
Research Article
Predicting Building Energy Consumption with a New Grey Model

Yan Zhang ,1 Huiping Wang ,2 and Yi Wang2

1School of Civil Engineering and Architecture, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
2Western Collaborative Innovation Research Center for Energy Economy and Regional Development,
Xi’an University of Finance and Economics, Xi’an 710100, Shaanxi, China

Correspondence should be addressed to Yan Zhang; 3285323035@qq.com

Received 23 September 2021; Revised 28 October 2021; Accepted 29 October 2021; Published 15 November 2021

Academic Editor: Niansheng Tang

Copyright © 2021 Yan Zhang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the existing grey prediction model, this paper proposes a new grey prediction model (the fractional discrete grey model,
FDGM (1, 1, tα)), introduces the modeling mechanism and characteristics of the FDGM (1, 1, tα), and uses three groups of data to
verify its effectiveness compared with that of other grey models. +is paper forecasts the building energy consumption in China
over the next five years based on the idea of metabolism. +e results show that the FDGM (1, 1, tα) can be transformed into other
greymodels through parameter setting changes, so the newmodel has strong adaptability.+e FDGM (1, 1, tα) is more reliable and
effective than the other six compared grey models. From 2018 to 2022, the total energy consumption levels of civil buildings, urban
civil buildings, and civil buildings specifically in Beijing will exhibit steady upward trends, with an average annual growth rate of
2.61%, 1.92%, and 0.78%, respectively.

1. Introduction

With the development of the economy and the explosive
growth of the global population, the energy consumption
levels of countries all over the world are increasing each year.
As an important industry in the national economy, the
construction industry accounts for a very large proportion of
the total energy consumption. According to the report of the
International Energy Agency (IEA), in 2017, the total energy
consumption of the construction industry accounted for
36% of the world’s final energy consumption, making it the
industry with the largest proportion of energy consumption
in the world. In developed countries, this proportion is even
higher. For example, construction energy consumption
accounts for approximately 39% of the total energy con-
sumption in the United States and 40% of that in Europe [1].
In addition, the construction industry is also one of the main
players in global carbon emissions, and the total direct and
indirect carbon dioxide emissions due to construction ac-
count for 40% of all emissions [2]. As the world’s largest
carbon emitter and the second-largest economy [3], China’s
building energy consumption has increased rapidly in recent
decades.+e average annual growth rate is 5.6%, which is 2.9

times the world average. It is expected that energy con-
sumption will exceed 1089 million tons of coal equivalent
(Mtce) in 2020 [1]. At present, China’s building energy
consumption accounts for 16.2% of the total global building
energy consumption, second only to the United States and
ranking second in the world. In China, building energy
consumption has been juxtaposed with industrial and
transportation energy consumption, which have become the
three major energy consumers in China. According to the
China Building Energy Efficiency Development Report
(2020), from 2009 to 2017, the total energy consumption of
civil buildings in China increased from 568 million tons of
coal equivalent (TCE) to 882 million TCE, with an average
growth rate of 5.7%. +e proportion of the total energy
consumed by civil buildings out of the total terminal energy
consumption of the entire society increased from 17.63% to
20.18%. Among the total energy consumption of civil
buildings, the proportions of urban civil building energy
consumption and rural civil building energy consumption
are basically unchanged, with both between 20% and 22%.
+e proportion of energy consumption by public buildings
has increased yearly from 17.6% to 27.0%.+e proportion of
heating energy consumption has decreased annually from
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39.3% to 29.8%. According to current forecasts, if no effective
measures are taken, the energy consumption of building
refrigeration alone will more than double by 2030. +e main
reason for the rapid growth of building energy consumption
in China is the significant increase in the urbanization rate in
recent decades. According to statistics, China’s urbanization
rate increased from 36.2% in 2000 to 58.5% in 2017. Si-
multaneously, the rise of large office buildings and urban
housing is an important reason for the rapid increase in
building energy consumption [4]. +e Chinese government
promises to achieve a carbon peak by 2030 and carbon
neutrality by 2060. To successfully achieve this goal, it is
imperative to reduce building energy consumption [5].
+erefore, accurately predicting China’s building energy
consumption is of great significance for energy management,
coordination between building energy systems and power
grids, carbon emission reduction, and so on.

Due to the complexity of building energy systems, it is an
arduous task to accurately predict building energy con-
sumption. In recent decades, relevant researchers have
proposed many building energy consumption prediction
methods, including engineering methods, statistical
methods, and artificial intelligence methods [6]. +ey are
briefly introduced as follows.

First, an engineering method mainly evaluates and
simulates changes in internal thermal power consumption
and the operation process of internal energy-consuming
equipment and then analyzes the energy consumption
characteristics inherent in the operation process of the
examined building. In different countries and regions,
according to their own architectural characteristics, a variety
of different simulation software programs have been pro-
duced. Among them, Energy Plus and the Transient System
Simulation Tool (TRNSYS) in the United States, Esp-r in the
UK, HASP in Japan, and CHEC and DeST in China are
widely used [7–9]. +e above simulation programs have
been commonly used in architectural design, environmental
control, and so on. However, the above software has many
shortcomings, such as slow and complex modeling pro-
cesses, low simulation efficiency, and strict requirements
regarding the amount of input information.

Second, statistical methods mainly include the multiple
linear regression method, autoregressive moving average
model (ARMA), and autoregressive integrated moving av-
erage model (ARIMA). When modeling with the multiple
linear regression method, the influencing factors of building
energy consumption should be screened first, and the in-
fluence degrees of different influencing factors on the
resulting building energy consumption values should be
calculated. +en, the factors with high degrees of influence
should be selected as the input indices of the model [10–12].
For example, Amber et al. used a multiple linear regression
model to predict the daily power consumption levels of
buildings [13]. Xu et al. used multiple linear regression to
study the impacts of residents’ characteristic factors on
residential power consumption [14]. In addition to linear
regression analysis, the ARMA model and ARIMA model
based on time series modeling, the matrix-based long-term
prediction method, and statistical methods combined with

building simulation software can also be used to predict
building energy consumption. Statistical methods have good
fitting effects when used for building energy consumption
prediction, and these methods have been widely utilized
[15, 16].

+ird, with the development of computer technology,
artificial intelligence methods have been widely used because
of their simple modeling approaches and high prediction
accuracy rates. Common artificial intelligence methods in-
clude artificial neural networks (ANNs) [17, 18], decision
trees (DTs) [19, 20], clustering [21], and support vector
machines (SVMs) [22, 23]. Among them, SVMs and ANNs
are the most widely used and effective methods [24]. For
example, Paudel et al. combined an SVM with a data se-
lection method and applied it to predict the energy con-
sumption levels of low-energy buildings [22]. Shao et al.
studied and analyzed hotel building energy consumption
with an SVM [25]. Mena et al. proposed a neural network
model for short-term energy consumption prediction re-
garding the power demand of green buildings [26]. Biswas
et al. proposed a neural network model based on the Lev-
enberg–Marquardt and output weight optimization-Newton
algorithms and applied it to building energy consumption
prediction [17]. Naji et al. trained a neural network model
with an extreme learning machine (ELM) and applied it to
building energy consumption estimation. In recent years,
hybrid models based on artificial intelligence have been
widely used in the field of building energy consumption
prediction [18]. For example, Chaturvedi et al. combined an
adaptive genetic algorithm with an ANN to overcome the
limitations of the backpropagation training method and
applied this approach to short-term load forecasting for
building power systems [27]. Li et al. improved the particle
swarm optimization (PSO) algorithm and proposed an
improved PSO- (IPSO-) based neural network model for
building power consumption prediction [28]. Others have
proposed methods that combine data-driven machine
learning models and statistical models [29, 30]. With the
rapid development of deep learning technology, deep neural
networks have also been introduced into the field of building
energy consumption prediction in recent years [31].

However, the above prediction methods are based on
large data samples. When the input data information is
incomplete, errors and uncertainties may occur [32, 33]. As
an important prediction model, the grey model was first
proposed by Professor Deng. A grey differential prediction
model is established through a small amount of incomplete
information to describe a development law of interest more
accurately [34]. +e grey prediction model has attracted
much attention because of its convenience, simple modeling
process, limited data requirement, and high accuracy [35].
Compared with machine learning and statistical prediction
methods based on big data samples, the grey prediction
method can realize simulation and prediction for small data;
that is, only four data points are required to establish a grey
prediction model.+is type of model has great advantages in
terms of solving uncertainty problems with small sample
sizes and has been widely used in the fields of energy, en-
vironment, engineering, and social management [35–40].
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In order to improve the modeling effect of the grey
prediction model and build a better high-precision model,
scholars have optimized the model parameters from dif-
ferent angles. For example, discretization of the grey model
was considered to be an important way to improve the
prediction accuracy of the model [41, 42]. Selecting the
appropriate ash action could also improve the prediction
accuracy of the grey model [43–45]. Since the fractional-
order accumulation idea was introduced into the grey
prediction model, the prediction accuracy of the grey model
has been greatly improved [46, 47]. Other scholars have
changed the form of the whitening equation in the grey
model and established the grey Bernoulli model GBM (1, 1)
and the nonlinear grey Bernoulli model NGBM (1, 1) [48].
On this basis, some scholars have improved the NGBM (1, 1)
model from different angles. For example, Wu et al. in-
troduced the fractional-order accumulation operator into
NGBM (1, 1) model and established the FANGBM (1, 1)
model [35]. Xu et al. improved the background value of the
NGBM (1, 1) model and proposed an optimized grey
nonlinear prediction model ONGBM (1, 1) through a
simulated annealing algorithm [49].

+e research of the above scholars has promoted the
application and development of grey model to a certain
extent. However, it can be found that although the existing
research optimizes the grey model from the structure or
parameters, each optimization method only improves the
performance of the model to a certain extent, and the ac-
curacy is still not high enough. In addition, most of the above
studies predict building energy consumption from the
microperspective, and few scholars predict the future
building energy consumption of a country or region at the
macrolevel. +erefore, based on the existing grey prediction
model, this paper intends to introduce the concept of a
fractional accumulation operator, establish a new grey
prediction model (the fractional discrete grey model, FDGM
(1, 1, tα)), introduce the idea of metabolism, and predict
building energy consumption in China over the next five
years. +e main contributions of this paper are as follows:
first, based on the advantages of existing grey prediction
models, a new model, FDGM (1, 1, tα), is proposed. +e new
model can be transformed into other grey prediction models
by changing its parameters. Second, the newmodel is used to
fit three sets of data and is compared with the other six grey

models, demonstrating the excellent fitting effect of the new
model. +ird, the FDGM (1, 1, tα) model is used to predict
building energy consumption in China over the next five
years.

+is paper is organized as follows. Section 2 introduces
the basic knowledge of the FDGM (1, 1, tα) model, mainly
including the modeling mechanism, model characteristics,
and solution method. In Section 3, the feasibility and ef-
fectiveness of the model are verified via three cases. Section 4
forecasts the building energy consumption in China over the
next five years. Section 5 is the conclusion of this paper.

2. The Fractional Discrete Grey Model FDGM
(1, 1, tα)

2.1. Construction of the FDGM (1, 1, tα) Model. Referring to
Wu et al. [46], the definitions of the r-th fractional-order
accumulation operator (r-FOA) and the r-th inverse frac-
tional-order accumulation operator (r-IFOA) are given as
follows.

Definition 1. Assume X(0) � x(0)(1), x(0)(2), . . . , x(0)(n)􏼈 􏼉,

r ∈ R+, is the original time series, and its r-th fractional-
order accumulation (FOA) sequence is
X(r) � x(r)(1), x(r)(2), . . . , x(r)(n)􏼈 􏼉, where

x
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Definition 2. Assume X(0) � x(0)(1), x(0)(2), . . . , x(0)(n)􏼈 􏼉,
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When r � 1, the IFOA is the first inverse fractional-order
accumulation operator (1-IFOA), and x(− 1)(k) � x(0)(k)

−x(0)(k − 1).

Definition 3. Assume that X(0) � x(0)(1), x(0)(2), . . . ,􏼈

x(0)(n)}, r ∈ R+, is an original sequence, the r − th order
accumulation operator is X(r) � x(r)(1), x(r)(2),􏼈

. . . , x(r)(n)}, and the r − th order inverse accumulation
operator is X(− r) � x(− r)(1), x(− r)(2), . . . , x(− r)(n)􏼈 􏼉; then,
the operators have the following relations:

X
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􏼐 􏼑
(r)

. (3)

Referring to the definition of GM (1, 1, tα) the whitening
equation of the FDGM (1, 1, tα) model is

􏽢x
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+ c, t � 2, 3, . . . , n. (4)

Given 􏽢x(r)(1) � x(r)(1), the solution process of equation
(4) is as follows:
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When t � 3, we have
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Combining equations (5) and (6), we can obtain
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By repeating the above calculation process, the following
conclusions can be drawn:
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Based on Definition 3, 􏽢x(0)(t) is
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Given the original sequence X(0) � x(0)(1), x(0)(2),􏼈

. . . , x(0)(n)}, r ∈ R+, the least-squares criterion of the
FDGM (1, 1, tα) model can be described as the following
unconstrained optimization problem:
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+e solution of this optimization problem is
[􏽢a, 􏽢b, 􏽢c]T � (BTB)− 1BTY, where
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(11)

To minimize the error between the original data and
predicted data, the optimal values of the parameters r, α
must be determined:
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r,α
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(12)

Because equation (12) is highly complex, it would have
been a difficult task to develop analytic solutions for pa-
rameters r, α. Here, the grey wolf optimization (GWO) is
applied to find the values of r, α. Furthermore, the flowchart
of the FDGM (1, 1, tα) model is shown in Figure 1.

2.2. Special Cases of FDGM (1, 1, tα) Model. When the pa-
rameters r, α of the model change, the model is transformed
into other grey models.

Scenario 1. r � 1, α � 0.
When r � 1, α � 0, the FDGM (1, 1, tα) model can be

converted to the DGM (1, 1) model.
Assume that Y, B are as mentioned at the end of the

current section and that [􏽢a, 􏽢b, 􏽢c]T � (BTB)− 1BTY.
+e time response function of the DGM (1, 1) model

x(1)(t) � ax(1)(t − 1) + b is
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􏽢x
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Additionally, the reduction value is
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(1)

(k), k � 1, 2, . . . , n. (14)

Scenario 2. r � 0, α � 0.
When r � 0, α � 0, the FDGM (1, 1, tα) model can be

converted to the autoregressive grey model (ARGM (1, 1)).
Assume that Y, B are as mentioned at the end of the

current section and that [􏽢a, 􏽢b, 􏽢c]T � (BTB)− 1BTY.
+e time response function of the ARGM (1, 1) model

x(0)(t) � ax(0)(t − 1) + b is
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x
(0)

(1) −
b

1− a
􏼠 􏼡 +

b

1− a
, k � 0,1,2, . . . ,n.

(15)

2.3. Metabolic Idea. Introducing the idea of metabolism can
make the results of the grey prediction model more accurate.
+e metabolic mechanism is as follows:

Step 1: build a model with the original input sequence
and predict the data for two periods
Step 2: delete the first two data points of the original
sequence, add the two predicted periods of data, es-
tablish the model, and predict the next two periods of
data
Step 3: repeat step 2 to obtain all the predicted values

2.4. Error Metric. Six error metrics are used in the paper to
test the effectiveness of the proposed grey prediction model,
as shown in Table 1.

3. Validation of FDGM (1, 1, tα)

In this section, three examples involving the total energy
consumption of civil buildings, urban civil buildings, and
civil buildings specifically in Beijing are used to check the
reliability of the new model. +e obtained results com-
pared with the prediction results of the GM (1, 1), SIGM
(1, 1), DGM (1, 1), NGM (1, 1), NDGM (1, 1), and
FANDGM (1, 1) models. Among them, the original data
acquired from a 2009 to 2015 time series are used to
establish the prediction models, and the associated data

Parameters initialization of GWO

Initialize the best, the second, the third agent

Update the position of each agent

Compute the fiteness (MAPE) of all agent

Update the best, the second, the third agent

Current iteration
number<Max_iteration

Return the best agent

Calculate x(r) (t), tα and matrices B,Y with
the parameters r, α

Obtain system parameters a,b,c

Build the FDGM (1,1,tα) model, and
compute the the restored values and errors

Repeat the above steps to evaluate the
simulation and forecasting values of the

building energy consumption

Collect the original data sequence X(0) of the
building energy consumption

YES

NO

Figure 1: +e flowchart of the FDGM (1, 1, tα) model.

Table 1: Error metrics of the prediction model.

Name Abbreviation Formulation
Mean absolute percentage error MAPE 1/n 􏽐

n
k�1 |x(0)(k) − 􏽢x(0)(k)/x(0)(k)| × 100

Root mean squares percentage error RMSPE
����������������������������
1/n 􏽐

n
k�1 x(0)(k) − x(0)(k)/x(0)(k)

􏽱
× 100

Mean absolute error MAE 1/n 􏽐
n
k�1 |x(0)(k) − x(0)(k)|

Mean squares error MSE 1/n 􏽐
n
k�1 (x(0)(k) − x(0)(k))2

Index of agreement IA 1 − 􏽐
n
k�1 (􏽢x(0)(k) − x(0)(k))2/􏽐

n
k�1 (|􏽢x(0)(k) − x| + |x(0)(k) − x|)2

Correlation coefficient R R � cov(X
⌢ (0)

, X(0))/
���������

Var(X
⌢ (0)

)

􏽱
���������
Var(X(0))

􏽰
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Table 3: Error metrics of total energy consumption of civil buildings.

GM SIGM DGM NGM NDGM FANDGM FDGM
Fitting
MAPE 2.3236 0.9665 2.3200 0.9860 0.9587 0.3746 0.3731
RMSPE 2.8450 1.1011 2.8507 1.1173 1.0896 0.5332 0.5207
MAE 0.1563 0.0689 0.1559 0.0699 0.0688 0.0292 0.0291
MSE 0.0331 0.0061 0.0331 0.0061 0.0061 0.0018 0.0017
IA 0.9846 0.9973 0.9846 0.9973 0.9973 0.9992 0.9992
R 0.9704 0.9946 0.9704 0.9946 0.9946 0.9985 0.9986
Prediction
MAPE 4.9614 3.3467 4.9619 3.3776 3.5560 2.3802 2.3038
RMSPE 5.0663 3.5235 5.0658 3.5528 3.7332 2.4754 2.3991
MAE 0.4309 0.2914 0.4309 0.2940 0.3095 0.2070 0.2004
MSE 0.1951 0.0951 0.1951 0.0967 0.1067 0.0468 0.0440
IA 0.5488 0.5630 0.5487 0.5608 0.5445 0.6953 0.7046
R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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from 2016 to 2017 are used to check the reliability of the
prediction models.

3.1. Total Energy Consumption of Civil Buildings.
According to the data of the China Building Energy Efficiency
Development Report, in 2017, the total energy consumption
of civil buildings in China reached 882 million TCE, ac-
counting for 20.18% of the total terminal energy consumption
of the entire society. From 2009 to 2017, the average annual
GDP growth rate was 7.9%, and the average annual growth
rate of energy consumption by civil buildings was 5.6%. +e
growth trend of the energy consumption of civil buildings is
basically consistent with that of the GDP in China, reflecting
the correlation between building energy consumption and the
level of economic development. +erefore, this section takes
the total energy consumption of civil buildings as an example
to test the accuracy of the proposed model and other grey
prediction models. +e relationships between the parameters
and the mean absolute precision error (MAPE) of the FDGM
(1, 1, tα) model calculated via the GWO algorithm are shown
in Figure 2, and Figure 3 shows the relationships between the
number of iterations, the model parameters, and the MAPE.

+e fitting and prediction results of each model are shown in
Figure 4 and Table 2, and the error metrics of each model are
shown in Figure 5 and Table 3. +e predicted value of the
FDGM (1, 1, tα) model is nearest to the actual value. From the
prediction values and fitting values, the six error metrics of the
FDGM (1, 1, tα) model are the best among those of the seven
prediction models. +is also shows that the FDGM (1, 1, tα)
model has higher accuracy than other grey prediction models
in predicting the total energy consumption of civil buildings.

3.2. Energy Consumption of Urban Civil Buildings.
According to the data of the China Building Energy Effi-
ciency Development Report, in 2017, the energy con-
sumption of urban civil buildings in China reached 667
million TCE, accounting for 15.26% of the total terminal
energy consumption of the entire society. From 2009 to
2017, the average annual growth rate of energy consumption
by urban civil buildings was 6%, which was slightly higher
than the growth rate of the total energy consumption of civil
buildings. +e energy consumption intensity of urban civil
buildings increased from 7.06 kgce/m2 to 8.13 kgce/m2 with
a stable growth rate, which is the embodiment of urban

Data for building the models

4

5

6

7

8

9

10

En
er

gy
 co

ns
um

pt
io

n 
of

 u
rb

an
 ci

vi
l b

ui
ld

in
gs

2010 2011 2012 2013 2014 2015 2016 20172009
Year

Raw data

GM
SIGM

FDGM (1,1,tα)
DGM
NGM
NDGM
FANDGM

Figure 8: Results of energy consumption of urban civil buildings.

Table 4: Fitting results and prediction results of energy consumption of urban civil buildings.

Year Data GM SIGM DGM NGM NDGM FANDGM FDGM
2009 4.2 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000 4.2000
2010 4.38 4.5764 4.3864 4.5795 4.3953 4.3854 4.3800 4.3800
2011 4.93 4.9011 4.9341 4.9041 4.9399 4.9346 4.9573 4.9530
2012 5.43 5.2488 5.3839 5.2517 5.3873 5.3847 5.3745 5.3814
2013 5.72 5.6213 5.7532 5.6240 5.7549 5.7538 5.7361 5.7373
2014 6.03 6.0201 6.0564 6.0226 6.0570 6.0564 6.0490 6.0466
2015 6.33 6.4472 6.3055 6.4494 6.3052 6.3044 6.3276 6.3222
2016 6.68 6.9046 6.5100 6.9066 6.5091 6.5078 6.5793 6.5718
2017 6.77 7.3945 6.6779 7.3961 6.6767 6.6745 6.8098 6.8008
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Table 5: Error metrics of energy consumption of urban civil buildings.

GM SIGM DGM NGM NDGM FANDGM FDGM
Fitting
MAPE 2.0248 0.4143 2.0088 0.4645 0.4138 0.3685 0.3441
RMSPE 2.5172 0.4881 2.5233 0.5013 0.4869 0.5051 0.4476
MAE 0.1054 0.0235 0.1044 0.0258 0.0235 0.0201 0.0189
MSE 0.0160 0.0008 0.0160 0.0008 0.0008 0.0007 0.0006
IA 0.9904 0.9996 0.9904 0.9995 0.9996 0.9996 0.9997
R 0.9814 0.9991 0.9814 0.9991 0.9991 0.9991 0.9993
Prediction
MAPE 6.2936 1.9532 6.3197 1.9682 1.9945 1.0474 1.0375
RMSPE 6.9426 2.0411 6.9651 2.0547 2.0782 1.1437 1.1897
MAE 0.4246 0.1311 0.4263 0.1321 0.1339 0.0702 0.0695
MSE 0.2202 0.0187 0.2217 0.0190 0.0194 0.0059 0.0063
IA 0.2148 0.5086 0.2141 0.5062 0.5020 0.7798 0.7651
R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 10: +e relationship between MAPE and parameters.
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Figure 11: Iterations, MAPE, and parameters of the GWO algorithm.
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living standard improvement. +e energy consumption
intensity of public buildings decreased from 19.19 kgce/m2

to 18.63 kgce/m2. +is reflects that national energy-saving
measures for public buildings have been effectively pro-
moted, and the effect of these policies is obvious. +erefore,
this section takes the energy consumption of urban civil
buildings as an example to test the accuracy of the proposed
model and other grey prediction models. +e relationships
between the parameters and MAPE of the FDGM (1, 1, tα)
model calculated via the GWO algorithm are shown in
Figure 6, and Figure 7 shows the relationships between the
number of iterations, the model parameters, and the MAPE.
+e fitting and prediction results of each model are shown in
Figure 8 and Table 4, and the error metrics of each model are
shown in Figure 9 and Table 5. +e predicted value of the
FDGM (1, 1, tα) model is nearest to the actual value. From
the prediction values and fitting values, the six error metrics
of the FDGM (1, 1, tα) model are the best among those of the
seven prediction models. +is also shows that the FDGM (1,
1, tα) model has higher accuracy than other grey prediction
models in terms of predicting the energy consumption of
civil buildings.

3.3. Energy Consumption of Civil Buildings in Beijing.
+is paper collects the energy consumption data of civil
buildings in Beijing based on provided energy balance table
data. From 2009 to 2017, the energy consumption of civil
buildings in Beijing increased from 24.6039 million TCE to
31.553 million TCE, showing an upward and slowing trend,
which may be due to rapid economic development and
population control. +erefore, this section takes the energy
consumption of civil buildings in Beijing as an example to
test the accuracy of the proposed model and other grey
prediction models. +e relationships between the parame-
ters and MAPE of the FDGM (1, 1, tα) model calculated via
the GWO algorithm are shown in Figure 10, and Figure 11
shows the relationships between the number of iterations,
the model parameters, and theMAPE of the FDGM (1, 1, tα).
+e fitting and prediction results of each model are shown in
Figure 12 and Table 6, and the error metrics of each model
are shown in Figure 13 and Table 7. +e predicted value of
the FDGM (1, 1, tα) model is nearest to the actual value.
From the prediction values and fitting values, the six error
metrics of the FDGM (1, 1, tα) model are the best among
those of the seven prediction models. +is also shows that
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Figure 12: Results of energy consumption of civil building in Beijing.

Table 6: Fitting results and prediction results of energy consumption of civil building in Beijing.

Year Data GM SIGM DGM NGM NDGM FANDGM FDGM
2009 2460.39 2460.3900 2460.3900 2460.3900 2460.3900 2460.3900 2460.3900 2460.3900
2010 2564.6 2646.4536 2572.3236 2647.1152 2578.9504 2566.9588 2564.8337 2575.0330
2011 2756.76 2724.2529 2749.5114 2724.7572 2751.2447 2753.7262 2756.7600 2756.7646
2012 2899.75 2804.3393 2860.8200 2804.6764 2860.3700 2865.5442 2866.8027 2850.2345
2013 2868.38 2886.7801 2930.7435 2886.9398 2929.4862 2932.4898 2931.4577 2919.5983
2014 2984.54 2971.6444 2974.6692 2971.6160 2973.2621 2972.5703 2970.8287 2974.1532
2015 3019.16 3059.0035 3002.2632 3058.7758 3000.9882 2996.5666 2995.9603 3019.1671
2016 3093.43 3148.9308 3019.5976 3148.4921 3018.5490 3010.9332 3012.9464 3057.4776
2017 3155.3 3241.5017 3030.4870 3240.8398 3029.6714 3019.5345 3025.1708 3090.8232
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Figure 13: Error metrics of energy consumption of civil building in Beijing.
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the FDGM (1, 1, tα) model has higher accuracy than other
grey prediction models in terms of predicting the energy
consumption of civil buildings in Beijing.

4. Forecasting Building Energy
Consumption over the Next Five Years

In this section, the FDGM (1, 1, tα) model, including the new
metabolism mechanism, is used to forecast the total energy
consumption of civil buildings, urban civil buildings, and
civil buildings specifically in Beijing over the next 5 years

(2018–2022).+e prediction results are shown in Table 8 and
Figures 14–16. +e three types of building energy con-
sumption exhibit steady upward trends. +e growth rate of
the energy consumption of urban civil buildings is the
fastest, with an average annual growth rate of 2.61%. +e
growth rate of the total energy consumption of civil
buildings is second, with an average annual growth rate of
1.92%. +e growth rate of building energy consumption in
Beijing is the slowest, at approximately 0.78%.

Based on the above prediction results, it can be found
that an important reason for the high accuracy of the new

Table 7: Error metrics of energy consumption of civil building in Beijing.

GM SIGM DGM NGM NDGM FANDGM FDGM
Fitting
MAPE 1.6757 0.8285 1.6749 0.8713 0.7943 0.7620 0.7081
RMSPE 2.0307 1.0887 2.0321 1.0985 1.0900 1.0746 1.0321
MAE 46.8184 23.8389 46.7819 24.9669 23.0452 22.1949 20.2609
MSE 3158.7145 983.3152 3158.8055 996.4190 991.4353 965.1000 881.9719
IA 0.9627 0.9890 0.9626 0.9887 0.9890 0.9893 0.9902
R 0.9297 0.9787 0.9297 0.9786 0.9785 0.9791 0.9809
Prediction
MAPE 2.2631 3.1712 2.2455 3.2011 3.4848 3.3630 1.6028
RMSPE 2.3111 3.2668 2.2932 3.2948 3.5795 3.4480 1.6623
MAE 70.8512 99.3227 70.3009 100.2548 109.1311 105.3064 50.2146
MSE 5255.5344 10514.7588 5174.4429 10694.8474 12618.9893 11705.6125 2724.9169
IA 0.5797 0.3814 0.5821 0.3797 0.3574 0.3706 0.6030
R 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 8: Predictions for building energy consumption over the next 5 years.

Year Total energy consumption of civil buildings Energy consumption of urban civil buildings Energy consumption of civil
buildings in Beijing

2018 8.75507 7.01286 3120.341
2019 8.93712 7.21081 3146.826
2020 9.10622 7.39672 3170.844
2021 9.26427 7.57222 3192.816
2022 9.41280 7.73864 3213.066
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Figure 14: Total energy consumption of civil buildings and growth rate over the next 5 years.

Journal of Mathematics 15



model proposed in this paper is to use the GWO algorithm
to find the optimal parameters. In addition to the GWO
algorithm, particle swarm optimization (PSO) and quantum
genetic optimization (QGA) algorithms are also widely used
to solve grey model parameters to improve the accuracy of
the model. With the development of optimization algo-
rithms, more advanced algorithms can also be used to find
the optimal parameter values of the grey model, such as the
chaotic cloud quantum bats algorithm (CCQBA) proposed
by Li et al. [50]. In addition, the support vector regression
(SVR) model can handle the nonlinear data, and the vari-
ational mode decomposition (VMD) method can reduce the
nonlinearity and nonstationarity of data.+erefore, in future
research, we can learn from Zhang and Hong and combine
the above two methods with the GWO algorithm to build a
new grey model to predict energy consumption [51].

5. Conclusions

In this paper, the FOA is combined with the discrete grey
prediction model, and the FDGM (1, 1, tα) model is proposed
to predict the total energy consumption of civil buildings,
urban civil buildings, and civil buildings specifically in Beijing.
+e introduction of the FOA improves the adaptability and
prediction ability of the FDGM (1, 1, tα) model. +e results
obtained from fitting and forecasting building energy con-
sumption data show that the FDGM (1, 1, tα) model is more
effective and accurate than the existing GM (1, 1), SIGM (1, 1),
DGM (1, 1), NGM (1, 1), NDGM (1, 1), and FANDGM (1, 1)
models. In addition, this paper predicts building energy
consumption over the next 5 years based on a metabolism
mechanism. +e forecasting results show that from 2018 to
2022, the three types of building energy consumption will
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Figure 15: Energy consumption of urban civil buildings and growth rate over the next 5 years.
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Figure 16: Energy consumption of civil buildings in Beijing over the next 5 years.
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exhibit steady upward trends. +e growth rate of the energy
consumption of urban civil buildings is the fastest.

It can be seen that building energy consumption will
continue to increase in the future. +erefore, the develop-
ment of building energy conservation policies and green
buildings should be further promoted, and mandatory
standards for energy conservation should be fully imple-
mented in new urban buildings.+e energy efficiency of new
urban buildings should be improved through a three-step
energy consumption improvement route involving ultralow
energy-consuming buildings, near-zero energy-consuming
buildings, and zero energy-consuming buildings. +e en-
ergy-saving transformation of existing residential buildings
should be continued to form a pattern of comprehensive
transformation and improvements in energy conservation,
livability, and functionality. We will strengthen the energy-
saving supervision and transformation approaches for
public buildings and promote the development of green
buildings.
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