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,e consensus problem for a class of fractional-order nonlinear multiagent systems with a distributed protocol containing input
time delay is investigated in this paper. Consider both cases of constant time delay and time-varying delay, the delay-independent
consensus conditions are obtained to achieve the consensus of the systems, respectively, by adopting the linear matrix inequality
(LMI) methods and stability theory of fractional-order systems. As illustrated by the numerical examples, the proposed theoretical
results work well and accurately.

1. Introduction

,e consensus problem based on distributed coordinated
control of multiagent systems is widely applied in various
engineering fields, such as the collaboration of mobile ro-
botics, formation flight control for multi-unmanned aerial
vehicles, the scheduling of intelligent transportation, etc.
[1–6]. ,e distributed coordinated control strategy has
advantages of high reliability, fast response speed, and
flexible operation. ,e literature review illustrates that the
consensus topic on the coordination of multiagent systems
has been studied from a variety of perspectives, including the
design of consensus protocols, exploration of consensus
criteria, and actual application prospects. ,e consensus has
achieved remarkably in theoretical research such as time-
delay dependent consensus [7, 8], optimal consensus, finite
time consensus, and consensus of higher-order systems
[9–13]. ,e recently fruitful results on this topic refer to the
following literature [14–16].

However, the results mentioned above are focused on
integer-order systems. Actually, fractional calculus is more
suitable to describe complex dynamics naturally. Compared
with the integer-order case, the fractional-order model
emphasizes time memory and nonlocal properties of the real

systems. For example, fractional calculus fits to model the
dynamics of intelligent vehicles moving on the road surface
with viscoelastic materials [17–19]. From the perspective of
control theory, fractional calculus techniques could improve
the performance index of control systems considering
nonlinear factors, uncertainties, perturbations, etc. [20, 21].
Hence, it is significant to investigate the consensus problem
in the frame work of fractional-order models. As we know,
the consensus investigation of fractional-order systems was
firstly shown in [22]. ,e convergence analysis of consensus
of such kind of model was further studied in [23]. ,e
consensus of fractional-order systems with input or com-
munication delays was discussed in [24, 25]. ,e fractional-
order leader-following consensus is also considered by
constructing appropriate Lyapunov function in [26].

In the actual network environment, the network-in-
duced delay is unavoidable due to the limited network
bandwidth, irregular date change, and so on. ,ese disad-
vantages will affect the system performance or even dete-
riorate the system’s stability. Recently, the consensus issue of
fractional-order multiagent systems with time-delay has
attracted more attention. In [27], the fractional-order model
with diverse communication delays is considered and suf-
ficient consensus criteria were proposed by using the
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frequency-domain analysis. ,e consensus of the fractional-
order model with nonuniform input and communication
delays is investigated [28]. ,e Lyapunov stability theory is
also an efficient approach to estimate the consensus of
complex dynamical systems in time-domain analysis. For
example, the global asymptotical stability of fractional-order
nonautonomous systems is obtained by constructing a
feasible Lyapunov function [29]. In [30], exponential con-
sensus of fractional-order delayed systems with a hetero-
geneous impulsive control strategy is investigated by using
the comparison principle. ,e key issue of this technique is
to propose a suitable Lyapunov function for the considered
system [31, 32].

,e main contribution of this work is estimating time-
delay effect quantitatively to the consensus achievement of
fractional-order multiagent systems. Firstly, considering the
distributed coordination control with constant time delay,
we obtain sufficient delay-independent criteria to achieve the
consensus of fractional-order systems by constructing ap-
propriate Lyapunov matrix inequalities. Secondly, the the-
oretical results are extended to time-varying delay case and
the corresponding delay-independent consensus criterion is
also obtained. In addition, the Lyapunov–Krasovskii func-
tion candidates for the fractional-order system with Caputo
derivative are constructed properly.

,e rest of this paper is organized as follows: In Section
2, preliminary knowledge about graph theory and fractional
calculus are given and then the consensus of fractional-order
multiagent systems is described briefly in Section 3. In
Section 4, we propose sufficient consensus criteria to ensure
that the consensus of fractional-order systems is achieved in
the case of containing constant or time-varying delay.
Numerical examples are given to illustrate the effectiveness
of the theoretical results in Section 5. Finally, in Section 6,
some concluding remarks are drawn.

2. Preliminaries

In this section, some preliminary knowledge about the
concepts of algebraic graph theory and fractional calculus
are introduced. Meanwhile, the relevant important as-
sumption is presented.

2.1. Graph)eory. A digraph representsG � (V,E,A), the
network topology, among agents, in which
V � (v1, v2, . . . , vN), E⊆V × V, and A � (aij)N×N stand
for the node set of agents, edge set of joined agents, and
weighted adjacency matrix of G, respectively. If there is a
directed edge from node j to i, then (j, i) ∈ E, and we note
agent j is a input neighbor of agent i with aij > 0 and output
neighbor of agent i with aji > 0. In other words, the infor-
mation can be transformed from agent j to agent i; oth-
erwise, aij � 0. ,e input degree matrix is
D � diag d1, d2, . . . , dN􏼈 􏼉 and di � 􏽐

N
j�1,j≠ i aij; the Laplacian

matrix L of the weighted digraph G is defined as
L � (lij) ∈ RN×N � D − A. Let D � diag 􏽢d1,

􏽢d2, . . . , 􏽣dN􏽮 􏽯 be
the leader adjacency matrix of the union graph G � G∪ 0;
then, we can denote L � L + D � (lij)N×N.

Assumption 1. A directed graph contains a directed span-
ning tree if there exists a leader node 0, such that it has
directed paths to all other following nodes in G.

Assumption 2. ,e matrix pair (A, B) is stabilizable.

2.2. Fractional Calculus. ,e Riemann–Liouville and the
Caputo fractional-order derivatives are two commonly used
definitions. ,e autonomous fractional-order systems
modeled with Caputo derivative could be converted to the
similar initial value problem (IVP) and could also have
definite physical meaning. Hence, we will use the fractional-
order derivative with Caputo definition in this paper.

,e Caputo fractional-order derivative [33] is defined as

C
0 D

α
t f(t) �

1
Γ(n − α)

􏽚
t

0

f
(n)

(τ)

(t − τ)
α− n+1 dτ. (1)

where n is the integer satisfying n − 1< α≤ n and Γ(z) is the
Gamma function satisfying Γ(z + 1) � zΓ(z) for z> 0. In
this paper, we consider the case of 0< α≤ 1. Similarly, the
definition of fractional-order integral [33] is

0I
α
t f(t) �

1
Γ(α)

􏽚
t

0

f(τ)

(t − τ)
1− α dτ, (2)

and the following formula C
0 Dα

t (0I
α
t f(t)) � f(t) holds. As

the Caputo fractional-order derivative β is close to 1, the
property limβ⟶1− [C

0 D
β
t f(t)] � _f(t) holds if f(t) is differ-

entiable [32].

Lemma 1 (see [31]). Let x(t) ∈ Rn be a vector of differen-
tiable function.)en, there exists some t0 > 0 such that for any
t≥ t0, the following inequality holds:

1
2

·
C
0 D

α
t x

T
(t)Px(t)􏼐 􏼑≤ x

T
(t)P

C
0 D

α
t x(t), (3)

where P ∈ Rn×n is a symmetric and positive definite or
semidefinite matrix.

Lemma 2 (Schur complement [34]). If T1, T2, and T3 are
matrices and T3 > 0, then

T1 T
T
2

T2 − T3

⎛⎝ ⎞⎠< 0, ⟺T1 + T
T
2 T

− 1
3 T2 < 0. (4)

3. Problem Statement

In this section, we will consider the general fractional-order
nonlinear multiagent systems containing N following agents
over the directed network topology; the dynamics of the i th
agent is

C
0 D

α
t xi(t) � Axi(t) + f t, xi(t)( 􏼁 + Bui(t), (5)

i � 1, 2, . . . , N. Here, xi(t) ∈ Rn, f(t, xi(t)) ∈ Rn, and
ui(t) ∈ Rm denote the state, nonlinear factor, and control
input of agent i, respectively. A ∈ Rn×n and B ∈ Rn×m are
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constant matrices. ,e leader agent indexed by 0 has
dynamics

C
0 D

α
t x0(t) � Ax0(t) + f t, x0(t)( 􏼁. (6)

For simplicity, we suppose the nonlinear function
f(t, xi(t)) is continuous and satisfies the Lipschitz

condition; i.e., for a given constant ρ> 0,
‖f(t, xi(t)) − f(t, x0(t))‖≤ ρ‖xi(t) − x0(t)‖.

Considering the complex communication environment,
time-delay-induced blocking or delay is unavoidable. In
order to realize the leader-following consensus of systems
(5)-(6), we propose the following distributed control pro-
tocol with time delay:

ui(t) � − K 􏽘
N

j�1
aij xi(t − τ) − xj(t − τ)􏼐 􏼑 − K 􏽢di xi(t − τ) − x0(t − τ)( 􏼁, (7)

where K is the control gain matrix to be designed later. If
agent i is connected to the leader, 􏽢di � 1; otherwise, 􏽢di � 0.

Definition 1. ,e leader-following consensus of systems (5)-
(6) is said to be achieved, if the states of agents satisfy

lim
t⟶∞

xi(t) − x0(t)
����

����⟶ 0, i � 1, 2, . . . , N, (8)

for any initial condition.
,e aim of this paper is to discuss the feasible consensus

conditions to the system. ,e measurement error between
agent i and the leader is defined as εi(t) � xi(t) − x0(t);
multiagent systems (5)-(6) controlled by (7) can be rewritten
as

C
0 D

α
t εi(t) � Aεi(t) − BK 􏽘

N

j�1
aij εi(t − τ) − εj(t − τ)􏼐 􏼑

− BK 􏽢diεi(t − τ) + f t, xi(t)( 􏼁 − f t, x0(t)( 􏼁.

(9)

By using the Kronecker product, the vector form of (9) is
expressed as

C
0 D

α
t ε(t) � IN ⊗A( 􏼁ε(t) − (L⊗BK)ε(t − τ) + F(t), (10)

where ε(t) � [εT
1 (t), εT

2 (t), . . . , εT
N(t)]T and F(t) � [f(t, x

1(t)) − f(t, x0 (t)), . . . , f(t, xN(t)) − f(t, x0(t))]T. ,e
leader-following consensus of systems (5)-(6) is equivalent
to the corresponding Lyapunov stability problem of system
(10).

4. Main Results

Now, we will analyze the consensus problem of systems (5)-
(6) by adopting the distributed control containing time

delay. Considering both case of constant and time-varying
delay, we will design the suitable distributed controllers and
give sufficient conditions to ensure the consensus of the
system, respectively.

4.1. Constant Time Delay

Theorem 1. Suppose that Assumptions 1 and 2 hold and
there exist symmetric, positive definite matrices P and Q and
positive constants ϵ1 and ϵ2 such that the following in-
equalities hold:

A
T
P + PA + Q + ϵ1λmax2(L)I +

ρ2

ϵ2
I + ϵ2P

2 < 0, (11)

λmax2 PBB
T
P􏼐 􏼑

ϵ1
I − Q< 0. (12)

)en, the distributed controller designed in (7) with the
control gain K � BTP ensures that the leader-follower con-
sensus of systems (5)-(6) can be reached asymptotically.

Proof. Consider a Lyapunov–Krasovskii function candidate
defined as

V(t)�0I
1− α
t εT

(t)Pε(t) + 􏽚
t

t− τ
εT

(s) IN ⊗Q( 􏼁ε(s)ds, (13)

based on the property of Caputo fractional-order derivative;
the derivative of V(t) can be rewritten as

_V(t) � lim
β⟶1−

C
0 D

β
t􏽨 􏽩0I

1− α
t εT

(t)Pε(t) + lim
β⟶1−

C
0 D

β
t􏽨 􏽩 􏽚

t

t− τ
εT

(s) IN ⊗Q( 􏼁ε(s)ds

�
C
0 D

α
t ε

T
(t)Pε(t) + lim

β⟶1−

C
0 D

β
t􏽨 􏽩 􏽚

t

t− τ
εT

(s) IN ⊗Q( 􏼁ε(s)ds.

(14)
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Lemma 1 can be used to calculate the upper bound of the
derivative of V(t) along the trajectory of system (10); then,
we obtain

_V(t)≤ 2εT
(t)P

C
0 D

α
t ε(t) + εT

(t) IN ⊗Q( 􏼁ε(t) − εT
(t − τ) IN ⊗Q( 􏼁ε(t − τ)

≤ 2εT
(t) IN ⊗P( 􏼁 IN ⊗Aε(t) − L⊗BKε(t − τ) + F(t)􏼂 􏼃 + εT

(t) IN ⊗Q( 􏼁ε(t)

− εT
(t − τ) IN ⊗Q( 􏼁ε(t − τ)

≤ εT
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑ε(t) + 2εT

(t) IN ⊗P( 􏼁F(t) + εT
(t) IN ⊗Q( 􏼁ε(t)

− 2εT
(t) L⊗PBB

T
P􏼐 􏼑ε(t − τ) − εT

(t − τ) IN ⊗Q( 􏼁ε(t − τ).

(15)

By using the inequality 2xTy≤ axTx + (1/a)yTy for any
a> 0, it has

− 2εT
(t) L⊗PBB

T
P􏼐 􏼑ε(t − τ)≤ ϵ1λmax2(L)εT

(t)ε(t) +
λmax2 PBB

T
P􏼐 􏼑

ε1
εT

(t − τ)ε(t − τ). (16)

Similarly, with the Lipschitz condition,

2εT
(t) IN ⊗P( 􏼁F(t)≤ ϵ2ε

T
(t)ε(t) +

ρ2

ε2
εT

(t)P
2ε(t). (17)

Hence, we deduce that

_V(t)≤ εT
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑ε(t) + ϵ1λmax2(L)εT

(t)ε(t) + ϵ2ε
T
(t)ε(t) +

ρ2

ϵ2
εT

(t)P
2ε(t)

+ εT
(t) IN ⊗Q( 􏼁ε(t) +

λmax2 PBB
T
P􏼐 􏼑

ϵ1
εT

(t − τ)ε(t − τ) − εT
(t − τ) IN ⊗Q( 􏼁ε(t − τ)

≤ εT
(t) A

T
P + PA + Q + ϵ1λmax2(L)I + ϵ2I +

ρ2

ϵ2
P
2

􏼠 􏼡ε(t)

+ εT
(t − τ)

λmax2 PBB
T
P􏼐 􏼑

ϵ1
I − Q⎛⎝ ⎞⎠ε(t − τ).

(18)

,erefore, _V(t) is negative definite, which implies that
the consensus of systems (5)-(6) is reached.

To check whether the algebraic Riccati inequality (11)
can be solved, it suffices to determine a positive definite
solution of an associated Lyapunov matrix inequality. □

Lemma 3. Assume that P is a positive definite matrix sat-
isfying the following Lyapunov inequality:

A
T
P + PA + 2Q + ϵ1λmax2(L)I + ϵ2I< 0, (19)

where ϵ1 and ϵ2 be positive scalars.)en, P is also a solution of
the algebraic Riccati inequality (11) provided that

ρ2

ϵ2
P
2

− Q< 0. (20)

Proof. From (19) and (20), for all ε ∈ Rn, we conclude that

εT
A

T
P + PA + Q + ϵ1λmax2(L)I + ϵ2I +

ρ2

ϵ2
P
2

􏼠 􏼡ε

≤
ρ2

ϵ2
P
2

− Q􏼠 􏼡‖ε‖2 < 0,

(21)

is negative due to condition (20). Hence, inequality (11)
holds.
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According to the Schur complement theorem, in-
equalities (11) and (12) can be rewritten as the following
form. □

Theorem 2. Suppose that Assumptions 1 and 2 hold and
there exist symmetric, positive definite matrices P and Q and
positive constants ϵ1 and ϵ2 such that the following LMI holds:

A
T
P + PA + Q + ϵ1λ

2
max(L) + ϵ2􏼐 􏼑I

ρ
��ϵ2

√ P 0

ρ
��ϵ2

√ P − I 0

0 0 Q −
λ2max PBB

T
P􏼐 􏼑

ϵ1
I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0. (22)

)en, the leader-follower consensus of systems (5)-(6) can be
reached asymptotically.

Proof. From the proof of ,eorem 1 and Lemma 2 (Schur
complement), it implies that the consensus of systems (5)-
(6) is realized. □

4.2. Effects of Time-Varying Delay. Furthermore, we will
extend the corresponding distributed control protocol (7)
with time-varying delay to investigate the leader-following
consensus problem of systems (5)-(6):

ui(t) � − K 􏽘
N

j�1
aij xi(t − τ(t)) − txjn(t − τ(t))􏼐 􏼑

− K 􏽢di xi(t − τ(t)) − x0(t − τ(t))( 􏼁.

(23)

Assumption 3. ,e time-varying delay satisfies the following
conditions: (i) ,ere exists τ1 > 0 such that 0≤ τ(t)≤ τ1. (ii)
,ere exists τ2 > 0 such that _τ(t)≤ 1 − τ2.

Theorem 3. Suppose that Assumptions 1–3 are fulfilled and
that there exist positive constants ϵ1 and ϵ2 and symmetric,
positive definite matrices P and Q such that the following LMI
holds:

A
T
P + PA + Q + ϵ1λ

2
max(L) + ϵ2􏼐 􏼑I

ρ
��ϵ2

√ P 0

ρ
��ϵ2

√ P − I 0

0 0 τ2Q −
λ2max PBB

T
P􏼐 􏼑

ϵ1
I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0. (24)
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)en, the distributed controller designed in (23) with the
control gain K � BTP ensures that the leader-follower con-
sensus of systems (5)-(6) can be reached asymptotically.

Proof. We consider the Lyapunov–Krasovskii function
candidate

V(t) � 0I
1− α
t εT

(t)Pε(t) + 􏽚
t

t− τ(t)
εT

(s) IN ⊗Q( 􏼁ε(s)ds.

(25)

Taking the derivative of (25) yields the estimate

_V(t) � lim
β⟶1−

C
0 D

β
t􏽨 􏽩0I

1− α
t εT

(t)Pε(t) + lim
β⟶1−

C
0 D

β
t􏽨 􏽩 􏽚

t

t− τ(t)
εT

(s) IN ⊗Q( 􏼁ε(s)ds

�
C
0 D

α
t ε

T
(t)Pε(t) + lim

β⟶1−

C
0 D

β
t􏽨 􏽩 􏽚

t

t− τ(t)
εT

(s) IN ⊗Q( 􏼁ε(s)ds

≤ 2εT
(t)P

C
0 D

α
t ε(t) + εT

(t) IN ⊗Q( 􏼁ε(t) − (1 − _τ(t))εT
(t − τ(t)) IN ⊗Q( 􏼁ε(t − τ(t)).

(26)

By,eorem 3, the derivative of V(t) along the trajectory
of system (10) is

_V(t)≤ εT
(t) IN ⊗ A

T
P + PA􏼐 􏼑􏼐 􏼑ε(t) + 2εT

(t) IN ⊗P( 􏼁F(t) + εT
(t) IN ⊗Q( 􏼁ε(t)

− 2εT
(t) L⊗PBB

T
P􏼐 􏼑ε(t − τ(t)) − τ2ε

T
(t − τ(t)) IN ⊗Q( 􏼁ε(t − τ(t)).

(27)

Similar to the proof of ,eorem 1, one has

_V(t)≤ εT
(t) A

T
P + PA + Q + ϵ1λmax2(L)I + ϵ2I +

ρ2

ϵ2
P
2

􏼠 􏼡ε(t)

+ εT
(t − τ(t))

λmax2 PBB
T
P􏼐 􏼑

ϵ1
I − τ2Q⎛⎝ ⎞⎠ε(t − τ(t)).

(28)

From (28), _V(t) is negative definite; hence, it implies that
the consensus of systems (5)-(6) is reached. □

5. Numerical Examples

In the simulation, we will consider the networkedmultiagent
system composed of a leader and four followers, as shown in
Figure 1.

,e system matrices are given as

A �
9 − 15

18 − 20
􏼠 􏼡,

B �
1

0
􏼠 􏼡.

(29)

A simple checking shows that (A, B) is stable. According
to the graph theory, the Laplacian L and the matrix D are
written as

L �

2 − 1 0 − 1

− 1 1 0 0

0 0 0 0

− 1 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

D �

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(30)

,e maximum nonzero eigenvalue of L � L + D, noted
as λmax(L) � 3.7321. ,e nonlinear function
f(xi(t)) � k2xi1
(t) + 0.5∗ (k1 − k2)(|xi1(t) + 1| − |xi1(t) − 1|), where
k1 � − 1.31, k2 � 0.75, and chosen ρ � 1.31 satisfies the
Lipschitz condition [35]. ,e fractional order of systems (5)-
(6) is α � 0.9.

Case 1. Constant time delay.
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Applying ,eorem 1 and setting τ � 0.8, ϵ1 � 0.1, and
ϵ2 � 1, the corresponding feasible solutions of (11)-(12) are
found to be

P �
3.2835 − 2.7690

− 2.7690 3.0576
􏼠 􏼡,

Q �
4.1417 − 3.5605

− 3.5605 4.4048
􏼠 􏼡.

(31)

Obviously, P and Q are symmetric, positive definite
matrices. Also, they are satisfied to the LMI of ,eorem 2.
Substituting K � BTP to system (10), the measurement error
εi(t) between agent i and the leader will converge to 0 as
shown in Figures 2(a) and 2(b). It implies the consensus of
systems (5)-(6) will be achieved.

Case 2. Time-varying delay.
Given τ(t) � 0.8|sin t|, the parameters can be chosen as

τ1 � 0.8 and τ2 � 0.2 according to Assumption 3. Applying

,eorem 3 and setting ϵ1 � 0.1 and ϵ2 � 1, the corre-
sponding feasible solutions of (24) are found to be

P �
2.9062 − 2.4268

− 2.4268 2.6575
􏼠 􏼡,

Q �
4.8981 − 4.7854

− 4.7854 5.8650
􏼠 􏼡.

(32)

By straightforward checking, P and Q are symmetric,
positive definite matrices. ,e measurement error εi(t)

between agent i and the leader will converge to 0 as shown in
Figures 3(a) and 3(b). It implies the consensus of systems
(5)-(6) will be achieved. ,e numerical simulations illustrate
that if the fixed or variable time-delay could be estimated,
then we could choose suitable parameters of the controller to
eliminate the error between any agent and the leader fastly
and the leader-follower consensus of systems (5)-(6) can be
reached asymptotically.

Agent 2 Agent 4

Agent 3

Agent 0

Agent 1

Figure 1: Topology structure of the multiagent systems.
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Figure 2: (a) ,e trajectory of measurement error εi1; (b) the trajectory of measurement error εi2.
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6. Conclusions

,is paper presents three main theorems to achieve the
consensus of fractional-order multiagent systems containing
input time delay. By using the graph theory, constructing the
Lyapunov matrix inequality, and combining the stability of
fractional-order time-delay systems, sufficient delay-inde-
pendent consensus conditions are obtained. Numerical
examples show that the proposed theorems and relevant
calculation formula work efficiently and accurately. In the
future work, we will consider extending the current work to
the general vector systems with time-varying topologies.
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