mechanism can be regarded as
uncorrelated to the housing variable Z so that the model (c)
holds in this example.

In the following, we consider the identification of
model (c) and propose a method to estimate the marginal
mean of Yi.

3. Simulation Imputation

Since the nonresponse subjects are nonignorable, biased
estimation may be resulted if only the subjects in the re-
sponse group with Ri � 1 are considered. It is necessary to use
the information from the nonresponse so that a consistent
estimator of the marginal mean of Y can be obtained. To this
end, we introduce an approach to achieving this objective.
Our idea is to impute the nonresponse by simulation.
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3.1. Linear Models. Suppose that Zi and Yi satisfy the fol-
lowing linear model:

E Zi|Yi(  � α + βYi, i � 1, . . . , N. (1)

If β� 0, then model (c) is equivalent to the following
model (d).

Zi Yi

Ri

Model (d)

Since model (c) includes model (d), using a standard
argument in hypothesis testing for general linear models, we
can test if H0: β� 0 holds via constructing testing statistic, T
(Z, Y), say, based on the estimator of β from model (c). If (d)
holds, then E(Yi) is unidentifiable, and one must find a
variable Z correlated with Y to solve this problem.

If β� 0, then it follows from (1) that

E Yi(  �
E Zi(  − α 

β
. (2)

)us, identifying E(Yi) is equivalent to estimating α and
β because E(Zi) is estimatable. Frommodel (c), we know that
E(Zi|Yi) � E(Zi|Yi, Ri � 1); then, regression of Zi on Yi for
those observed Yi with Ri � 1, we get the

��
N

√
-consistent

estimators of α and β (for example, the simple least squares
estimators). We denote them byα andβ, respectively. Let the
estimator of E(Zi) be E(Z). )en, the marginal mean of Y
can be estimated as

E Yi(  �
E Zi(  − α 

β
. (3)

)e abovementioned estimation method is useful for the
linear model, but it is inflexible for other models, for ex-
ample, the generalized linear model and nonlinear model
considered later. We here introduce another flexible esti-
mating method, which is based on bootstrap. It uses the fact

E(Y) � E(Y|R � 1)P(R � 1) + E(Y|R � 0)P(R � 0). (4)

To estimate E(Y), we need to estimate E(Y |R� 1) and
E(Y |R� 0), where the former can be estimated by the av-
erage of Yi in the response group and the latter can be
estimated by the average of imputations of Yi for the
nonresponse group. )is method is referred to as “simu-
lation imputation,” which is detailed in the following:

(i) Fitting model (1) with a data subset: the subjects are
partitioned into two groups, one is of Ri� 1 (the re-
sponse group), the other Ri� 0 (the nonresponse
group). Without loss of generality, assume Ri� 1 for
i� 1, . . ., N1, and 0 others. Based on those subjects with
responses observed (i.e., i� 1, . . ., N1), we regress{Zi}
on {Yi} using model (1) and obtain the estimators of α
and β, denoted by α and β, respectively.

(ii) Bootstrap residuals ()e bootstrap based on re-
siduals was proposed by Efron [22]. Because εi’s are
of mean zero, the empirical distribution function of
the residuals is centered at 0): the residuals are
denoted by εi � Zi − α − βYi for i� 1, . . , N1. Let
εi � N− 1

1 
N1
i�1 εi. We resample M samples with re-

placement, each with size N2 � N − N1, from the
empirical distribution function of the centered re-
siduals{εi− ε�, i� 1,N1}, and denote theM samples by

ε∗ (m)
N1+1 , . . . , ε∗ (m)

N1+N2
, form � 1, . . . , M. (5)

(iii) Prediction of Yj in the nonresponse group: let
Y

(m)
j � (Zj − α − ε∗ (m)

j )/β, for j � N1 + 1, . . . , N1

+ N2. We predict Yj as the average of Y
(m)
j over

m� 1, . . .,M. )e average is denoted by Y
(∗)
j .

(iv) Estimator of the marginal mean of Y:

E(Y) � ω1N
− 1
1 

N1

i�1
Yi + 1 − ω1( N

− 1
2 

N1+N2

j�N1+1
Y
∗
j . (6)

)eoretical justification of the abovementioned “simu-
lation imputation” method can be built by using standard
bootstrap theory. Especially, we have the following consis-
tency result for the estimator E(Y), which is proved in
Appendix.

Theorem 1. If model (1) is correct and β� 0, then the esti-
mator in (4) for the marginal mean of is

��
N

√
-consistent.

3.2. Logistic Regression Models. As an alternative to model
(1), the following generalized linear model is used to model
the relation between binary Zi and Yi:

E Zi|Yi(  � µ ηi( ,

g E Zi|Yi( (  � α + βYi,

Var Zi|Yi(  � ϕµ′ ηi( ,

(7)

where ϕ> 0 is an unknown dispersion parameter,
ηi � η(Yi)� α+ βYi is a linear predictor, µ(η)� eη/(1 + eη) is a
known differentiable function with derivative
µ′(η) � eη/(1 + eη)2µ(1 − µ)> 0, and g is the logit link
defined as (see the work of Nelder andWedderburn [23] and
McCullagh and Nelder [24]):

g(µ) � logit(µ) � log
µ

(1 − µ)
 . (8)

In particular, when Zi is binary with values 1 and 0, E(Zi|
Yi)� P (Zi � 1|Yi), and one reasonable choice for g(·) is the
logit link with g(p)� log{p/(1 − p)}. From model (7), we
obtain that

Yi �
g μ ηi( (  − α 

β
, (9)
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if β is not zero. Note that by the conditional uncorrelation in
model (c), we have E(Zi|Yi)� E(Zi|Yi, Ri � 1) andV ar(Zi|Yi)�

V ar(Zi|Yi, Ri� 1). )erefore, model (7) can be estimated by
those data in the response group. Let (α, β) be such estimators
of (α, β) for model (7). )en, µ(η(y)) ≡ E(Z|Y� y) is non-
parametrically estimable via regressing Zi on Yi for those
observed Ys with R� 1. We denote the resulting nonpara-
metric estimator by μ(η(y)) � E(Zi|Yi � y), for example,
using the local linear smoothing in the work of Fan and
Gijbels [25] and Jiang [26]. )en, by (6), we estimate E(Y) by

E(Y) �
N

− 1
1 

N1
i�1 g μ η Yi( ( (  − α 

β
. (10)

However, the estimator E(Y) may suffer from sub-
stantial loss of efficiency since it uses only a portion of
sample. Furthermore, in finite sample settings, the bias of
nonparametric estimator E(Zi|Yi) may yield a highly biased
estimate of the marginal mean of Y, since it can be magnified
by the nonlinear link function. However, this approach can
be used to compare with the following estimation method
and justify the appropriateness of the parametric form of µ(·)
in (7) for modeling real data.

Note that E(R|Y, Z) � E(R|Y); it follows that we can
model the missing mechanism through

P(R � 1 | Y) �
exp ϕ0 + ϕ1Y( 

1 + exp ϕ0 + ϕ1Y( 
. (11)

We here extend the previous “simulation imputation”
approach to model (7), from which one can develop im-
putation of nonresponse Yi from equation (9). Let
εi � Zi − μ(ηi) /

�����

μ′(ηi)



.)en, εi
′’s are white noises of mean

zero and variance ϕ and Zi � μ(ηi) +

�����

μ′(ηi)



εi.
Specifically, it proceeds as follows:

(i) Fitting model (7) with a data subset: based on those
observations from the response group, we regress {Zi}
on {Yi} using model (7) and obtain the estimators
(α, β) of (α, β), the fitted values μ(ηi) � g− 1(α +
βYi) with ηi � α + βYi, and Pearson’s residuals.

εi �
Zi − μ ηi(  

�����

μ′ ηi( 

 , i � 1, . . . , N1. (12)

(ii) Bootstrap residuals: we resample M samples, each
with size N2�N –N1, from the empirical distri-
bution function of centered Pearson’s residuals
(where ε� is the average of εi’s), and denote the M
samples byε∗ (m)

N1+1 , . . . , ε∗ (m)
N1+N2

, form � 1, . . . , M.
(iii) Prediction of Yj in the nonresponse group: Y

(m)
j �

(Zj − α − ε∗ (m)
j )/β, for j � N1 + 1, . . . , N1 + N2,

and we find ηj such that
ε∗ (m)

j � Zj − μ(ηj) /
������
μ′(ηj)


or equivalently

Zj − μj �

���������

μj 1 − μj 



ε∗ (m)
j . (13)

)en, μj � ε∗ (m)2
j / 1 + ε∗ (m)2

j  if Zj � 0 and μj �

1/ 1 + ε∗ (m)2

j  if Zj � 1. )e solution is denoted

byη(m)

j
:

η(m)
j � g μj  � logit μj . (14)

)e compute Y
(m)
j � g(μ(η(m)

j )) − α /β, and we use

the average Y∗j � M− 1 
M
m�1 Y

(m)
j as prediction of Yj.

(iv) Estimator of the marginal mean of Y:

E(Y) � ω1N
− 1
1 

N1

i�1
Yi + 1 − ω1( N

− 1
2 

N1+N2

j�N1+1
Y
∗
j . (15)

)e abovementioned bootstrap Pearson’s residuals
procedure in (i) and (ii) is standard in the generalized linear
models (see, for example, page 341 of the work of Shao and
Tu [27]). )e “simulation imputation” method uses boot-
strap data from Pearson’s residuals to yield predicted values
for the nonresponses.

Theorem 2. If model (7) is correct and β≠ 0, then the result
in 'eorem 1 continues to hold.

3.3.MonotoneNonlinearModels. We consider the following
monotone nonlinear relation between Zi and Yi:

Zi � f Yi(  + εi, (16)

where f (·) is a known monotone nonlinear function and
E(εi|Yi)� 0. By reversing the relation in (16), we get Yi � f
− 1(Zi − εi). Using a simulation imputation method similar to
that in Section 3.1, we can obtain the estimator of E(Yi). )is
model requires one to find a surrogate Z for Y such that E(Z|
Y) is monotone.

Up to now, one may wonder if the models in (1), (7), and
(16) are appropriate in practice. )is involves in model
selection and diagnostic analysis. Traditional model diag-
nostic tools are useful for this problem.)e problem can also
be addressed by nonparametrically modeling those re-
sponses with Ri � 1 in the exploration analysis stage if a
moderate sample is available, so that one can test if some
parametric model holds, based on a nonparametric testing
statistics such as the generalized likelihood ratio test in the
work of Fan, Zhang, and Zhang [28], Fan and Jiang [29], and
Fan and Jiang [30].

4. Extension

Previous results cannot cope well with the cases in the
presence of other covariates. We here extend them in the
framework of the generalized linear models. )e extension
to other models can be similarly made. In parallel with
model (7), we consider the following model with completely
observed covariates X of dimension d:
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E Zi|Yi, Xi(  � µ ηi( ,

g E Zi|Yi, Xi( (  � α + βYi + c
T

Xi,

Var Zi|Yi, Xi(  � ϕμ′ ηi( ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

where ηi � α+βYi+ cT Xi is a linear predictor, g is a canonical
link function, and µ(·) is a known differentiable function
with derivative μ′(·)> 0.

As in Section 3.2, the same “simulation imputation”
approach can be used to estimate the mean of Y, but with α
in Section 3.2 replaced by α + cTXi in the present setting.
)is approach will be readdressed in our real example.

5. Empirical Standard Errors

)e empirical standard error (ESE) is used to monitor the
accuracy of convergence. For the simulation imputation
methods mentioned above, the sampling number M is
generally required to be large enough to ensure the prediction
for the nonresponses with accuracy in a reasonable range. For
a specific application, what should M be? Naturally, a good
choice of M should yield an accurate predicted value of the
nonresponse. )is motivates us to use the ESEs of the sim-
ulation imputations to assess the accuracy of the predicted
value of the nonresponse. In our real data analysis,M is taken
as 1000, and the ESEs of the imputations Y∗j are reported.

6. Simulations

To investigate the performance of our procedure, we compare
our estimators with the observed average of the responses in
the following three models. )e number of simulations is 600
and the number of bootstrapping samples for each simulation
is taken as M� 1000. )e deviation, E(Y) − E(Y) , of each
estimator from the true mean in the 600 simulations is
computed and displayed via box plots, which depict the
distributions of the deviations. )e more the deviation
concentrates at 0, the better the corresponding estimator is.

Example 2. We consider a linear model with P (Ri � 1)� 0.5,
Yi1 ∼ N(0, 22), Yi2 ∼ N(1, 22), Yi �Yi1Ri+Yi2(1 − Ri),
Zi � α+ βYi+ εi, and εi ∼ N(0, 0.52). Sample size is N� 100,
where α� 1 and β� 0.5 )us, the true mean E(Y) equals 0.5.

Example 3. Let P (Ri � 1)� 0.5, Yi1 ∼ N(0, 22), Yt2 ∼ N(− 4,
22), and Yi �Yi1Ri+Yi2(1 − Ri),i� 1, · · ·, 100, which is mixed
normal. )en, E(Y)� − 2. We generate binary Zi with out-
comes 0 and 1 from the logistic model.

P Zi � 1|Yi(  �
exp α + βYi( 

1 + exp α + βYi(  
(18)

where α� 3 and β� 1.

Example 4. Consider the monotone nonlinear model with f
(y)� a + y/(b+ y), where a� 0.5 and b� 1. For i� 1, 100, let
P(Ri � 1)� 0.5, Yi1 ∼ N(0, 1), Yi2 ∼ N(2, 1), and
Yi �Yi1Ri+Yi2(1 − Ri), which is mixed normal. )e marginal
mean of Y is E(Y)� 1.

)e boxplots of the deviations among 600 simulations
for Examples 1–3 are reported in Figures 1(a)–1(c), re-
spectively. )e abovementioned three examples show that
the proposed estimator is consistent, but the observed av-
erage of the response (with Ri � 1) is very biased because it
ignores the information from the nonresponse subjects.

7. Sensitivity Analysis

For identification of model (c), we have assumed Ri is
uncorrelated to Zi conditional on Yi. )is assumption is
untestable and made with knowledge of the specific experts.
Naturally, one may ask if our method exhibits robustness to
some extent against the assumption. )is motivates us to
assess the sensitivity of our estimators to the assumption.

Example 5. To assess the sensitivity of our estimators to the
assumption on uncorrelation of Zi with Ri conditional on Yi,
we set samples size N� 100, P(Ri � 1)� 0.5, Yi1 ∼ N(0, 1), Yi2
∼ N(3, 1), Yi �Yi1Ri+Yi2(1 − Ri), εi � 0.5N(0, 1), and
Zi � 1 + 0.5Yi − S ∗ Ri+ εi. We consider different values of S at
grid points on the interval [− 0.2, 0.2]. For each given S, the
deviations of the estimators among 600 simulations were
computed. )e median of the deviations for each disturbing
magnitude S is reported in Figure 1(d). When S increases,
the conditional correlation gets stronger. Our estimator
seems to perform reasonably well against the appropriate
departure from the conditional uncorrelation, but the
sample average of observed response does not.

8. Real Data Analysis

We now use the mental health dataset to demonstrate how
the proposed procedure works in a typical application.

)is dataset is from a study of mental health of children
in Connecticut. It was previously analyzed by Ibrahim,
Lipsitz, and Horton (2001). )ere are totally 2486 subjects in
study and six related variables:

Father: parental status of the household (father figure
present� 0; no father figure present� 1).

health: physical health of the child (no health prob-
lem� 0; fair or poor health� 1). trept: teacher’s report of the
psychopathology of the child (normal� 0; abnormal� 1; and
missing� .); prept: parents’ report of the psychopathology of
the child (normal� 0; abnormal� 1; and missing� .); counts:
# of observations. pctage: percentage(�count/total sample
size; total sample size� 2486).

Of the six variables, we choose the first five variables for
analysis, since the 6th variable pctage is uniquely determi-
nated by the 5th variable counts. )e outcome of main
interest, “trept,” is missing for 1061(42.7%) subjects, but the
variable “prept,” which relates to “trept” and can serve as a
surrogate for it, is observed for all subjects. Note that, as
discussed in the abovementioned paper, once conditional on
the surrogate “prept,” the missing mechanism can be
regarded as independent of the outcome “trept,” although
unconditionally themissing mechanism “R” (equals 0 for the
missing and 1 for the observed) seems to depend on the
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outcome.)en, the model (c) seems reasonable to depict the
relation among trept, prept, and R.

Our interest is to estimate the marginal mean of the
response variable “trept.” We use model (5) and the esti-
mation approach in Section 3.2 and set Z� prept, Y� trept, and
the number of bootstrap sampling M� 1000. )e estimated
mean, variance of the response trept, and the average of the
ESEs of the imputations Yj

∗ for the nonresponses are re-
ported in Table 1. By incorporating the information on the
first two covariates, father and health, we get the estimated
mean and variance of the response from model (10), which
can be found in third column of Table 1.

However, if only using the observations of trept, its
marginal mean is computed to be 0.1832 with variance
0.1497. Obviously, our estimator not only rectifies the value
of the marginal mean, but is more efficient than the simple
average of the observed values of Y. )e small values of the
ESEs reflect high accuracy of the simulation imputations.

Appendix

Proofs of Theorems

Proof. of )eorem 1. )e empirical distribution function
for i� 1, · · ·, N1 is denoted by FN1

(ε). Since εj∗(m)’s are drawn

from FN1
(ε), conditional on the original sample points with

Ri � 1, εj∗(m) ∼ FN1 (ε) for j�N1 + 1, . . ., N1 +N2. Hence,
E ε∗j (m)|FN1

} �  x dFN1
(x) �  x dF (x) +  x d[FN1

(x) − F(x)] �  x dF (x) + Op(1/
��
N

√
) � Op(1/

��
N

√
), since

 x dF(x) � 0. Let ε∗j � M− 1 
M
m�1 ε
∗ (m)
j . )en,



N

j�N1+1
Y
∗
j � 

N

j�N1+1


M

m�1

M
− 1

Zj − α − ε∗ (m)
j 

β
,

� 
N

j�N1+1

Zj − α − ε∗ (m)
j 

β
,

� 
N

j�N1+1

Zj − α − εj − (α − α) − ε∗ (m)
j − εj  

β
,

� 
N

j�N1+1

βYj − (α − α) − ε∗ (m)
j − εj  

β
.

(19)

Note that
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Figure 1: (a–c) )e box plots of the distributions for the deviations of the estimators from the true mean among 600 simulations in
Examples 1–3, respectively; (d) sensitivity analysis for Example 5. Dotted: the average of observed responses; –: our estimator.
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α − α � Op

1
��
N

√ , β − β � Op

1
��
N

√ . (20)

Using the standard argument for bootstrap consistency,
it can be shown that

N
− 1



N

j�N1

ε∗j − εj � N
− 1



N

j�N1

ε∗j + N
− 1



N

j�N1

εj ≡ Ln1 + Ln2.

(21)

By calculating the mean and variance, it is easy to see that

Ln1 � N
− 1



N

j�N1+1
M

− 1


M

m�1
ε∗ (m)

j � N
− 1



N

j�N1+1

EFN1
ε∗ (m)

j 

+ Op

1
��
N

√ .

(22)

It follows that

N
− 1



N

j�N1+1
Y
∗
j � N

− 1


N

j�N1+1
Yj

⎡⎢⎢⎣ ⎤⎥⎥⎦ 1 + Op(1/
��
N

√
) 

+ Op(1/
��
N

√
).

(23)

)is, combined with (4), yields
��
N

√
− consistency of

E(Y).

Proof. of )eorem 2. )e result follows from a similar
argument as )eorem 1.
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