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The main aim of this study is to investigate the effects of the P—curvature flatness, F—divergence-free characteristic, and
P—symmetry of a warped product manifold on its base and fiber (factor) manifolds. It is proved that the base and the fiber
manifolds of the #—curvature flat warped manifold are Einstein manifold. Besides that, the forms of the Z—curvature tensor on
the base and the fiber manifolds are obtained. The warped product manifold with &—divergence-free characteristic is investigated,
and amongst many results, it is proved that the factor manifolds are of constant scalar curvature. Finally, %’—symmetric warped

product manifold is considered.

1. Introduction

Curvature tensors play a significant role in mathematics and
physics. This is why many researchers have introduced and
studied many curvature tensors in various ways, as well as
they have shown the importance of these curvature tensors.
For instance, the deviation of a space from constant cur-
vature is measured by the concircular curvature tensor (for
more details, see [1]). The Weyl curvature tensor describes
the distorting but volume-preserving tidal effects of gravi-
tation on a material body.

The 9P—curvature tensor was first coined by De et al. in
2021 [2]. This curvature tensor is a good generalization of
projective [3], conharmonic [4], M —projective [5], and the set
of W' ;—curvature tensors which was introduced by Pokhariyal
and Mishra [6-10]. This curvature tensor is given by

Pijk = aoR;jy + a19iiRyy + a9y Ry + as gy R, W
+ayg Ry + asg Ry + agguRij
where a; are constants, R; ; is the Riemann tensor, and R;; is
the Ricci tensor [2]. The authors studied this curvature tensor
on pseudo-Riemannian manifolds and space times of general
relativity. It is proved that pseudo-Riemannian manifolds M
will be Einstein manifold if M admits a traceless #—curvature
tensor and will be of constant scalar curvature if M is of
P—curvature flat. Pseudo-Riemannian manifolds with
P—divergence-free characteristic were investigated in Gray’s
seven subspaces. As a final point, they studied perfect fluid
space times when the 9—curvature tensor is flat, and in this
case, many interesting results are obtained.
Geometers have considered all well-known curvature
tensors on the warped product manifolds. For instance,
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W ,—curvature tensor on warped product manifolds is
studied in [11]. Also, concircular curvature tensor on warped
product manifold is considered in [12]. Motivated by these
kinds of studies and others, this paper aims to investigate the
P—curvature tensor on the warped product manifolds.

This paper is organized as follows: In Section 2, the basic
properties of the warped product manifold are presented. In
Section 3, we consider the °—curvature flat warped product
manifold. We prove that the base and the fiber manifolds of
the 9—curvature flat warped product manifold are Einstein
manifold; also in this case, the forms of the &—curvature
tensor on the base and the fiber manifolds are obtained.
Section 4 is devoted to study the S—divergence-free warped
product manifold. It is proven that the base and the fiber
manifolds of the warped product manifold with
P—divergence-free characteristic are of constant scalar
curvature. In addition, these factor manifolds of the
P—divergence-free warped product whose Ricci tensor is of
Codazzi type are Ricci symmetric manifolds. Finally, we
prove that the warped product manifold is $P—symmetric if
and only if the base and the fiber manifolds are
P—symmetric manifolds.

2. On Singly Warped Product Manifold

Let (M,g) and (M, g) be two pseudo-Riemannian mani-
folds with dimensions dim M =7 and dimM =7 = n -7,
where n>7>1. And, let F: M — (0,00) be a smooth
positive function on M. Consider the product manifold M x
M with its natural projections m: M x M — M and
#: M x M — M. Then, the singly warped product mani-
fold M = Mx (M is the product manifold M x M furnished
with the metric tensor

g=9geoFg. (2)

The manifold M is called the base manifold, whereas M
is called the fiber manifold [13, 14]. A warped product
manifold M = MxzM is called trivial if the warping func-
tion F is constant. In this case, M = MxM is the Rie-
mannian product M = M x My, where My, is the manifold
M equipped with metric Fg, which is homothetic to g.

Curvatures of the warped product manifold depend on
the curvatures of its fiber and base manifolds. It is noted that
the curvatures of the Riemannian product manifold split as a
sum of the corresponding curvatures of the first and second
factor manifolds since both of the metric and the Levi-Civita
connection split as a sum. It is natural now to discuss the
deviation in the relation between the different curvature
formulas in warped product manifolds and their factor
manifolds due to the existence of a nontrivial warping
function.

Let 9/0x“, 0/0x”, ... denote the basis vector fields on a
neighborhood U of the base manifold M, where
a,b,...,e{l,...,7}, whereas 0/0x a, 0/0xP, ... denote the
basis vector fields on a neighborhood U of the fiber manifold
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M, where afB,....€{n+1,...,n}. Likewise, 9/0x,
0/0x/, ... denote the basis vector fields on a neighborhood
U xU of the warped product manifold Mx,M, where
i,j,...,€{l,...,n}. The local components of the metric
tensor g = gxpg of the warped product manifold Mx M are

G fori=a,j=0b,
9ij-Fgop fori=a,j=p, (3)
0 otherwise.

The local components I". of the Levi-Civita connection
on the warped product M = Mx;M are as follows:

—=a =a
rZC = rbc’ rgy = rﬁy’

1 _ 1
Io = Ey“bpbcaﬁ, re

_ o
o = 55 adp (4)

er = er =0,

where Fa = aaF = aF/ax“ and Gofﬁﬁz ggygﬂé - gtxﬁyﬂy'

On the warped product M = Mx M, the local com-
ponents of the Riemannian curvature tensor R;j; are given
by [15-18]

Rabc d= Rabc > (5)

_ D 1=~ 6

Rugys = FRugys = AFGupys, (6)
-1 _

Raubﬁ = 7Tubg¢x/3> (7)

where AF = g°°F,F), and T, is a  tensor of type (0,2) with
local components T, =Vy,F,—1/2FF F, and
T“ﬂ = Ta()t = 0.

The local components of the Ricci curvature R;; of the
warped product M = Mx;M are the following [16, 17]:

— n
Ry = Rap = 5T ap (8)
Ry =0, 9)
~ 1 n—-1—_17_
Rtxﬁ = R(xﬁ - E tr (T) + oF AF ga/;,
(10)
where tr(T) = g*T,,.
It is well known that [16, 17]
Rubc die = Rahc d;e>
Raﬁy5;£ = Fﬁuﬂyﬁ;e’ (11)
R(xubﬂ;s =0,

where “semicolon” refers to the covariant derivative with
respect to the metric.



Journal of Mathematics

Also,
R =R =57 2).
Rupy = ﬁaﬂ;y’ (12
Ry = 0.

3. P — Curvature Flat Singly Warped
Product Manifolds

In this section, we consider that the warped product
manifold M = MxM is a P—curvature flat manifold. The
local components of the considered J—curvature tensor of
the warped product manifold MxzM, which in general do

'@(xubﬁ abgot,B + a3Fgoc[3<

Suppose that M is P—curvature flat, that is, & 45 = 0.
Thus,

_a . — J— 7
TOTahgtxﬂ + a3Fgo¢/5<Rab

A contraction with g* implies

not vanish identically, are the following P4 Pogpps Papys>
and P ,,p, whereas the local components &, and
vanish.

Let us calculate the first component of the $—curvature
tensor of the warped product manifold M which is

‘@txabﬁ

abca aafy

= aORaubﬁ + algzxaRbﬁ + aZgszRaﬁ

+ a3g¢xﬁRab + a4gabRaﬁ + aSgaﬁRab + aégbﬂRaa'
(13)

In virtue of (3) and (9), we have
gjtxubﬁ = aORaabﬁ + a3gaﬁRab + a4gubRaﬁ' (14)

Utilizing equations (3), (7), (8), and (10) in equation (14),
we infer

2FT“b>+a4g“b{ g 2[tr(T)+ F AF]g ﬁ} (15)

—%Tab> +a4gah{ o~ [tr(T) +—AF]g /3} 0. (16)

- - n = 1 n—-1—
0= %Tabﬁ + a3Fﬁ(Rab - %T@ + a4gab{R -3 [tr(T) + ”ZF AF ﬁ}
(17)
- a, n asGap 1 [ n—1—_ ]
R, =—=T -— | === [tr (T AF| ).
=, F o ® T G.F (ﬁ P GAS AT
One more contraction with g% gives
—agh Iy (5 1 -1 1.
0= tr(T) + a3nF<R - —tr(T)> + a4n{R -5 [tr(T) + FAF]YI}’
(18)
~ nF n -1—
R=2" 4 () - B (R——tr(T)) E[tr(T)+ aF |
2a4n asn 2F 2 2F

Equation (17) and (18) together imply

R, = 2R, (19)
n

which means that the base manifold M is Einstein manifold.
Contracting equation (16) with g"b gives
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4 _ (= 7 (= 1 n—-1—_1_
0= Ttr(T)gaﬂ + a3Fgaﬁ<R - ﬁtr (T)) + am{Raﬁ ) [tr (T) + FAF]‘%‘;}’

X (20)
R“ﬁ 2 tr (T)Gap — Fga/;< tr (T)> [tr (T) +—AF]g op-
Multiplying equation (20) with §* implies
— . 7n ~ 1 n—-1—
0= %tr(T)ﬁ + aﬁF(R - %tr(T)) + am{R -3 [tr(T) + nz—FAF]ﬁ} -0,
(21)
_ ~ )
R = 2a3 O 4 (T) + —tr(T) g {R - [tr(T) +2_AF ﬁ}
Substituting equation (21) into (20), we have In virtue of (3) and (9), one gets
Ry = Qﬁ (22) Pavap = 019avRap + 6GapRap- (24)
7

_ The use of equations (3), (7), (8), and (10) implies
which means that the fiber manifold M is Einstein manifold.

The second component of the 9—curvature tensor is
‘@abaﬁ = aORabaﬁ + algubRaﬁ + angxRbﬁ + a3gaﬁRblx

+ 4G Rap + A59ppRa0 + A6GapRap:

(23)

n
oF AF]glxﬁ) + a()Fgaﬁ( 2FTab). (25)

1
‘@abzxﬁ = al?ab( af — 2 [tY(T) +

Now, consider that ZP—curvature tensor is flat; that is,
Papap = 0, and hence,

_ (= 1 n—-1—_7_ - (= n
algal,(R“ﬂ - E [tT(T) + ?AF]g“ﬁ> + a6Fgaﬁ<Rab - ﬁTub> =0. (26)
A contraction with §* implies

_ (5 1 A-1—_7_ - 7i
0= algab(R—E[tr(T) +7AF n) +a6Fn<Rab 2FT“h>

(27)
— n I (= 1 n-1-—
R, = —T,, - 19ab <R - [tr (T) + ”—AF]ﬁ).
2F acFn 2 2F
Again, contracting equation (27) with g% gives
/=1 el 1. A
0= am(R - [tr (T) + —AF]n) + aGFn<R - —tr (T)),
2 2F 2F
(28)

n—1_— a.Fn
-2

an

(R—z—tr(T)>
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Combining the previous two equations, we reveal that

«Ql

Eub = Tﬂbﬁ (29)
n
Similarly, we can obtain
Ry =20 R (30)
af — 7

From the above discussion, we are in a position to state
the following.

P d = AWRape 4 + algub< cd~ ZFTC d) + a2gac<Rb d~ _Tb d) +a39, d(Rbc

n =
+a4gbc< ad ™ ZFTa d) + asgy d(Ruc

The previous equation can be rewritten in the following
form:

Theorem 1. Let M = MxzM be a P—curvature flat singly
warped product manifold furnished with the metric tensor
g =9gxpg. Then, the base and the fiber manifolds of the
warped product manifold MxM are Einstein manifold.

Moving on to the next component, we have

‘@ubc d= aORahc dt algabRc d+t a2gucRb dta39, dec

‘gjabc d= aORubc aTt algubRc at aZ?acRb at a3§u dec + a4gbcTa a¥t a5gh dRac + a6§c dRub

n
_ﬁ[

Remember that the 9—curvature tensor on the base
manifold is of the form

‘@abcd = aORabc aTt al?abRc dTt a2gucRb daTt a3ya dec

- - - (34)
+a4gbcTa d tasgy dRac +asg. dRab'

Consequently, we can obtain the following:

'@ubcd = ‘@abc d—

2F [alguch dTt aZgach at a3gu dTbc
+a4§bcTa at aSEb dTac + a6§c dTub]'
(35)

Suppose that M = MxM is a P—curvature flat; that is,
P vea = 0. This leads to

n _ _ _ _
Pabea = 5F (319w e a+3:90cTh a + 3390 aThe + 4G Ta a

+a5§b dTac + aégc dTab]’
(36)

which is the form of the 9—curvature tensor of the base
manifold M. Thus, we can state the following theorem.

(31)
+ a4gbcRa dtasgy dRac +dgg. dRub'
Using (3), (8), and (5), we obtain
n
ZFThC>
B B (32)
n n
- ZFT ) + Qch d< ab — 2FTab>'
(33)

algath dt aZEQCTb aTt a3ya dTbc + a4ybcTa d¥t aS?b dTac + a6§c dTab]'

Theorem 2. Let M = Mx,M be a P—curvature flat singly
warped product manifold equipped with the metric tensor

= gxpg. Then, the P—curvature tensor on the base man-
ifold M is given by
— 7 _ _ _ _
‘@abc d= ﬁ [algach at aZguch atasg, dTbc + a4gbcTa d

+a5§b dTuc + aéyc dTab]'
(37)

Assume that T, = 0; then, equation (36) implies
ﬁubc d= 0, (38)

which means that the base manifold is 9—curvature flat.

Corollary 1. The base manifold M of the warped product
manifold M is P—curvature flat if the warped product
manifold M is P—curvature flat and T, = 0

The last component of the P—curvature tensor is
901,8))6 = aORaByE + algoc/SRyS + aZroyRﬁS + a3g(x6R[5y

+a4g,8thx8 + aSg,BBRoty + aégy(?Rtxﬂ'

(39)



Using (6) and (10), we obtain

_ 1— e
gaﬁy(g = aO(FRaﬁy(; - ZAFGaﬁy(;) + angaﬁ{R
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[tr(T) +—AF]gy5} + a2Fgay{Rﬂ8 ! [tr(T) +—AF]gﬁ }

_ o= 1 n—-1—_17_
+ a3Fgm;{RﬁY—E [tT (T) + F AF]gﬁy}
(40)
_ (s 1 -l 1. o= 1 -1 1.
+ a4FgﬂY{R“5 - E |:t7" (T) + FAF]!]M} + ang/js{Ray - 5 |:t1" (T) + ?AF]gay}
- -1-7.
+ a6ng5{ a5 [tr(T) + >F AF]gaﬁ}.
The previous equation can be rewritten in the following
form:
Popys = FagRog,s + algaﬁRyS + @, G0y Rps + 33G05Rg) + @47, Rog + a5Fp5Rey + 367,5Ros
1 (41)
2 (D) + B ) JaBEG gy + (a1 + 80Py + (a2 + 05 iy G + (a3 + 1) FGsgy

The SP—curvature tensor on the fiber manifold is given
by

@aﬁyé = aoﬁaﬁyﬁ + algaﬁﬁyé + a2§ay§[)’8 + a3ga6ﬁﬁy
+ a4gﬁyﬁa6 + aSéﬁéﬁay + aégyé‘ﬁocﬁ'

Thus,

(42)

'@Wﬂ)’é\ = F‘@(Xﬂy(s (tr (T) + 7FAF> aOPGaﬂy(s

+ (al + aé)Fgaﬁgw? + (az + aS)Fgaygﬁé (43)

+ (aS + a4)Fga5gﬁy'

If M is P—curvature flat, that is, 9,z,5 = 0, then
~ 1 -1
Py = (tr(T) + TS BE) G

+ (al + a6)gzxﬁgy8 + (al + aS)gaygﬁé + (a3 + u4)§a6§ﬁy'
(44)

Thus, we have the following.
Theorem 3. Let M = MxzM be a P—curvature flat singly
warped product manifold with the metric tensor g = gxzg.

Then, the P—curvature tensor on the fiber manifold is of the
form

~ n—-1— 1
Pagys = <tr(T) * S AF){4FaOPGaﬁy5 +(ay +a6)Gapys (45)

+(a2 + aS)guygﬂﬁ + (aS + a4)gaégﬂy

4. P — Divergence-Free Warped
Product Manifold

The divergence of the 9—curvature tensor is given by [2]
h
Vh‘@jkl =a;ViRy + (ay - ao)VkRjz +(as + ao)lekj
46
1 1 1 (46)
+ Ea4gjleR + EasglekR + EaﬁglejR.

If P—curvature tensor is divergence-free, that is,

h
Vh‘@jkl = 0, then
0=a,V;Ry +(a, = ao)ViR; +(as + ag)ViRy;
1 1 1 (47)
+ Ea4gjleR + Ea5glekR + EaﬁglejR.
Contracting with g¥ and using the relation
ViR = 1/2V,R, we get
0=(2a, +a, +a; +a, +as +agn)V,R. (48)

If (2a, + a, + a; +a, +as + agn) #0, then V,;R = 0. And
hence, equation (46) reduces to

alijkl + (az - aO)Vkle + (a3 + ao)Vlej =0. (49)
We thus have the following.
Lemma 1. A warped manifold MxM with divergence-free
P—curvature tensor is of constant scalar curvature and Ricci

tensor satisfies equation (49), provided
(2a, +a, +a; +a, +as +agn) #0.
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The divergence component th’%‘ﬁy of the P—curvature
ol

tensor on the warped product manifold Mx;M is

h
ViPopy = a1 VaRg, + (ay = ag)VgRy, + (a5 + ag)V, Rg,

1 1 1
+ 5a4gaﬁVyR + Easg“yVﬁR + EaégByVaR.
(50)

If MxzM is P-divergence-free, that is, Vh@ﬁﬁy =0,
then

0=a,V,Rg, + (a, - aO)VﬁRay +(ay + aO)VyRﬁ“
1 1 1 (51)
+ §a4g“ﬁVyR + EaSgayVﬁR + 5a6gﬁyVaR.
Using the obtained result in the previous lemma, we can
have
a,VRg, +(ay — ag)VgR,, + (a3 +ay)V, R, = 0. (52)
In view of equation (12), we infer
a,VoRg, + (a, — ag)VgR,, + (as +a,)V, R, = 0. (53)
Contracting with %" and using Vaﬁg = 1/2Vﬁ}~2, we get
(2a, +a, +a;)V,R=0, (54)
If 2a, + a, + a; #0, then
V,R=0, (55)

which means that the fiber manifold M of the warped
product manifold is of constant scalar curvature. Thus, we
can state the following theorem.

Theorem 4. The fiber manifold M of P-divergence-free
warped product manifold M is of constant scalar curvature.
The next divergence component is
h
thjabc = alvaRbc + vaac + (aS + aO)VcRab
1 1 1 (56)
+ Ea4gabV6R + EQSgacva + Ea6gbcvuR'
Assuming that M is P—divergence-free and utilizing the
obtained result in the previous lemma, we have
alvuRhc + (a2 - aO)VbRac + ((13 + aO)VcRab =0. (57)
In virtue of equation (12), we get

0= alvuﬁbc + (a2 - aO)VbRac + (a3 + aO)vcﬁub

n Tbc Tuc Tab
3% ) ()
2 F F F
If T, =0, then
alvuﬁbc + (a2 - aO)VbEac + (a3 + aO)VCEab =0. (59)

(58)

Multiplying this with g" and using V,R; = 1/2V,R, we
have

7
(2a, +a, +a;)V,R=0. (60)

If 2a, + a, + a; #0, then
V,R=0, (61)

which means that the base manifold M of the warped
product manifold M is of constant scalar curvature. Thus, we
conclude the following.

Theorem 5. The base manifold M of P—divergence-free
warped product manifold M is of constant scalar curvature,
provided T, = 0.

Now, consider the warped product M has a Codazzi
Ricci tensor; that is, VR ; = V,R;;. And consequently, M is
of constant scalar curvature. Thus, equation (46) leads to

h
th)jkl = [al + a, + a3]Vijl. (62)

Proposition 1. A warped product manifold M with Codazzi
Ricci tensor is P— divergence-free if and only if it has
symmetric Ricc'i tensor, provided a; + a, + a; #0.

Now, the divergence component th’l;ﬁy of the
P—curvature tensor is

th’zﬁy =[a; +a, + a3]V,Rg,. (63)

Assume that the warped product manifold M is
P—divergence-free, and hence, one gets

[a, +a, +a;5]V,Rg, = 0. (64)
Using equation (12), we get
[a, +a, +a;]V,Rg, = 0. (65)
If a, + a, + a; #0, then
V.Rg, = 0. (66)
Thus, we have the folllowing.
Theorem 6. Let M be a SP—divergence-free warped product

whose Ricci tensor is of Codazzi type. Then, the Ricci tensor of
the fiber manifold is symmetric.

Also, the divergence component V, 2", is
VP = @1+ a5+ a5]V, Ry (67)
If MxM is P—divergence-free, then
[a, +a, +a3]V, R, = 0. (68)

In view of equation (12), we get

[al ta,+ aS] |:Rub;c - gvc<Tub>] =0. (69)

F

If T, =0and a, +a, +a; #0, then



Ry = 0. (70)

We thus can state the following.

Theorem 7. Let M be a warped product with Codazzi Ricci
tensor. Then the Ricci tensor of the base manifold M is
symmetric.

5. Semisymmetries of the & — Curvature Tensor

It is well known that a manifold M is said to be semi-
symmetric if its Riemann tensor satisfies

(van - anm)g)ijkl = (van - anm)
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(vmvn - anm)Rijkl =0. (71)
A manifold M is said to be Ricci semisymmetric if its
Ricci tensor satisfies

(vmvn - anm)Rij =0. (72)

The 9P—curvature tensor is called semisymmetric if
(van - anm)gjijkl =0. (73)

Applying (V,,V, - V,V,,) on both sides of equation (1),
one can have

ayRijg +a,9;Ry + a, g3 Ry + az; gy R,

>

+a,49 xRy + as g Rix + agguR;;

(VY= vnvm)‘@ijkl =ay(V,,V, - anm)Rijkl +a,9i; (Vi = V.V, Ry
+ 8,95 (Vi Vi — anm)le + 391 (V,uV, — vnvm)Rjk
T 49k (Vi = V.V, Ry + as9i (Vi = V. V)R
+ 591 (VinVy — anm)Rij'

Thus, we have the following:

Proposition 2. A pseudo-Riemannian manifold M admits a
semisymmetric P—curvature tensor if and only if M is
semisymmetric.

(74)

Now, assume that M has a semisymmetric $—curvature
tensor; that is,

(van - anm)‘gbijkl =0. (75)

Thus, we have

0=a, (van - anm)Rijkl + a19ij (van - anm)Rkl T 3,9k (vmvn - anm)R]l
+asgi (van - anm)Rjk + 49 jk (van - anm)Ril + as9;i (van - anm)Rik (76)

+ asGu (vmvn - anm)Rij‘

A contraction with g’ implies

~asgy (VuVy = V.V, )R = [ag +a; + ayn+as +ag +ag] (V,,V,, — V,V, )R, (77)

A multiplication with g/ implies
[ag +a, + an +a; + a4 +nas +ag) (V,,V, - V,V,, )R =0.
(78)
If ay +a, + a;n+as + a, + nas + ag #0, then
(V,.V,, - V.V, )R = 0. (79)
And hence, equation (77) becomes

[ao +a; +an+as +a,+ag](V,V, - V,V, )R; = 0. (80)

If ay+a, +ayn+as; +a, +ag#0, we have

(van - vnvm)R]l =0, (81)
which means that M is Ricci semisymmetric.

Proposition 3. A pseudo-Riemannian manifold M with
semisymmetric P—curvature tensor is Ricci semisymmetric.

Taking the covariant derivative of the first component of

the 9—curvature tensor, which is given by equation (14), we
infer

‘@txubﬁ;s = aORtxubﬁ;a + a3gaﬁRub;£ + a4gabRtxﬁ;s' (82)
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Using equations (11) and (12) in the previous equation,
we have
‘@uahﬁzs = a4yabﬁaﬁ;s' (83)

Suppose that the P—curvature tensor is symmetric; that
is, Pyappe = 0. Thus,

a4?abﬁaﬁ;£ =0 (84)
A contraction with g% gives
a,iR.z, = 0. (85)
If a, #0, one may have
Ry =0, (86)

which means that the fiber manifold M of the warped
product manifold Mx;M is Ricci symmetric. We thus can
state the following.

Theorem 8. Let M be a warped product manifold with
symmetric P—curvature tensor. Then, the fiber manifold M of

MxpM is a Ricci symmetric manifold.

The covariant derivative of the component Pz, is

9
‘@(xﬁyé‘:s = aOR{xﬂy&s + alg(xﬂRy&s + aZgayRﬁ6;£ + a3g(x6R[)’y;s
+ a4g/3yRoc5:£ + aSQ[J(SRrxy:e + a6gy5RaB:,£'
(87)
The use of equations (3), (11), and (12) implies
‘@aﬁy&s = F[aoﬁaﬁyﬁ;s + algzxﬂﬁy&s + azgayﬁﬁ&s + a3gzx6§ﬁy;£
+a4gﬁy§a8;£ + aSgﬂtSﬁayge + aégyaﬁaﬁ;e]’ (88)

‘gjzxﬁy&;e = F‘@aﬁy&s'
Thus, we can state the following.
Theorem 9. Let Mx M be a warped product manifold with

symmetric P—curvature tensor. Then, the fiber manifold M
has symmetric P—curvature tensor.

The covariant derivative of the component &, is

‘@ubcd:e = aORubcd;e + algubRcd;e + aZgathd:e + 339, dRhc;e

gabcd;e = aORabcd;e + algathd;e + azgacRbd;e + a3§adec;e + a4ybcRad;e + asybdRac;e + aéycdRab;e

n

T

n

_Teq, _ Tyy
Eve [algah% + a29ac

‘@ubcd;e = ﬁabcd;e - T
_T,4 _ T _ Ty
+a4gbc7;~ + asgbd% + %gcd?u .

If V,T ; = 0, we have

eg)abcd;e = g)ahcd;e' (91)

We thus can state the following theorem.

Theorem 10. Let MxzM be a warped product manifold M
with symmetric P—curvature tensor. Then, the base manifold
M has a symmetric P—curvature tensor, provided V, T, = 0.
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--Ve|ag hh + 0y G0t + a37 d& + a9 Taa + as?de +a6Gcq
2 e al F ac F a F C F F Ci

+ a3gad

(89)
+a4gbcRud;e + aSgbdRac:e + a6gcdRub;e'
Utilizing (3), (11), and (12) entails that
Tab
F b
90
T (90)
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