
Research Article
Estimation of the Conditional Probability Using a Stochastic
Gradient Process

Ali Labriji , Abdelkrim Bennar, and Mostafa Rachik

Department of Mathematics and Computer Science, Faculty of Sciences, Ben M’sik Hassan II University, Casablanca, Morocco

Correspondence should be addressed to Ali Labriji; alilabriji@gmail.com

Received 22 August 2021; Revised 3 November 2021; Accepted 13 November 2021; Published 6 December 2021

Academic Editor: Barbara Martinucci

Copyright © 2021 Ali Labriji et al. &is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

&e use of conditional probabilities has gained in popularity in various fields such as medicine, finance, and imaging processing.
&is has occurred especially with the availability of large datasets that allow us to extract the full potential of the available
estimation algorithms. Nevertheless, such a large volume of data is often accompanied by a significant need for computational
capacity as well as a consequent compilation time. In this article, we propose a low-cost estimation method: we first demonstrate
analytically the convergence of our method to the desired probability and then we perform a simulation to support our point.

1. Introduction

&e likelihood that an event B will occur knowing that event
A has already occurred is called the conditional probability,
denoted by P(B|A) or PA(B). For example, if a card is
randomly drawn from a deck, there is a one in four chance of
getting a heart suit, but if a red reflection is seen on the table,
there is now a one in two chance of getting it. If events A and
B have nonzero probabilities, then Bayes theorem states that
P(B|A) � P(A∩B)/P(A). &at was for the scientific part,
but in daily life also conditional probability is useful in
various fields and is even gaining more and more interest.
For example, banks estimate the probability of default of a
borrower or bond issuer using conditional probability es-
timation methods based on Basel II regulations (see [1] for
more information). &e estimation of this probability is
crucial since it allows the banks to compute the expected
losses and therefore to cover the consequences. Another area
where the estimation of conditional probabilities is im-
portant is marketing, where it is used to estimate the interest
of a customer in a given product or service. &erefore, they
are able to focus on the most attractive population in order
to optimize the marketing costs [2]. &e estimation of this
probability is also frequently used in the field of medicine, as
doctors need to estimate the likelihood of a patient being

affected by a given disease based on the symptoms the
patient presents [3] and many more areas, such as drug
discovery, computer vision, speech recognition, handwriting
recognition, biometric identification, document classifica-
tion, Internet search engines, pattern recognition, and
recommender system [4–11].

In practice, we can divide conditional probability esti-
mation methods into two categories, linear and nonlinear
classifiers. &e linear classifiers can be split into two sub-
categories, the generative and discriminative models
[12, 13], and the most commonly used are

(i) Fisher’s linear discriminant
(ii) Logistic regression
(iii) Naive Bayes classifier

Nonlinear classifiers can be grouped into the following
groups of methods:

(i) Linear classifier with transformed data such as a
discretization of continuous variables

(ii) Support vector machines
(iii) Quadratic classifiers
(iv) K-nearest neighbor
(v) Decision trees
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(vi) Neural networks
(vii) Learning vector quantization

To learn more about these different algorithms, see
[14–20].

Let us consider an observable random binary variable U

and a random variable V. We define U such that

U �
1, if the studied event occured,

0, if not.
 (1)

We are willing to estimate the vector θ such that the
conditional probability P(U � 1|V) is written in the form:

P(U � 1|V) �
1

1 + exp − θ′V( 
. (2)

We are looking for a simple method of estimating the
parameter θ that will be less demanding in terms of com-
putational capacity. &is is useful especially in the Big Data
era, where the datasets can be massive and any common
iterative estimation can take a lot of time. To do this, we use
the stochastic approximation, which has been introduced by
Herbert Robbins and Sutton Monro in 1951 [21]. &e goal is
to find the unique root θ∗ of a function M(θ) � α, while
M(θ) cannot be directly observed. Yet, we assume that we
can observe a variable Y(θ) such that E[Y(θ)] � M(θ).
According to [21], there exists a sequence an that satisfies



∞

n�1
an �∞, 

∞

n�1
a
2
n <∞, (3)

such as the process θn defined by

θn+1 � θn − an M θn(  − α( , (4)

converges to the unique root of M(θ) � α. In our case, we
start from the work of Bennar et al. [22] who established the
conditions for almost sure convergence, as well as the
quadratic mean convergence of a stochastic gradient process
θn to the parameter θ that allows us to estimate E[U|V].
Here, we are interested in the case of binary random var-
iables, where E[U|V] is equivalent to P(U � 1|V), as we can
see in the following:

E[U|V] � 
2

i�1
uiP U � ui|V(  � P(U � 1|V). (5)

We also chose these results as the basis of our work since
the stochastic gradient process performs a sampling at each
iteration in order to achieve the estimates without relying on
all the available data.

In this article, we first present the convergence results
elaborated by Bennar et al., then we show that these results
are also valid in the framework of estimating the conditional
probability. We also present a simulation to highlight the

obtained results, and finally, we conclude our work by
addressing development perspectives.

2. Preliminaries

Let us consider an observable random variable U and a
random variable V, both have values in Rk of law μ. We try
to estimate the parameter θ in Rp such that ϕ(V, θ) ap-
proaches E[U|V] in the least squares sense. It should also be
noted that the estimation of the parameters of a logistic
regression in the sense of least squares is already achieved
through the iterative weighted least squares method [23]
which, unlike our purpose, is heavy and employs huge
computing capacities in the case of large dataset.

Let f be the real positive function defined in Rp by

f(θ) � E (E[U|V] − ϕ(V, θ))
2

 , (6)

we are looking for the value of θ that minimizes the function
f.

Let us define the real positive function g in Rp by

g(θ) � E (U − ϕ(V, θ))
2

 . (7)

We have

g(θ) � f(θ) + E (U − E[U|V])
2

 , (8)

thus the problem reduces to looking for θ that minimizes the
function g. We have

∇θg(θ) � 2E ∇θϕ(V, θ)(ϕ(V, θ) − U) . (9)

To estimate θ in a sequential way, we use a stochastic
gradient algorithm. We consider a random θn in Rp defined
by

θn+1 � θn − an∇θϕ Vn, θn(  ϕ Vn, θn(  − Un( , (10)

with

(i) (an) is a sequence of positive real numbers
(ii) (U1, V1), (U2, V2), . . . , (Un, Vn) is a sample of in-

dependent random variable couples with the same
probability law that (U, V)

(iii) ϕ(., .) is a real known measurable function in
Rk × Rp

In the following, the abbreviation a.s means almost sure
convergence and q.m means quadratic mean convergence.

2.1. Almost Sure Convergence. Bennar et al. have considered
the following assumptions:

(H1) an > 0, 
∞
n�1 a2

n <∞,
(H1′) an > 0, 

∞
n�1 an �∞, 

∞
n�1 a2

n <∞,
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(H2): there exist a and b such that for all
θ � (θ1, θ2, . . . , θp)′∈ R

p,

Var
zϕ(V, θ)

zθi

(ϕ(V, θ) − U) < ag(θ) + b, for all i � 1, 2, . . . , p, (11)

(H3): there exists K> 0 such that for all
θ � (θ1, θ2, . . . , θp)′ ∈ Rp,

z
2
g(θ)

zθizθj

<K, for all i � 1, 2, . . . , p, (12)

(H4) θ
∗ is a local minimum of g:

∃ α> 0: θ≠ θ∗, θ − θ∗
����

����< α⇒g θ∗( <g(θ) . (13)

(H5) θ
∗ is the unique stationary point of g:

∀θ ∈ Rp
, θ≠ θ∗( ⇔∇θg(θ)≠ 0. (14)

Lemma 1. Under the assumptions H1′, H2, H3, H4, H5, we
have

θn⟶ θ∗ a.s or θn

����
����⟶ +∞ a.s. (15)

Proof. See [22]. □

2.2. Quadratic Mean Convergence. Bennar et al. have con-
sidered the following assumptions:

(H6)ϕ(V, θ) and ∇θϕ(V, θ) are uniformly bounded in
V and θ.
(H7): there exist two real positive functions h and h′
defined in Rp such that
∀θ, θ′∈ R

p, ∀V ∈ Rp,

|ϕ(V, θ) − ϕ(V, θ′)|≤ h(V)‖θ − θ′‖,

∇θϕ(V, θ) − ∇θ′ϕ(V, θ′)
�����

�����≤ h′(V)‖θ − θ′‖,

E[h(V)] <∞, E h′(V) <∞.

(16)

(H8)U is a real random bounded variable.

Lemma 2. Under the assumptions H1′, H3, H6, H7, H8, we
have

∇θg θn( ⟶ 0 a.s and∇θg θn( ⟶ 0 q.m. (17)

Proof. See [22]. □

3. Application

3.1. Proof of Process Convergence. Let us assume
ρ1, ρ2, . . . , ρp be p functions of q measurable real variables.
We note

ρ � ρ1, ρ2, . . . , ρp ′. (18)

In order to estimate the value of θ that minimizes
E[(E[U|V] − (1/1 + exp(− ρ(V)′θ)))2], we consider the
following stochastic approximation process (θn) in Rp

defined by

θn+1 � θn − an

ρ Vn( exp − ρ Vn( ′θn 

1 + exp − ρ Vn( ′θn  
2

1

1 + exp − ρ Vn( ′θn 

− Un

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (19)

with
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ρ Vn( exp − ρ Vn( ′θn 

1 + exp − ρ Vn( ′θn  
2 �

ρ1 V1,n exp − ρ Vn( ′θn 

1 + exp − ρ Vn( ′θn  
2

⋮

ρp Vp,n exp − ρ Vn( ′θn 

1 + exp − ρ Vn( ′θn  
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(20)

where (U1, V1), (U2, V2), . . . , (Un, Vn) is a sample of (U, V)

formed of independent random variable and distributed
identically.

We assume the following assertions:

(H9) ρ1(V1), ρ2(V2), . . . , ρp(Vp) are observed in a fi-
nite way
(H10) θ1 is a random variable such that E[‖θ1‖

2]<∞

Theorem 3. Under the assumptions H1′, H9, H10, we have

∇θg θn( ⟶ 0 a.s and∇θg θn( ⟶ 0 q.m. (21)

Proof. Let ϕ be the real function of Rp × Rp defined by

ϕ(V, θ) �
1

1 + exp − ρ(V)′θ( 
�

1
1 + exp − 

p
j�1 θjρj(V) 

.

(22)

Let us prove that the assumption 3 is true.
We have

g(θ) � E U −
1

1 + exp − ρ(V)′θ( 
 

2
⎡⎣ ⎤⎦. (23)

For i � 1, 2, . . . , p, we have

zg(θ)

zθi

� − 2E
ρi Vi( exp − ρ(V)′θ( 

1 + exp − ρ(V)′θ( ( 
2 U −

1
1 + exp − ρ(V)′θ( 

 ⎡⎣ ⎤⎦,

� − 2E
ρi Vi( 

2 + exp ρ(V)′θ(  + exp − ρ(V)′θ( ( 
U −

1
1 + exp − ρ(V)′θ( 

  .

(24)

&us, for i, j � 1, 2, . . . , p, we have

z
2
g(θ)

zθizθj

� 2E
ρi Vi( ρj Vj  exp ρ(V)′θ(  − exp − ρ(V)′θ( ( 

2 + exp ρ(V)′θ(  + exp − ρ(V)′θ( ( 
2 U −

1
1 + exp − ρ(V)′θ( 

 ⎡⎣ ⎤⎦

+ 2E
ρi Vi( 

2 + exp ρ(V)′θ(  + exp − ρ(V)′θ( ( 

ρj(Vj)

2 + exp ρ(V)′θ(  + exp(− ρ(V)′θ) 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·
z
2
g(θ)

zθizθj





≤ 2E ρi Vi( ρj Vj  U −
1

1 + exp − ρ(V)′θ( 
 




 

+ 2E ρi Vi( ρj(Vj)
1

2 + exp ρ(V)′θ(  + exp − ρ(V)′θ( ( 
 




 ,

(25)

as the ρ1(V1), ρ2(V2), . . . , ρp(Vp) are observed in a finite
way, and

0<
1

1 + exp − ρ(V)′θ( 
< 1, 0<

1
2 + exp ρ(V)′θ(  + exp − ρ(V)′θ( ( 

< 1. (26)
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&en, there exists K> 0 such that for all
θ � (θ1, θ2, . . . , θp)′ ∈ Rp,

z
2
g(θ)

zθizθj

<K, for all i � 1, 2, . . . , p. (27)

Let us prove that the assumption 6 is true.
We have

ϕ(V, θ) �
1

1 + exp − ρ(V)′θ( 
,

∇θϕ(V, θ) �
ρ(V)

2 + exp ρ(V)′θ(  + exp − ρ(V)′θ( ( 
,

(28)

with ρ(V)/(2 + exp(ρ(V)′θ) + exp(− ρ(V)′θ)) �

ρ1(V1)/(2 + exp(ρ(V)′θ) + exp(− ρ(V)′θ))

⋮
ρp(Vp)/(2 + exp(ρ(V)′θ) + exp(− ρ(V)′θ))

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠;

then, ϕ(V, θ)< 1 and ‖∇θϕ(V, θ)‖< ‖ρ(V)‖, and since
ρ1(V1), ρ2(V2), . . . , ρp(Vp) are observed in a finite way,
then there exists K2 > 0 such that for all
θ � (θ1, θ2, . . . , θp)′ ∈ Rp and V � (V1, V2, . . . , Vp)′ ∈ Rp,
‖∇θϕ(V, θ)‖<K2. &en, ϕ(V, θ) and ∇θϕ(V, θ) are uni-
formly bounded in V and θ.

Let us prove that the assumption 7 is true. To do this, we
use the following result. □

Lemma 4 (mean value inequalities). Let E and F be two real
normed vector spaces, U an open of E, and f: U⟶ F a
differentiable application. For any segment [a, b] included in
U, we have

‖f(b) − f(a)‖F ≤ sup
x∈[a,b]

f′(x)
����

���� ‖b − a‖E, (29)

where, for any point x of U, ‖f′(x)‖ is the operator norm of
the differential of f at point x.

Proof. See [24], p. 31.
&en, there exist two real positive functions h and h′

defined in Rp such that
∀θ, θ′∈ R

p, ∀V ∈ Rp,

|ϕ(V, θ) − ϕ(V, θ′)|≤ h(V)‖θ − θ′‖,

∇θϕ(V, θ) − ∇θ′ϕ(V, θ′)
�����

�����≤ h′(V)‖θ − θ′‖.
(30)

Let us prove that E[h(V)]<∞, and E[h′(V)]<∞.
We have already seen that ‖∇θϕ(V, θ)‖≤ ‖ρ(V)‖ and

since
ρ1(V1), ρ2(V2), . . . , ρp(Vp) are observed in a finite way,

then E[h(V)]<∞.
Furthermore, we have that z2ϕ(V, θ)/zθizθj �

− ρi(Vi)ρj(Vj) (exp(ρ(V)′θ) − exp(− ρ(V)′θ))/(2 + exp
(ρ(V)′θ) + exp(− ρ(V)′θ))2, then |z2ϕ(V, θ)/zθizθj|

≤ |ρi(Vi)ρj(Vj)|, and since ρ1(V1), ρ2(V2), . . . , ρp(Vp) are
observed in a finite way, then E[h′(V)] <∞.

Moreover, since U is a binary random variable, then
assumption 8 is true.

&en, under assumptions H1′, H9, H10, we have

∇θg θn( ⟶ 0 a.s and∇θg θn( ⟶ 0 q.m. (31)
□

3.2. Simulation. In order to illustrate our work, we perform
a simulation in which we estimate the different parameters
of a logistic regression. Our simulations are performed using
the programming language “R.” We simulate 10 000 ob-
servations of the random variable V\leads toN(3, 10), and
we define U such that

U �
1, if V + ϵ > 0,

0, if not,
 (32)

with ε \leads toN(0, 3), to avoid having a perfectly fitted
model. &en, we fitted a classical logistic regression with the
Fisher scoring algorithm, which converged in 12 iterations.
We define the accuracy rate as the number of correctly
classified observations over the total number of our ob-
servations, and the classic model has an accuracy of 90.34%.
Table 1 shows all the remaining outputs of the model.

Regarding the proposed process, we initiate it with the
following randomly chosen values, Intercept � − 3, θ � − 3,
and we choose an � 1 + exp(− ρ(V)′θ)/n; as ρ(V) and θ are
finite, we can see that assumption H1′ is verified, and we also
randomly draw a sample of one observation to perform our
calculations at each iteration. Finally, we have set an ac-
curacy of 10− 12. Following simulations, we obtain the results
as follows.

Table 1: Fisher scoring algorithm outputs.

Dependent variable
U

θ 0.567∗∗∗
(0.013)

Constant
0.012
(0.040)

Observations
Observations 10,000
Log likelihood − 2,091.211
Akaike Inf. Crit. 4,186.422
Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.

5.0 7.5 10.02.5
Iteration

-3

-2

-1

0

1

In
te
rc
ep
t

Figure 1: Intercept estimation process.
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We can see through Figures 1 and 2, as well as Figure 3,
that the process converged in 10 iterations. &erefore, we
only needed 10 samples of one observation to obtain a robust
estimation of the coefficients. Moreover, we can see in
Figure 3 as well as in the summary of the process, in Table 2,
that the latter records a prediction accuracy on the set of
simulated observations of 89%, hence a loss of 1% in ac-
curacy, but, in return, we gained greatly in terms of com-
puting capacity.

4. Conclusion

In this work, we have demonstrated the convergence of the
process studied towards the values that minimize the

function g(θ), and following our simulations, we can see
that this theoretical result is also valid on the empirical level.
Nevertheless, this simulation required that we arbitrarily set
a starting point, which leads to a possible slow convergence
of the process in case the initial point is far from the targeted
value. Moreover, the speed of convergence is also greatly
affected by the choice of the an. &us, a possible improve-
ment would be to find the optimal sequence an that provides
the fastest convergence.

Data Availability

No data were used to support this study.

Conflicts of Interest

&e authors declare no conflicts of interest.

References

[1] Basel Committee on Banking Supervision, Consultative
Document “3e Internal Ratings Based Approach” Supporting
Document to the New Basel Capital Accord Posted: 2001-01,
Basel Committee on Banking Supervision, Basel, Switzerland,
2001.

[2] R. Michel, I. Schnakenburg, and T. von Martens, “Effective
customer selection for marketing campaigns based on net
scores,” Journal of Research in Interactive Marketing, vol. 11,
no. 1, 2017.

[3] D. S. W. Ho, W. Schierding, M. Wake, R. Saffery, and
J. O’Sullivan, “Machine learning SNP based prediction for
precision medicine,” Frontiers in Genetics, vol. 10, p. 267,
2019.

[4] R. Abel, S. Mondal, C. Masse et al., “Accelerating drug dis-
covery through tight integration of expert molecular design
and predictive scoring,” Current Opinion in Structural Biol-
ogy, vol. 43, pp. 38–44, 2017.

[5] P. Hu, D. Cai, S. Wang, A. Yao, and Y. Chen, “Learning
supervised scoring ensemble for emotion recognition in the
wild,” in Proceedings of the 19th ACM International Con-
ference onMultimodal Interaction, pp. 553–560, Glasgow, UK,
November 2017.

[6] J. Shin, Y. Lee, and K. Jung, “Effective sentence scoring
method using bert for speech recognition,” in Proceedings of
the Asian Conference on Machine Learning, pp. 1081–1093,
PMLR, Nagoya, Japan, October 2019.

[7] J. Calvo-Zaragoza, A. H. Toselli, and E. Vidal, “Probabilistic
music-symbol spotting in handwritten scores,” in Proceedings
of the 2018 16th International Conference on Frontiers in
Handwriting Recognition (ICFHR), pp. 558–563, IEEE, Ni-
agara Falls, NY, USA, August 2018.

[8] A. Abozaid, A. Haggag, H. Kasban, and M. Eltokhy, “Mul-
timodal biometric scheme for human authentication tech-
nique based on voice and face recognition fusion,”
Multimedia Tools and Applications, vol. 78, no. 12,
pp. 16345–16361, 2019.

[9] R. S. Perdana and A. Pinandito, “Combining likes-retweet
analysis and naive bayes classifier within twitter for sentiment
analysis,” Journal of Telecommunication, Electronic and
Computer Engineering (JTEC), vol. 10, no. 1-8, pp. 41–46, 2018.

[10] B. C. Searle, M. Turner, and A. I. Nesvizhskii, “Improving
sensitivity by probabilistically combining results from

5.0 7.5 10.02.5
Iteration

-3.15

-3.10

-3.05

-3.00

Te
ta

Figure 2: θ estimation process.

5.0 7.5 10.02.5
Iteration

0.25

0.50

0.75

A
cc
ur
ac
y

Figure 3: Accuracy of forecasts during iterations.

Table 2: Summary of the iterations.

Iteration Accuracy θ Intercept
1 0.097 9 − 3.000 000 − 3.000 000
2 0.0991 − 3.166 397 − 2.827 981
3 0.883 3 − 3.166 397 1.467 527
4 0.883 3 − 3.166 396 1.467 534
5 0.883 3 − 3.166 396 1.467 534
6 0.883 3 − 3.166 395 1.467 538
7 0.887 4 − 3.039 216 1.547 544
8 0.890 7 − 2.987 531 1.648 300
9 0.890 7 − 2.987 531 1.648 300
10 0.890 7 − 2.987 531 1.648 300

6 Journal of Mathematics



multiple MS/MS search methodologies,” Journal of Proteome
Research, vol. 7, no. 1, pp. 245–253, 2008.

[11] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno,
“An efficient hybrid music recommender system using an
incrementally trainable probabilistic generative model,” IEEE
Transactions on Audio Speech and Language Processing,
vol. 16, no. 2, pp. 435–447, 2008.

[12] T. Mitchell, Generative and Discriminative Classifiers: Naive
Bayes and Logistic Regression, Carnegie Mellon University,
Pittsburgh, PA, USA, 2005.

[13] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative
classifiers: a comparison of logistic regression and naive
bayes,” Advances in Neural Information Processing Systems,
vol. 2, pp. 841–848, 2002.

[14] J. Le, A tour of the top 10 algorithms for machine learning
newbies, 2018.

[15] C. Cortes and V. Vapnik, “Support-vector networks,” Ma-
chine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[16] A. &arwat, “Linear vs. quadratic discriminant analysis
classifier: a tutorial,” International Journal of Applied Pattern
Recognition, vol. 3, no. 2, pp. 145–180, 2016.

[17] E. Fix and J. L. Hodges, “Discriminatory analysis. Non-
parametric discrimination: consistency properties,” Interna-
tional Statistical Review/Revue Internationale de Statistique,
vol. 57, no. 3, pp. 238–247, 1989.

[18] S. Shalev-Shwartz and S. Ben-David, Understanding Machine
Learning: From 3eory to Algorithms, Cambridge University
Press, Cambridge, UK, 2014.

[19] F. Rosenblatt, “&e perceptron: a probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, vol. 65, no. 6, pp. 386–408, 1958.

[20] T. Kohonen, “Learning vector quantization,” in Self-orga-
nizing Maps, pp. 175–189, Springer, Berlin, Heidelberg, 1995.

[21] H. Robbins and S. Monro, “A stochastic approximation
method,”3e Annals of Mathematical Statistics, vol. 22, no. 3,
pp. 400–407, 1951.

[22] A. Bennar, A. Bouamaine, and A. Namir, “Almost sure
Convergence and in quadratic mean of the gradient stochastic
process for the sequential estimation of a conditional ex-
pectation,” Applied Mathematical Sciences, vol. 2, no. 8,
pp. 387–395, 2008.

[23] J. A. Nelder and R. W. M. Wedderburn, “Generalized linear
models,” Journal of the Royal Statistical Society: Series A,
vol. 135, no. 3, pp. 370–384, 1972.

[24] S. Benzoni-Gavage, Calcul Différentiel et équations
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