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A novel aging fractional accumulation operator is proposed. (e aging accumulation operator can dynamically update the
accumulation weight of data and flexibly change the forecast trend by adjusting the aging parameter. In addition, a new aging
accumulated grey model is obtained by using the aging accumulation operator to improve the traditional grey model. In the
analysis of four examples, the existing grey accumulation operator and predictionmethod are compared.(e results show that the
proposed aging accumulation operator and aging accumulation grey model have excellent performance.

1. Introduction

(e grey model is a very effective forecasting method to deal
with the problem with poor information and little data [1].
Other existing prediction methods such as neural network
algorithm [2, 3], exponential smoothing [4], support vector
regression [5], and autoregression [6] often depend on the
amount of data. (e grey prediction model only needs at
least 4 data to make a prediction. (is advantage makes the
grey prediction model achieve good results even when the
amount of data is small or data collection is difficult [7].
However, the traditional grey model still has some short-
comings. (e improvements in recent years mainly focus on
the following four aspects:

(1) Optimization of model background value: tradi-
tional background values z(1)(k) � 0.5(x(1)(k) +

x(1)(k + 1)) are suitable for smooth sequences,
which can be optimized to adapt to other situations.
(e model background value is reconstructed by the
Simpson formula, and the unbiased GM(SD) (1, 1)
model is obtained [8]. By increasing the number of
parameters in the background value, the smoothness
of the background value is improved and the in-
fluence of the extremum in the original sequence is

weakened [9]. (e NNGM (1, 1) model is con-
structed by a neural network algorithm, so there is no
need to determine the background value [10].

(2) (e extension of the modeling equation: the DGM
model is proposed by using the discrete modeling
method, which avoids the jumping error of GM (1, 1)
from discrete equation to continuous equation [11].
An unbiased nonlinear grey Bernoulli model is
constructed to achieve better performance by
adjusting nonlinear parameters [12]. (e GMCO
(1, N) model with optimized parameters is proposed,
which can accurately describe any linear dynamic
grey system [13].

(3) Improvement of grey buffer operator: the original
sequence is usually irregular, but its potential law can
be revealed by appropriate grey buffer operators.(e
fractional buffer operator obtained by extending the
integer buffer operator can adjust the buffer effect
more accurately [14]. (ree new fractional weak-
ening buffer operators are proposed, which can ef-
fectively weaken the interference of disturbance
factors on time series [15]. An optimized grey buffer
operator is proposed by introducing accumulation
and translation transformation [16].

Hindawi
Journal of Mathematics
Volume 2021, Article ID 7596694, 12 pages
https://doi.org/10.1155/2021/7596694

mailto:wulifeng@hebeu.edu.cn
https://orcid.org/0000-0003-3239-3390
https://orcid.org/0000-0003-3986-2583
https://orcid.org/0000-0002-9548-9747
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7596694


(4) Error correction: the prediction accuracy can be
further improved by error analysis of prediction
results combined with correction technology. (e
Fourier error correction method is used to improve
the existing grey forecasting model [17]. (e triangle
residual error correction method is used to eliminate
the inherent error of the original grey model, and a
new grey prediction model with error correction is
proposed [18].

In addition to the optimization mentioned above, there
are many effective improvement methods. (ese improve-
ments have effectively improved the prediction accuracy of
the grey model. (erefore, the grey model is widely used in
energy [19], economic [20], environmental governance [21],
and other related research studies. It is worth emphasizing
that the advantage of the grey forecasting model compared
with other forecasting methods lies in dealing with small
sample problems. In fact, the grey accumulation generation
plays an important role. (erefore, this paper proposes a
novel aging accumulation operator to improve the tradi-
tional GM (1, 1) model. As a data preprocessing method, the
aging accumulation operator can dynamically update the
accumulation weight of data according to the time devel-
opment. In addition, it can flexibly change the forecast trend
by adjusting the aging parameter. Compared with the
existing cumulative generation operator, it is an important
innovation.

(e other parts of this article are arranged as follows.
Section 2 introduces the definition and properties of the
aging accumulation operator. (e aging accumulation grey
model and its properties are proposed in Section 3. Section 4
introduces the optimization algorithm of the aging pa-
rameter and evaluates the performance evaluation of the
proposed model by four cases. (e conclusions are given in
Section 5.

2. Definition and Properties of Aging
Accumulation Operator

By analyzing the advantages and disadvantages of existing
accumulation operators in the grey model, a new aging
accumulation operator is defined. Besides, the operation
details and related properties of the aging accumulation
operator are introduced in detail.

2.1. Existing Accumulation Generation Operators. In the
modeling process of the grey prediction model, cumulative
generation is an important operation. By accumulating
operation, scattered data can show certain regularity. (e
traditional grey predictionmodel uses 1-AGO to accumulate
the original data. For example, the accumulation generated

sequence of the original sequence x(0)(1), x(0)(2),

. . . , x(0)(m)} by 1-AGO is

x
(1)

(i) � 
i

k�1
x

(0)
(k), i � 1, 2, . . . , m. (1)

It can be seen from equation (1) that 1-AGO treats all
data indiscriminately. According to the new information
priority principle, new data are more important than old
data. When accumulating the original sequence, we should
give full consideration to the new and old data. In other
words, new information should be given more weight, and
old information should be given less weight. Based on this
consideration, many new cumulative generation operators
have been proposed. Among them, the fractional accumu-
lation operator is an important innovation [22]. Assuming
that the original sequence is x(0)(1), x(0)(2), . . . , x(0)(m) ,
the fractional accumulation generated sequence is

x
(r)

(i) � 
i

k�1

i − k + r − 1
i − k

 x
(0)

(k), (i � 1, 2, . . . , m),

(2)

where r − 1
0  � 1,

k − 1
k

  � 0, k − i + r − 1
k − i

  �

((r + k − i − 1)(r + k − i − 2) · · · (r + 1)r)/(k − i)!.
Fractional accumulation operator can effectively allocate

the weight of new and old data, thus describing the de-
velopment trend of series more accurately. In addition, there
are some other effective grey accumulation operators
[23–25]. However, most operators can only increase the
weight of new data. We hope that the cumulative generation
operator can dynamically update the weights of all data
according to time changes. (erefore, the aging accumu-
lation operator is proposed.

2.2.+e Aging Accumulation Operator. When accumulating
data, the time value of data must be fully considered.
Generally speaking, the timeliness of data is decreasing.
(erefore, we propose a novel aging accumulation operator.
It is defined as follows.

Definition 1. Assuming that X(0) � x(0)(1), x(0)(2), . . . ,

x(0)(m)} is the original non-negative sequence, the aging
cumulative sequence X(c) � x(c)(1), x(c)(2), . . . , x(c)(m)}

of X(0) can be obtained by using the aging decreasing
function g(i) as the aging weighting. (is transformation is
called the aging accumulation operator, and its calculation
formula is

x
(c)

(i) � 
i

k�1
x

(0)
(k)g(i − k), i � 1, 2, . . . , m. (3)
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(e matrix form of equation (3) is

X
(c)

� x
(0)

(1), x
(0)

(2), . . . , x
(0)

(m) 

g(0) g(1) · · · g(m − 1)

0 g(0) · · · g(m − 2)

⋮ ⋮ ⋮ ⋮

0 0 · · · g(1)

0 0 · · · g(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where g(i) � (c/(i + c)) (c> 0) and c is called the aging
parameter. It is used to adjust the aging change of data.
Obviously, no matter what the value c is, the aging of the
latest data is 1. (e smaller the value c, the more time-
sensitive the new information. On the contrary, the greater
the value of c, the more consistent the timeliness of new and
old information. When c tends to infinity, aging accumu-
lation degenerates into traditional first-order accumulation.

Property 1. Adding new data to accumulation will dy-
namically update the accumulation weight of existing data.

Proof. According to the definition of the aging decreasing
function g(i) � c/(i + c), we have

(1) g(0) � c/(0 + c) � 1.
(2) g(i) � c/(i + c) is the decreasing function of i.

(at is to say, the aging value of the latest data is always 1,
and the aging values of other data decrease with time. As
shown in Figure 1, when calculating x(c)(10), the aging

value corresponding to x(0)(10) is g(0) � 1, the aging value
corresponding to x(0)(9) is g(1) � c/(1 + c), and so on.
(en, x(c)(10) � 

10
k�1x

(0)(k)g(10 − k) can be obtained. To
put it simply, the addition of new data will replace the aging
value of the latest data, thus pushing down the aging value of
all data. (is method can dynamically update the weight of
all data, and the latest data always keep a higher weight. (e
weight generated by this accumulation method is more
following the law of the development of objective things.
Besides, the data metabolism can be realized by flexibly
adjusting the value of the aging parameter c.

Property 2. AssumingX(0) � x(0)(1), x(0)(2), . . . , x(0)(m) 

is the original non-negative sequence and its aging accu-
mulation sequence is X(c) � x(c)(1), x(c)(2), . . . , x(c)(m) ,

then x(c)(i) (i � 1, 2, . . . , m) is the increasing function of the
aging parameter c.

Proof. According to Definition 1, ∀i � 1, 2, . . . , m, there is

x
(c)

(i) � x
(0)

(1), x
(0)

(2), . . . , x
(0)

(i)  g(i − 1) g(i − 2) · · · g(0) 
T

� x
(0)

(1), x
(0)

(2), . . . , x
(0)

(i) 
c

i + c − 1
c

i + c − 2
· · · 1 

T

� x
(0)

(1), x
(0)

(2), . . . , x
(0)

(i)  1 −
i − 1

i + c − 1
1 −

i − 1
i + c − 2

· · · 1 

T

.

(5)

Because x(0)(i) is non-negative and 1 − (k/(c + k)) (k �

i − 1, i − 2, . . . , 1) is the increasing function of c, x(c)(i) (i �

1, 2, . . . , m) is the increasing function of c.
Proof completed.

Lemma 1. Let Y � y1, y2, . . . , yn  be a non-negative
equidistant time series; then, Δ(k) � |yk+1 − yk| represents
the information difference between the data [26].

Property 3. Assuming that the original non-negative se-
quence X(0) � x(0)(1), x(0)(2), . . . , x(0)(m)  increases
monotonously and its aging accumulation sequence is
X(c) � x(c)(1), x(c)(2), . . . , x(c)(m) , then we have

(1) (e aging accumulation sequence x(c)(i) (i �

1, 2, . . . , m) is the increasing function of i.
(2) (e information difference Δ(i) � |x(c)(i +

1) − x(c)(i)| between x(c)(i + 1) and x(c)(i) is the
increasing function of c.

Proof. (1) X(0) � x(0)(1), x(0)(2), . . . , x(0)(m)  is a
monotonically increasing non-negative sequence; then, we
have

x
(0)

(i) − x
(0)

(i − 1)> 0, (i � 2, 3, . . . , m). (6)

Also, for 1≤ i<m, we have g(x) � (c/(i + c))> 0. (en,
we can obtain
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x
(c)

(i + 1) − x
(c)

(i)

� 

k�i+1

k�1
x

(0)
(k)g(i + 1 − k) − 

k�i

k�1
x

(0)
(k)g(i − k)

� x
(0)

(1)g(i) + 

k�i+1

k�2
x

(0)
(k) − x

(0)
(k − 1) g(i + 1 − k) > 0.

(7)

(2) From (1), we know that ∀i � 2, 3, . . . , m, we have

Δ(i) � x
(c)

(i + 1) − x
(c)

(i)


 � x
(c)

(i + 1) − x
(c)

(i)

� x
(0)

(1), x
(0)

(2), . . . , x
(0)

(i + 1) [g(i) − g(i − 1), g(i − 1) − g(i − 2), . . . , g(0)]
T

� x
(0)

(1), x
(0)

(2), . . . , x
(0)

(i + 1) 
− c

(i + c)(i + c − 1)
,

− c

(i + c − 1)(i + c − 2)
, . . . , 1 

T

.

(8)

Obviously, (− c/(k + c)(k + c − 1)) (k � 1, 2, . . . , i) is
the increasing function of c and x(0)(k) (k � 1, 2, . . . , m)> 0.

So, we can conclude that the information difference Δ(i) is
the increasing function of c.

Proof completed.
According to the principle of difference information,

information comes from the difference [27]. Fully mining
the information difference of sequence can maximize the
value of data. However, in practical application, data fluc-
tuation may lead to deviation of information difference.
Based on the modeling mechanism of the grey model, the
fluctuation of the older data will cause greater deviation. As
an improvement, the introduction of the aging parameter c

can weaken extreme interference while retaining important
difference information.

3. The Aging Accumulation Grey Model

Based on the aging accumulation operator, a new aging
accumulation grey model AGM (1, 1) is proposed in this
section. In order to highlight the advantages of the AGM

(1, 1) model and understand its applicable scope, the validity
of initial value, monotonicity, prediction trend, and re-
duction error of this model are analyzed and discussed.

3.1. +e Definition of the Aging Accumulation Grey Model.
(e traditional GM (1, 1) model uses the first-order cu-
mulative generation operation to reduce the random dis-
turbance, which can improve the model effect to a certain
extent. However, traditional 1-AGO ignores the difference of
timeliness between old and new data. (erefore, in this
section, the GM (1, 1) model is optimized by using the aging
accumulation operator, and the aging accumulation grey
model is obtained. It is defined as follows.

Definition 2. Assuming that x(0)(1), x(0)(2), . . . , x(0)(m) 

is the original sequence, then the aging accumulation se-
quence of the original sequence can be obtained as
x(c)(1), x(c)(2), . . . , x(c)(m)  by Definition 1. (en, AGM
(1, 1) can be written as

0 5 10 15

0 5 10 15

k

i = 10

k

x(0) (k)

g (k)

Figure 1: Dynamic update process of data aging.
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dx
(c)

dt
+ ax

(c)
� b, (9)

where a is the development coefficient and b is the grey
action quantity. (e solution of whitening differential
equation (9) is x(c)(i) � (x(0)(1) − (b/a))e− a(i− 1) + (b/a).

Its parameters generally use the least-squares solution of the
AGM (1, 1) model. (e least-squares estimation of the AGM
(1, 1) model satisfies

a

b
  � B

T
B 

− 1
B

T
Y, (10)

where

B �

− 0.5 x
(c)

(1) + x
(c)

(2)  1

− 0.5 x
(c)

(2) + x
(c)

(3)  1

⋮ ⋮

− 0.5 x
(c)

(m − 1) + x
(c)

(m)  1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �

x
(c)

(2) − x
(c)

(1)

x
(c)

(3) − x
(c)

(2)

⋮

x
(c)

(m) − x
(c)

(m − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

Inputting a and b into the solution of the whitening
differential equation, the time response equation can be
obtained as

x
(c)

(i) � x
(0)

(1) −
b

a
 e

− a(i− 1)
+

b

a
, i � 1, 2, . . . , m, . . . , m + mf,

(12)

where mf represents the number to be predicted.
(en, the fitted and predicted values X

(0)
�

x(0)(1), x(0)(2), . . . , x(0)(m + mf)  can be obtained as

X
(0)

� x
(c)

(1), x
(c)

(2), . . . , x
(c)

(m + mf) 

g(0) g(1) · · · g(m + mf − 1)

0 g(0) · · · g(m + mf − 2)

⋮ ⋮ ⋮ ⋮

0 0 · · · g(1)

0 0 · · · g(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

. (13)

3.2. +e Effectiveness of the Initial Value by AGM (1, 1).
(e principle of minimum information is one of the six
axioms of the grey theory, which holds that the existing
information must be fully utilized [27]. (erefore, it is
necessary to study the utilization degree of data by the grey
prediction model. It has been proved that the initial value of
the traditional grey prediction model is invalid [28]. (is
paper will prove that the initial value of the AGM(1, 1) model
is valid by Property 4.

Property 4. Assuming that the fitting value X
(0)

�

x(0)(1), x(0)(2), . . . , x(0)(m) of X(0) � x(0)(1), x(0)(2),

. . . , x(0)(m)} is obtained by the AGM (1, 1) model, then
X

(0)
� x(0)(1), x(0)(2), . . . , x(0)(m)  will change with the

change of x(0)(1).

Proof. A case from [29] was used for empirical analysis. (e
world’s renewable energy is taken as the raw data:

X
(0)

� 124.1, 144, 170.6, 203.6, 238.8, 282.5, 319.5, 368.5, 416.8, 490.2, 561.3{ }. (14)

Set c � 10, and we have

g(x) � 1.00, 0.91, 0.83, 0.77, 0.71, 0.67, 0.63, 0.59, 0.56, 0.53, 0.50{ }. (15)
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With equation (4), the aging accumulation sequence of
X(0) can be calculated as

X
(10)

� 124.10, 256.82, 404.93, 574.15, 765.47, 986.08, 1227.35, 1500.23, 1801.94, 2155.87, 2555.91{ }. (16)

(en, we have

a

b
  � B

T
B 

− 1
B

T
Y �

− 0.12

108.58
 . (17)

(e time response function x(10)(i) � (124.10 −

(108.58/− 0.12))e0.12(i− 1) + (108.58/− 0.12) can be obtained
by substituting a and b into equation (12). (en, the time
response sequence can be calculated as

X
(10)

� 124.10, 255.73, 404.47, 572.55, 762.48, 977.10, 1219.62, 1493.67, 1803.35, 2153.29, 2548.72{ }. (18)

Finally, the fitted values are obtained by inverse accu-
mulation as

X
(0)

� 124.10, 142.91, 171.14, 202.42, 237.28, 276.26, 319.97, 369.07, 424.29, 486.48, 556.56{ }. (19)

However, if the original sequence is

X
(0)

� 80.1, 144, 170.6, 203.6, 238.8, 282.5, 319.5, 368.5, 416.8, 490.2, 561.3{ }, (20)

the fitted values are obtained by the same method as

X
(0)

� 80.10, 141.67, 170.48, 202.22, 237.42, 276.63, 320.44, 369.51, 424.53, 486.33, 555.78{ }. (21)

Proof completed.

3.3. +e Monotonicity and Forecast Trend of AGM (1, 1).
From equation (13), we conclude that the fitted and
predicted values x(0)(1), x(0)(2), . . . , x(0)(m + mf)  are
related to model parameters. (erefore, the monoto-
nicity of the predictive value is uncertain and data-
driven.

We consider an example from [22]. (e data from 2001
to 2007 are used for fitting, and the data from 2008 to 2009
are used for testing. (e original data and model results are
shown in Table 1. As for the original data, the data increased
from 2001 to 2006 but decreased from 2006 to 2007, that is to
say, the latest data showed a downward trend. However, the
results of the traditional GM (1, 1) model increased mo-
notonously from 2001 to 2009, which did not conform to the
objective law. On the contrary, the AGM (1, 1) model
perceived the trend change from 2006 to 2007, and its model
results showed a downward trend from 2006 to 2009. It

shows that the AGM (1, 1) model has better performance
and pays more attention to new information.

In addition, by adjusting the aging parameter c, the
prediction trend of the AGM (1, 1) model can be adjusted
flexibly. Figure 2 shows the results of the AGM (1, 1) model
when aging parameters are 1, 3, 5, and 10, respectively.
With the increase of the aging parameter, the prediction
trend tends to be flat. On the contrary, the smaller the aging
parameter, the steeper the prediction trend. (e advantage
of this flexible adjustment mechanism is that it can be
analyzed by combining subjective experience with objective
data, which is very suitable for forecasting uncertain
systems.

3.4. +e Relationship between the Error and Aging Parameter
c. Accumulation operation can make scattered data show a
certain trend, but it inevitably leads to reductive error. In this
section, we will further study the relationship between re-
ductive errors and the aging parameter c of the AGM (1, 1)
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model, so as to effectively control the errors caused by ac-
cumulative reduction operations.

Theorem 1. Assume that X(c) � x(c)(1), x(c)(2),

. . . , x(c)(m)} is the accumulated sequence of the original
sequence X(0) � x(0)(1), x(0)(2), . . . , x(0)(m)  by AGM (1,
1) model with aging parameter c. X

(0)
� x(0)(1),

x(0)(2), . . . , x(0)(m)} is the cumulative reduction sequence of
time response sequence x(c)(1), x(c)(2), . . . , x(c)(m) .

If |x(c)(i) − x(c)(i)|< ε (1< i≤m), then |x(0)(i) −

x(0)(i)|< ε∗ 
i
j�1 |R(j, i)| (1< i≤m), where

R �

g(0) g(1) · · · g(i − 1)

0 g(0) · · · g(i − 2)

⋮ ⋮ ⋮ ⋮

0 0 · · · g(1)
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Proof. According to the definition of AGM (1, 1), we have
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Let R �

g(0) g(1) · · · g(i − 1)
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

.

For ∀i � 1, 2, . . . , m, we have

Table 1: Model results with different aging parameters.

Year Actual value GM (1, 1) AGM(1) (1, 1) AGM(3) (1, 1) AGM(5) (1, 1) AGM(10) (1, 1)
2001 247.84 247.84 247.84 247.84 247.84 247.84
2002 273.02 278.58 267.66 270.72 273.1685 275.9409
2003 289.01 282.20 286.13 284.76 283.7412 282.7841
2004 285.21 285.87 294.04 291.63 289.8058 287.7632
2005 288.82 289.59 295.59 294.02 292.7876 291.275
2006 297.08 293.36 293.39 293.49 293.5915 293.6141
2007 293.66 297.17 289.05 291.05 292.8283 295.005
2008 290.40 301.04 283.57 287.34 290.9281 295.6225
2009 279.14 304.95 277.55 282.82 288.2036 295.6053
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Figure 2: (e results of different grey models.
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(24)

where R(∼ , i) represents the column i of the matrix R and
R(j, i) represents the element in row j and column i of the
matrix R.

Proof completed.
When determining the value of the aging parameter c, we

should minimize ‖R‖1 as much as possible to avoid large re-
ductive errors.

4. Performance Evaluation of the
Proposed Model

(e definition and related properties of the AGM (1, 1) model
have been introduced above. In fact, the performance of AGM
(1, 1) depends on the value of the aging parameter c. In this
section, an optimization algorithm is introduced to determine
the optimal aging parameter, and four examples are used to
prove the effectiveness of the proposed AGM (1, 1) model.

4.1. Optimization Algorithm of the Optimal Aging Parameter
c. Taking the average absolute percentage error (MAPE �

(1/m) 
m
k�1 |(x

(0)
1 (k) − x

(0)
1 (k))/x(0)

1 (k)| × 100%) as the op-
timization objective and the main formula of the AGM (1, 1)
model as the constraint condition, the following nonlinear
programming is constructed.
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(25)

Particle swarm optimization (PSO) is a mature intelli-
gent optimization algorithm, which is derived from simu-
lating the group behavior of bird foraging. Particle swarm
optimization algorithm has the characteristics of simple
operation and rapid convergence, so it has been widely used
[30–32]. Figure 3 shows the flowchart for determining the
optimal aging parameter c. (e specific steps of the algo-
rithm are shown in Algorithm 1.

4.2. Application and Analysis. In addition to the MAPE, we
applied the mean absolute error (MAE) and the root mean
square error (RMSE) to measure the predictive performance
of the AGM (1, 1) model. (ey are defined as follows:

MAE �
1
m



m

k�1
x

(0)
1 (k) − x

(0)
1 (k)



,

RMSE �

���������������������

1
m



m

k�1
x

(0)
1 (k) − x

(0)
1 (k) 

2




.

(26)

Case 1. Forecasting logistics demand in Jiangsu province.
(is example comes from [7]. (is is a case with small

sample size. Similar to [7], the data from 2000 to 2005 are
used for fitting, and the data of 2006 are used for the test.(e
smaller the sample size, the higher the prediction accuracy of
the traditional GM (1, 1). (erefore, this paper compares
AGM (1, 1) with GM (1, 1) models with different sample
sizes, and Table 2 shows the comparison results. In the stage
of fitting and testing, AGM (1, 1) with six sample sizes gets
better results than GM (1, 1) with four sample sizes. (e
results show that with the increase of the number of samples,
the special metabolic function of AGM(1, 1) can reduce the
interference of old data and improve the prediction per-
formance of the model.

Case 2. (e example for the waste volume sequence of TV in
China.

(is example is from [33].(e data are the waste volume
of TV (10000 units) in China. It is a steady growth sequence.
(e in-sample data and out-of-sample data are the same as
[33]. To prove the performance of AGM(1,1) model, eight
commonly used forecasting methods are used for com-
parison. (e errors of the nine models are shown in Table 3.
In the fitting and testing stage, MAPE, MAE, and RMSE of
AGM (1, 1) are the lowest, which shows that the proposed
AGM (1, 1) model has excellent performance in dealing with
medium and long-term stationary sequences.
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Case 3. Predicting foreign tourists to China.
(is example is from [34]. (e data are the annual

historical data of tourists from Russia and Singapore from
2003 to 2017 in China. (ey are long and fluctuating se-
quences. Similar to [34], the data from 2003 to 2015 were

used for fitting, and the data from 2016 and 2017 were used
for the test. Table 4 summarizes the test results of 12 different
prediction methods. In Russia, the MAPE of AGM (1, 1) is
only lower than that of F-OGMp (1, 1), and MAE and RMSE
are the lowest. For Singapore, the overall performance of

Part A: the AGM model

Part C: model evaluation

Step 1: input the original sequence

Step 2: determine the aging parameter

Step 3: generate the aging accumulation
sequence

Step 4: establish the grey whitening
equation

Step 5: calculate the prediction results

Calculate the MAPE of validation set

Part B: the search for the optimal aging
parameter by PSO algorithm

Set the hyper parameters of algorithm

Initialize the state of the particles

Calculate the fitness of every particle

Update the state of current particles

Select the best particle

Maximum
iteration?

No

Yes

End

Figure 3: Flowchart for determining the optimal aging parameter.

Input: the sample set X(0) � x(0)(1), x(0)(2), . . . , x(0)(m) 

Output: the optimal value of c

(1) Initialize parameters in the PSO algorithm:
Particle number N, dimension D, maximum generation T, learning factor c1, c2, inertia weight η.

(2) Initialize the position wi and velocity vi

(3) forj � 1: T do
(4) for i � 1: N do
(5) Calculate X(c) � x(c)(1), x(c)(2), . . . , x(c)(m)  by Definition 1;
(6) Calculate b1,

b2, . . . , bn, u by equation (10);
(7) Compute X

(0)

1 using equation (13);
(8) Compute the fitness function Z(c);
(9) Update the position and velocity of particles

vi � ηvi + c1r1(Qp − wi) + c2r2(Qg − wi);

wi � wi + vi.
where c are random vectors and belong to [0, 10]; Qp and Qg represent the individual optimal position and the global optimal
position, respectively.

(10) end for
(11) end for
(12) return optimal value of c

ALGORITHM 1: Optimization algorithm of the optimal aging parameter c (solution to optimize the optimal aging parameter c).
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AGM (1, 1) is only lower than that of ARIMA and equivalent
to F-OGMp (1, 1).(is shows that the AGM (1, 1) model can
well predict the development trend of medium and long-
term wave series.

Case 4. Comparison of aging accumulation operator and
other existing operators.

Accumulation operation is an important operation of
the grey prediction model. By accumulating the data, the
interference of random disturbance can be effectively re-
duced, and the scattered data show a certain rule. To prove
the effectiveness of the proposed aging accumulation op-
erator, seven existing grey accumulation operators such as

the traditional first-order accumulation generation opera-
tion, the damping accumulation generation operation [25],
the adjacent accumulation generation operation [35], the
first-order new information priority accumulation genera-
tion operation [23], the conformable fractional accumula-
tion generation operation [36], the fractional order
accumulation generation operation [22], and fractional
Hausdorff accumulation generation operation [37] are
compared and analyzed.(e data of forecasting competition
are often used to verify the performance of forecasting
methods [38, 39]. Take the first nine data of the N7 series in
theM3 prediction contest as an example.(e first seven data
are used for fitting, and the last two data are used for testing.

Table 2: (e fitting and predicted values of grey models on different samples.

Serial number Actual value GM6 (1, 1) GM5 (1, 1) GM4 (1, 1) AGM (1, 1)
2000 132.4 132.4 132.40
2001 144.6 142 144.6 142.75
2002 156.3 157.3 155.3 156.3 155.57
2003 173.7 174.2 173 172.1 171.45
2004 190.2 193 192.8 192.5 191.10
2005 216.7 213.8 214.8 215.3 215.41
MAPE 1.12 0.81 0.93 0.69
MAE 1.63 1.24 1.33 1.17
RMSE 2.01 1.54 1.57 1.38
2006 249.4 236.8 239.4 240.8 245.50
MAPE 5.04 4.03 3.46 1.57
MAE 12.6 10 8.6 3.90
(e smallest values of these model errors are in bold.

Table 3: (e fitting and predicted values of nine models.

Model
Fitting value Testing value

MAPE MAE RMSE MAPE MAE
AGM (1, 1) 0.4 35.92 47.95 0.11 13.03
EFGM 0.58 50.81 69.04 1.13 134.43
LSSVR 1.06 91.36 131.08 7.96 949.89
ANN 1.61 130.34 147.58 0.63 75.49
ARIMA 0.63 48.08 54.82 6.88 821.07
DGM (1, 1) 1.65 135.68 168.63 3.64 434.92
Verhulst 22.35 1597.68 2161.39 12.38 1477.09
GM (1, 1) 1.64 135.21 168.55 3.57 426.49
FGM (1, 1) 0.85 72.26 87.48 1.46 174.66
(e smallest values of these model errors are in bold.

Table 4: (e predicted values of twelve models.

Model
Russia Singapore

MAPE MAE RMSE MAPE MAE RMSE
TGM (1, 1) 9.23 20.83 23.64 1.39 1.28 1.78
Original GM (1, 1) 12.04 49.77 52.17 15.48 14.44 14.45
Optimized GM (1, 1) 11.95 49.8 51.18 15.48 14.44 14.45
Original NGBM (1, 1) 57.21 250.43 256.94 14.85 13.9 14.98
Optimized NGBM (1, 1) 10.07 44.86 48.14 1.63 1.51 1.88
ARIMA 25.29 104.66 109.39 0.3 0.28 0.38
BPN 9.46 43.62 53.28 2.35 8.72 8.83
Optimized GMp (1, 1) 10.09 45.43 50.64 1.58 1.48 1.48
Original F-GM (1, 1) 17.32 76.29 79.39 5.65 5.31 7.15
Optimized F-GM (1, 1) 17.34 76.32 79.3 5.67 5.34 7.47
Optimized F-GMp (1, 1) 13.19 52.21 65.27 2.89 2.72 3.85
F-OGMp (1, 1) 6.12 27.44 30.05 1.35 1.26 1.39
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Table 5 summarizes the grey model results of different
cumulative generation operators. (e MAPE, MAE, and
RMSE of the AGM (1, 1) model are 1.19%, 42.20, and 58.12,
respectively. (ey are all the lowest in the fitting stage. In the
testing stage, AGM (1, 1) is also superior to most models.
Actually, MAPE, MAE, and RMSE are only worse than those
of NGM (1, 1) and AGM1 (1, 1) in the prediction stage, which
shows that the proposed aging accumulation operator is
effective.

5. Conclusions

In this paper, a novel aging accumulation operator is pro-
posed. Different from the existing grey accumulation op-
erator, this operator determines the accumulation weight of
data at different times from back to front. (e addition of
new data will push the old data to roll back so that the
timeliness of data can be updated dynamically with the
change of the system. (e aging accumulation operator is
introduced into the grey model, and a new aging accu-
mulation grey model AGM (1, 1) is obtained. Compared
with the traditional grey model, AGM (1, 1) can reduce the
interference of old data and improve the prediction accuracy
of the model by adjusting the aging parameter c. In addition,
the prediction trend of the AGM (1, 1) model is adjustable.
(e effectiveness of AGM (1, 1) is proved by four case
studies, and the following conclusions are obtained:

(1) (e introduction of the aging parameter c over-
comes the problem that the prediction accuracy of
the traditional GM (1, 1) model decreases with the
increase of sample size. (e AGM (1, 1) model can
effectively adjust the aging weight of new and old
information and get more accurate fitting and pre-
diction results.

(2) (e AGM (1, 1) model not only effectively improves
the short-term forecasting ability of the grey model
but also outperforms most existing forecasting
methods when dealing with medium and long-term
smooth and fluctuating series.

(3) As an improvement of the traditional GM (1, 1) model,
the proposed aging accumulation operator is superior
to most existing grey accumulation operators.

In a word, the proposed aging accumulation operator
and aging accumulation grey model are very effective. Be-
cause of the excellent performance of the aging accumula-
tion operator, it can also be used to improve other grey
models and forecasting methods. Besides, when defining the
aging accumulation operator, the inverse proportional
function is selected as the aging decreasing function, and the
better aging decreasing function can be mined.
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