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In this paper, we use the elementary methods and the estimates for character sums to prove the following conclusion. Let p be a
prime large enough. +en, for any positive integer n with p(1/2)+ε ≤ n<p, there must exist two primitive roots α and β modulo p

with 1< α, β≤ n − 1 such that the equation n � α + β holds, where 0< ε< (1/2) is a fixed positive number. In other words, n can be
expressed as the exact sum of two primitive roots modulo p.

1. Introduction

Let p be a prime and Fq be a finite field of q (� ph, h≥ 1)
elements with characteristic p. +e Golomb conjecture (see
[1]) can be summarized as follows: for any nonzero element
c ∈ Fq, there exist two primitive elements α and β ∈ Fq such
that the equation α + β � c holds.

If we assume that A(p) denotes the set of all primitive
roots g modulo p with 1≤g≤p − 1, then the Golomb
conjecture in a reduced residue system modulo p can be
described as that, for any integer 1≤ n≤p − 1, there exist two
primitive roots α and β ∈ A(p) such that the congruence
α + β ≡ nmodp holds.

+is conjecture is not only basically solved but also carried
on various generalizations. Interested readers can refer to the
references [2–11]. For example, let p be an odd prime large
enough. +en, for any integers a, b, and c with (abc, p) � 1,
there are at least two primitive roots α and βmodp such that
the congruence aα + bβ ≡ cmodp holds (see Sun [2]).

It is clear that if integer 1< n<p and the primitive roots
1< α, β≤p − 1 satisfy the congruence α + β ≡ nmodp, then
α + β � n or α + β � n + p.

A natural question is whether for a fixed 1< n<p, there
are two primitive roots 1< α, β≤ n − 1 of p such that

α + β � n?. (1)

Of course, for some positive integers n, equation (1) has
no solutions. For example, n � 1, n � 2 and 3. So, we think
that the problem in (1) is meaningful, and it is also closely
related to the minimum primitive root modulo p.

On the other hand, we also want to know how large n is
(relative to p), so that equation (1) must have a solution.

For the sake of convenience, for any odd prime p and
integer 1< n≤p − 1, let S(n; p) denote the number of all
solutions of the equation α + β � n, where α and β are two
primitive roots modulo p with 1< α, β≤ n − 1.

In this paper, we shall use the elementary methods and
the estimates for character sums to study the asymptotic
properties of S(n; p) and prove the following.

Theorem 1. Let p be an odd prime. 'en, for any integer
1< n≤p − 1, we have the asymptotic formula:

S(n; p) �
ϕ2(p − 1)

p
2 · n + O

ϕ2(p − 1)

p
(3/2)

· 4ω(p− 1)
· ln p ,

(2)

where, as usual, ϕ(k) denotes the Euler function and ω(k)

denotes the number of all distinct prime divisors of k.

It is clear that, for any positive number 0< ε< (1/2), if
prime p is large enough, then our theorem is nontrivial for
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all integers p(1/2)+ε ≤ n≤p − 1. +at is, the main term is
much big than the error term in our theorem. So, from our
theorem, we may immediately deduce the following:

Corollary 1. Let p be an odd prime large enough,
0< ε< (1/2) be a fixed positive number.'en, for any positive
integer n with p(1/2)+ε ≤ n≤p − 1, there must exist two
primitive roots α and β modulo p such that

α + β � n. (3)

Note: first, the conclusion in our theorem can also be
generalized. +at is, let p be an odd prime and k be a fixed
positive integer. For any integers 1< n1 < n2 < n3 < · · ·

< nk <p, if S(n1, n2, . . . , nk; p) denotes the number of all
solutions of the equations n1 � α + β1, n2 � α + β2, . . . ,

nk � α + βk, where α and all βi (i � 1, 2, . . . , k) are the
primitive roots modulo p, then we have the following as-
ymptotic formula:

S n1, n2, . . . , nk; p(  �
ϕk+1

(p − 1)

p
k+1 · n1 + O

ϕk+1
(p − 1)

p
k+(1/2)

· 2(k+1)ω(p− 1)
· ln p . (4)

If 0< ε< (1/2) and p(1/2)+ε < n1 <p, then this asymptotic
formula is nontrivial.

Second, the lower bound p(1/2)+ε of n in our corollary is
very rough. How to improve the constant (1/2) is an in-
teresting open problem.

Conjecture 1. Let 0< δ < 1 be a fixed positive number and p

be a prime large enough. 'en, for any positive integer
pδ < n<p, there must exist two primitive roots α and β
modulo p such that the equation α + β � n holds.

2. Several Lemmas

In order to complete the proof of the main result, we need
several simple lemmas. For the sake of simplicity, we do not
repeat some elementary number theory and analytic number
theory results, which can be found in references [12–14].
First, we have the following.

Lemma 1. Let p be an odd prime. 'en, for any integer a

with (a, p) � 1, we have the identity

ϕ(p − 1)

p − 1


k|p−1

μ(k)

ϕ(k)


k

r�1
′e

r · ind(a)

k
  �

1, if a is a primitive rootmod p,

0, if a is not a primitive rootmod p,

⎧⎨

⎩ (5)

where e(y) � e2πiy, 
k
r�1 ′ denotes the summation over all

integers 1≤ r≤ k such that r is coprime to k, μ(n) is the
Möbius function, and ind(a) denotes the index of a relative to
some fixed primitive root gmodp.

Proof. See Proposition 2.2 in [13]. □

Lemma 2. Let p be an odd prime and χ1, . . . , χr be Dirichlet
characters modulo p, at least one of which is nonprincipal
character. Let f(x) be an integral coefficient polynomial of
degree d. 'en, for pairwise distinct integers a1, . . . , ar, we
have the estimate



p−1

a�1
χ1 a + a1( χ2 a + a2(  . . . χr a + ar( e

f(a)

p
 ≤ (r + d) · p

(1/2)
. (6)

Proof. In fact, this result is Lemma 17 in [15]. Some related
works can also be found in [16–19]. □

Lemma 3. Let p be an odd prime. 'en, for any integer
1< n<p and any two Dirichlet characters χ1 and χ2 (at least
one of which is nonprincipal character) modulo p, we have the
estimate



n−1

a�1
χ1(a)χ2(n − a)≪p

(1/2)
· ln p. (7)

Proof. It is clear that, for any integer m, we have the
trigonometric identity



p−1

r�0
e

mr

p
  �

p, if p ∣ m,

0, if p∤m,

⎧⎪⎨

⎪⎩
(8)

and the estimate



n−1

b�1
e

−rb

p
 




≪

1
|sin(πr/p)|

≪
p

r
. (9)

From (8), (9), and Lemma 2, we have
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n−1

a�1
χ1(a)χ2(n − a) �

1
p



p−1

a�1


n−1

b�1
χ1(a)χ2(n − a) 

p−1

r�0
e

r(a − b)

p
 

�
1
p



p−1

r�1


p−1

a�1
χ1(a)χ2(n − a)e

ra

p
 ⎛⎝ ⎞⎠ 

n−1

b�1
e

−rb

p
 ⎛⎝ ⎞⎠ +

n − 1
p



p−1

a�1
χ1(a)χ2(n − a)

≪
��
p

√

p
· 

p−1

r�1

p

r
+

n − 1
p

·
��
p


≪p

(1/2)
· ln p.

(10)

+is proves Lemma 3. □ 3. Proof of the Theorem

Now, we shall complete the proof of our main result. For any
integer 1< n≤p − 1, from the definition of S(n, p) and
Lemma 1, we have

S(n, p) �
ϕ2(p − 1)

(p − 1)
2 

k|p−1

μ(k)

ϕ(k)


k

r�1
′ 

h|p−1

μ(h)

ϕ(h)


h

s�1
′ × 

n−1

a�1
e

r · ind(a)

k
  · e

s · ind(n − a)

h
 . (11)

It is clear that χt,k(a) � e(t · ind(a)/k) is a Dirichlet
character modulo p. So, from the Polya and Vinogradov’s
classical work (see [12]; +eorem 8.21 and +eorem 13.15),
we have the estimate



n−1

a�1
χ(a)≪p

(1/2) ln p, (12)

where χ is any nonprincipal character modulo p.
Now, from (11), (12), and Lemma 3, we have

S(n; p) �
ϕ2(p − 1)

(p − 1)
2 

k|p−1

μ(k)

ϕ(k)


k

r�1

′ 
h|p−1

μ(h)

ϕ(h)


h

s�1

′
n−1

a�1
χr,k(a)χs,h(n − a)

�
ϕ2(p − 1)

(p − 1)
2 

n−1

a�1
1 +

ϕ2(p − 1)

(p − 1)
2 

k|p−1

k> 1

μ(k)

ϕ(k)


k

r�1

′
n−1

a�1
χr,k(a)

+
ϕ2

(p − 1)

(p − 1)
2 

k|p−1

k> 1

μ(k)

ϕ(k)


k

r�1

′ 

h|p−1

h> 1

μ(h)

ϕ(h)


h

s�1

′
n−1

a�1
χr,k(a)χs,h(n − a)

+
ϕ2

(p − 1)

(p − 1)
2 

h|p−1

h> 1

μ(h)

ϕ(h)


h

s�1

′
n−1

a�1
χs,h(n − a)

�
ϕ2(p − 1)

(p − 1)
2 · (n − 1) + O

ϕ2(p − 1)

p
(3/2)

. 
k|(p−1)

|μ(k)|⎛⎝ ⎞⎠

+ O
ϕ2(p − 1)

p
(3/2)

. 
k|(p−1)

|μ(k)|. 
h|(p−1)

|μ(h)|. ln p⎛⎝ ⎞⎠

�
ϕ2(p − 1)

p
2 · n + O

ϕ2
(p − 1)

p
(3/2)

· 4ω(p− 1)
· ln p ,

(13)
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where we have used the identity


k|m

|μ(k)| � 
pαm

(1 + |μ(p)|) � 2ω(m)
, (14)

and ω(m) denotes the number of all distinct prime divisors
of m.

+is completes the proof of our theorem.

4. Conclusion

+e main result in this paper is a theorem, which is closely
related to Golomb’s conjecture. It describes that when prime
p is large enough, for any integer p(1/2)+ε ≤ n≤p − 1, there
must exist two primitive roots α and β modulo p such that
the equation n � α + β holds, where 0< ε< (1/2) be a fixed
positive number. At the same time, we also give a sharp
asymptotic formula for the counting function of all such
solutions (α, β). In fact, our conclusion is much stronger
than Golomb’s conjecture in the reduced residue system
1, 2, 3, . . . , p − 1  modulo p. As a note of the corollary, we
also proposed an open problem.
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