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In this study, we investigate the existence of a solution to the boundary value problem (BVP) of variable-order Caputo-type
fractional differential equation by converting it into an equivalent standard Caputo (BVP) of the fractional constant order with the
help of the generalized intervals and the piecewise constant functions. All our results in this study are proved by using Darbo’s
fixed-point theorem and the Ulam-Hyers (UH) stability definition. A numerical example is given at the end to support and

validate the potentiality of our obtained results.

1. Introduction

Fractional differential equations of a constant order or
fractional calculus, in general, have been studied by many
researchers for more than three centuries compared to in-
teger differential equations. In recent years, the notion of
a variable-order operator is a much more recent improve-
ment. Different authors have presented different definitions
of variable-order differential; we refer to [1-6].

{ Doy (t) = f(t,y(t),Ig.y (1))t €

y(1) = Yo

where °Dj., and I§, are the Caputo-Hadamard derivative
and Hadamard integral operators of constant order w, re-
spectively, f is a given continuous function, and y;, € R.

Several investigators have studied boundary value
problems (BVPs) for different types of fractional differential
equations (FDEs), for example, Adiguzel et al. [7] obtain
a solution for a nonlinear (FDEs) of order «a € (2,3],
Benchora and Souid [8] obtain a solution for implicit
fractional-order differential equations, and Zhang [9] dis-
cuss the existence of solutions for two point (BVPs) with
singular (FDEs) of variable order.

Bai and Kong [10] studied the following problem:

[b1,b,], w €]0,1],0< b, <b, <00 o
1

Some existence and Ulam stability properties for FDEs
are studied by many authors (see [11, 12] and references
cited therein).
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Motivated by the above studies, we deal with the exis-
tence of solutions and the stability of the obtained solution in

{D$U@=ﬁOJ@JWU®)ML
y(0)=0,y(T)=0

where J=[0,T], 0<T<oo, w(t): ] — (1,2] is the
variable  order of the fractional  derivatives,
fi1: I xR xR — R is a continuous function, and the left
Riemann-Liouville fractional integral (RLFI) of variable-
order w(t) for function y(t) is (see, for example, [13-15])

o (-9 0!
I()+(t)y(t) — J

0 T 4

tej, (3)
and the left Caputo fractional derivative (CFD) of variable-
order w(t) for function y(t) is (see, for example, [13-15])

t(t— S)l—w(t)

(2 4
oF(Z—w(t))y (s)ds, te]. (4)

Dy - |

2. Preliminaries

This section introduces some important fundamental defi-
nitions and results that will be needed in this paper.

Denote by C(J,R) the Banach space of continuous
functions y: ] — R, with the norm
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the sense of Ulam-Hyers (UH) to the following BVP of
Caputo variable-order type:

(2)

Remark 1. In (2), the variable order w (t): ] — (1,2], but
the RLFI could be defined for any w(t): ] — (0, 00).

Remark 2. In the case of a constant order w in equations (2)
and (3), the RLFI and CFD coincide with the standard
Riemann-Liouville fractional integral and Caputo fractional
derivative, respectively (see [13, 14, 16]).

Recall the following properties of fractional derivatives
and integrals [16].

Lemma 1. Assume that 3, >0, b;,b,>0, f, € L'(b,b,),
and CDf%fz € L' (b,,b,). Then, the differential equation,

CDf%fz =0, (6)
has a unique solution:
F2@O =g+ A (t=by) + 4 (=) +--+ A, (E-b)"
(7)
wheren—1<f,<nandA; €R, j=0,1,...,n- 1L

Iyl = sup{ly (®)]: ¢ € J}. (5) Le%nma 2. Let B,>0, b,b,>0, f,elL'(b,b,), and
‘Dt f> € L' (b, b,). Then,
Ig% CDéffz(t) =f2(O) + A+ A (t-by) + A, (¢ _b1)2 ot A (t ‘bl)nil’ (8)

wheren—1<p <nand1; €R, j=0,1,...,n-1

Lemma 3. Let 3, >0, b;,b, >0, and f, € L' (by,b,). Then,
DRI f> (0 = f>(0). )

Lemma 4. Let 3, >0, b;,b, >0, and f, € L' (b, b,). Then,

L 0 =L £, (0 = 1P f,0. (10)

Remark 3. It is to be hereby note that the semigroup
property is not satisfied for general functions w (¢) and y ()
(see [9, 17, 18]), that is,

1) v (t) (BO+y (1)
LT £, # L7 £ (), (11)

Example 1. Assume that
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[0,1]
w(t) =t, [0,4], y(t) = fo(t) =2, € [0,4],
te]l, 4].
t)Iw(t)f (t J‘t (t S)W(t J'S (S - T)V(s)flf (T)dT s
’ 0®) Jo T() °° ’ (12)
=) [ s-1) S (s-1)°
‘J 0) “o r) Zd”L r3) de]ds’
t =1 _1)3
:J (t-s) [25—1+(S D ]ds,
'(t)

and
t (t _ S)w(t)+w(t)_1

— (13)
o T'(w(t) +y (1)

OO £y = J

So, we obtain

f, (s)ds.

302 )2 3
w(t)Iv/ t)f2 (), = JO (»}(35)) [25_ 14 (s 31)
=
w(t +y (-1
w()+y (1)
IO+ f2 (t)lt 3~ J F(w(t)+1//(t)) f (S)ds,
—S) (3-3s)
J ) Jl NG as

1
—J (s —125° + 545° —1085+81)ds,
2 Jo

1 3
=1
60 J1

—405s + 243)ds,

(—55 + 15s* — 905 + 270s>

665
T 180
(14)

Therefore, we obtain

OO £ (0l #1507 £ (), (15)

Definition 1 (see [19-21]). Let A ¢ R, where A is named
a generalized interval if it is either an interval, or {b,} or @.

A finite set & is named a partition of A if each x in A lies
in just one among the generalized intervals E in 2.

A function g: A — R is defined to be piecewise con-
stant with respect to partition & of A if g admits constant
values on E, for any E € 2.

Zhang et al. [22] gave very interesting result.

Lemma 5. If u € C(J, (1,2]), then both of the following
holds:

(a) For f, € C(J,R), I§" f,(t) € C(J,R)

(b) For f2€C.(LR)={f, (1)
e C(J,R),t“f,(t) € C(J,R), 0<K<l} the vari-
able-order fractional integral I“’(t f, (t) exists for any
points on |

Definition 2 (see [23]). Let Q be a bounded subset of the
Banach space X. The Kuratowski measure of non-
compactness (KMNC) is a mapping &: QO — [0, co] which
is defined as follows:

£(D) = inf{£>0: 3(Dy) cX,Dc U}:le,diam(D])ss},

(16)

F=12,..n

where
diam(Dj) = sup{llx -yl x, y € Dj}. (17)

The KMNC satisfies the following properties.

Proposition 1 (see [23, 24]). Let X be a Banach space and
D, D,, and D, be bounded subsets of X. Then,

(1) £(D) = 0 if and only if D is compact
(2) §(¢) =
(3) &(D) = &(D) = &(conv D)

(4) D, c D, implies £(D,)<&(D,)
(5) §(D, + D,)<&(Dy) + §(D,)

(6) {(a D) = |al§ (D), & € IR

(7) E(Dl UDz) = maX{E(Dl)’f(Dz)}
(8) E(Dl ﬂDz) = min{f(D1)>5(D2)}
(9) (D + x,) = £(D) for any x, € X

Lemma 6 (see [25]). Let Bc C(J,X) be a bounded and
equicontinuous set; then,

(i) The function £(B(t)) is continuous for t € ], and
E(B) = sup £(B(1)).

te]

(18)



(i) £([; x(p)dp : x € B)< [, E(B(p))dp, where
B(p) ={x(p): x € B}, pe]. (19)

Theorem 1 (DFPT, see [23]). Let X be a Banach space and
be a nonempty, bounded, closed, and convex subset of X and
Y: § — & is a continuous operator satisfying

E(Y(G))<ké(G),k e [0,1), foranyG(+D)cC g, (20)
i.e., Y isk — set contractions.
Then, Y has at least one fixed point in .
Definition 3 (see [11]). The BVP (2) is (UH) stable if

3 )Lfl >0,Ve>0,Vz € C(J,R) satisfies the following
inequality:
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’Dyz(t) - f (620, 152 (1)) <et € T, (21)
where 3 y € C(J,R) solution of BVP (2) with
20—yl < et €. (22)

3. Existence of Solution

In this section, we investigate the existence of solution for
a BVP of a Caputo-type fractional differential equation using
DFPT and KMNC.

Let us introduce the following assumptions.

(H1) Let n € N be an integer,

&P :{]1 = [0>T1]’]2 = (TI’TZ]’]3 = (Tz’T3] coidy= (Tn—l’T]}> (23)

a partition of the interval J, and let w(¢): ] — (1,2] be
a piecewise constant function with respect to %, i.e.,

(w,, ifte],
w,, ifte],,
0B =Y ol M=1" (24)
= '
| w,, ifte],

where 1 < w; <2 are constants, and I is the indicator of the

interval ]]- = (Tj_l,Tj], j=12,...,n (with
Ty=0andT, =T), such that
1, forte],
()= ’ (25)
! { 0, forelsewhere.

Remark 4. According to remark of Benchohra (p.20 in [26]),
it is not difficult to show that condition (H2) and the fol-
lowing inequality,

E(t"|f1(t, Bl)Bz)DﬁKf(Bl) +LE(B,), (26)

are equivalent for any bounded sets B,, B, ¢ X and for each
te].

Furthermore, for a given set B of functions v: ] — X,
we denote flushleft:

B(t) ={v(t),ve B}, t €], (27)
and
B(]) ={v(t): ve B, t €]} (28)

The symbol E i=C (J I R), which indicated the Banach
space of continuous functions y: J; — R equipped with
the norm

Iyllg. =suply (@),
Vg, te]lj) y (29)

where j € {1,2,...,n},

Then, for t € J;, j=1,2,...,n, the left Caputo frac-
tional derivative (CFD), defined by (4), could be presented as
a sum of left Caputo fractional derivatives of constant orders
(Ul,l = 1,2,.. .,j,

epe® - =97 o
Dy y (1) = Jor(Z—w(t))y (s)ds,
T ( )1_“’ T ( )1— ( )1_ (30)
Y NG RNE =9 0 s [ L9 0
- JO F(Z—wl)y (s)ds + JTI r(z_wz))/ (s)ds+ -+ JT“ F(Z—w]-)y (s)ds.
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Thus, by (30), BVP (2) can be written, for any
te ]j, j=12,...,n as the following form:

Ti(t—35)"" T(t-9)" (o D e v
o) (s)ds+J g-9 - (s)ds+~-~+J Y29 0 (gds= £,(t, y (0, 1y (1)). (31)
Jo ey TE-w)” " T =ay) Sty @15y )

Now, we will present the definition of the solution to D () = f l(t’y Iy y (t))’t <Jj (33)

BVP (2). A(T;) =0.5(T;) =0.

Definition 4. BVP (2) has a solution if there are functions
Ypji=L2...,n so that y; € c([o, Tj],IR) tulfilling
equation (31) and Yj 0)=0= yj(Tj).

Let the function y € C(J,R) be a solution of integral
(31), such that y(t) =0 on t € [0,T;]. Then, (31) is re-
duced to

cD%;ly(t) :f1<t,y(t),I;ily(t)>, tej,. (32)

We consider the following auxiliary BVP:

The following lemma is necessary in our next analysis of
BVP (33).

Lemma 7. Let f, € C(J; x RXR,R). Suppose that there
exists a number k€ (0,1) such that
t“f € C(]f xR xR,R), for any j€{1,2,...,n}.

Then, the solution of BVP (33) can be expressed by the
integral equation:

-1 W w; w; w;
0 = AT, =Ty ) (=T £ (T n(T ) IR (1)) + 13 o8y @12y o), (34)
Proof Let y € E; is a solution of BVP (33). Taking (RLFI)
ITi to both 51des of (33) and using Lemma 2, we find
1 ol o
YO =2+ ,(t-T )+ J (=9 o5 O3 y©))ds, tel, (35)
I(w;) 7 ~

By y(T;;) =0, we get A, =0.
By y(T;) = 0, we observe that

b= (T =Tp0) "1 (T (1) 3 (T))
(36)
Then,
y(®) ==(T;=T;,) (- Tj—l)I%,lfl(Tj’J’(Tj)’
N I%ﬁlfl(t,y(t),I%ly(t)), teJ;

Iif,ly(Tj))

(37)

Conversely, let y € E; be solution of integral equation
(34). Employing the operator (CFD) CDT+ to both sides of
(34) and Lemma 3, we deduce that y is tHe solution of BVP
(33).

Based on concept of MNCK and DFPT, we have the fol-
lowing theorem for the existence of a solution for BVP (33). O

Theorem 2. In addition to the conditions of Lemma 7,
suppose that there exist constants K, L> 0, such that, for any
x,2€R, 1=1,2,t€];, and

tK|f1 (t’xl’zl) -fi (t’ x2,22)| SKl’ﬁ - x2| + L|Zl - Zzl’

(38)

the following inequality holds:
Z(T] B Tj_l)wj_l(T}_K B T;:lf) K + L (T] B Tj_l)wj <1
(1—K)F(wj) l"(wj+1) .
(39)

Then, BVP (33) has at least one solution E;.
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Proof. Consider the operator W: E; — E; defined by

Wyt =~(T;-T;,) (t- Tj—l)ﬁj?_]fl(Tj’ y(Tj)’I;)f:_])’(Tj))

- (40)
+ t— ) i <s, ), I y(s )ds, te].
) jTﬂ (t= 9 o O T2y () ,
From the properties of fractional integrals and the Let
continuity of function ¢* f,, then the operator W: E; — E;
defined in (40) is well defined.
R 2f (T = Tj1) " 1(wy) (41)
ji= w;—1 1- 1- W >
1=2(T; = T; )™ (177" = T3)1 (=0T (0;)(K+ L(T; = T;;) " /T(w; + 1))
with Clearly, By is nonempty, bounded, closed, and convex.
. Now, we prove that W satisfies the assumption of
f= igll,)lfl (t.0.0) (42)  Theorem 1.

Step 1 : W(B, )< (By).
We consider the set cp ( Rj) ( Ri)

For y € B, and by (H2), we obtain
By, - {y € Eplyl, st}. (43)

ds,

f1<s,y(5), I?j{ly(s)>

j-1

(T,-Ti) (t-Tp) (7 w1
Wy (0)l < (o) | (@-9)

1 t 0 o,
i F(w]) Jle (t - S) ] 1 fl(S) y(S), IT?‘ly(S)> ds,
S (T;-5)""'|f <s y(s), Iy (s))ds
RICH R \>Fh i, ’

ds,

J
< 2 J’Tj (T'_S)wj—l

FisyOI 7)) = £1(5.0.0

2 Tj wj—l
i J (Tj=)" |f1(s0,0)[ds,
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AT - 1) JTj s"(K DT le)(U]‘)Iy(s)lds LT
I(w;) T I(w; +1) (o))
w;i—1 —x —x w; * w;
AT =T ) (T -TE) (o (G=T)™ Y 2T =T0) . (44)
(1- K)I‘(wj) F(a)j + 1) / F(wj)
SRJ-,
which means that W(BRJ) QBR]_. Let (y,) be a sequence such that (y,) — y in E; and

. . t € J.. Then,
Step 2: W is continuous. Jj- The

(1,-71; 1)_1(t ~T;.) JTj (T;- 5)“’,--1

|(Wy,)(8) - (Wy) (1) <

(59O 15 30)) = 11 (570152 y(9))ds

(505 7 9)) = Fi(5 7915 y(9) lds

(;)J (oo

-—s

(50 209) = Fi(s 7O Iy ())|ds

oyl
J . )7 (Kl (9= y @+ LI 13,9 = y(9)] s

2K Tj _x w.—1
S@“)’n e, JT” ST -9)" ds

T;

w — K w.—1
ITjH(y”_y)”EjJTj_IS (T;-s)" ds

2L

I(«;)
< 2K sl [ ) s
)R !

j-1

+

2L(T; - T; )"

AN A bV _ T; x R
oo+ ) e [y (=)

j-1

2k 2UT;=T;,)" - JTJ' ko \o1
<y o o b [ -9

I

SZ(Tj - Tj*])wj_1<T}*K _ T} ;() <K N L<T_T]1)w]>"yn B y"E
j

(I—K)F(wj) F(a)]-+1)
(45)
That is, we obtain Step 3: W is bounded and equicontinuous.
||(Wyn) - (Wy)"E_ — 0asn — o0. (46) By Step 1, we have IIW(y)IIE <R; which means that
J

(BR) is bounded. It remains fo verlfy that W(BR)
Thus, the operator W is a continuous on E It equlcontmuous
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For y € By, and t,,t, € J;,t; <t,, we have

Tj w;i—1 .
I(wy) JTH (T;-5)" f1(5,}’(s),ITjtly(s))dg

(W) (t,) - (W) (t)] =

T, o T, - )
' I(w;) jT 1 (Tj - 5) ' lfl(s’y(S)JTily(s))ds

j-

t) B
F((I;_)j) J (t, - S)wj_lfl(s’y(s)’ITj*-,ly(S))ds

T.

(T]_ ]—1)_1 ; o .
< r(“’j) ((tz - T]—l) _(t1 T]—l)) J‘Tj,l (Tj - S) fl(s’y(s)’IT}tl)’(s)> ds
1 t wi—1 0 o
+r(“’j) JTH((tz =) = (t, =) 1) fl(s,y(s),ITi‘y(s)) ds
1 t .
+F(wj) .[t1 (t2 S) f1<s y(s),IT J’(S))
<(T —ijl) 1((t -T )_(t -T )) JTf (T'_s) i1 f (5 y(S y 5)) f
) r(wj) ’ ! ! i Tj4 J > 1
(T] _ijl)_l T}, oy 1
+W((t2 - Tj—l) _(tl - T]—l)) J’T};l (T] - S) |f1 (S, 0;0)|d$

(3611 39 1150,

r(wj) J.T 1((t2 _5)‘“;-1 -(t —S)“’f_l) h

j-

t

. ((t =)™ = (t; =) )| 1 (5,0,0)|ds

oL
e

1 (- o
f1 s, ¥(s), ITJ y(s)) f1(s,0,0) ds+ij) Ll (t, =) llfl (5,0,0)|ds

(T] _T]_l) T, ot .
ey Tl TJ*‘))JT,-—I (1) =) s (Kiy @1+ 212y )ds
f Lt - R w1
ST ) )

(6 =) = (8 - s)‘”f_l)(K|y(s)| +L

I%{ly(S)Dds
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+f*) [ -9 as

F(a)j t

<(T’_Tj_1)wj_2 w; Tj —x
Sy (el o, ) [
(T, =T, w;-1
! (F](wjil)) ((tz_ijl)_(tl _ijl))

+F(;)(Knqu ol ) ! e Jas
+ f* <(t2_Tj_1)wj_(t2_t1)wj_(tl_Tj_1)wj>
I(wy) w; w, o

J Jj j
(t,—1,)°

ot

wj

153 * e\
) j s "ds+ ST (-h)”
E;

g OO
(T, -, )" (1 - Ty

(1-0r(w;) i) (t,-T10)-(t-T;))

(47)

(K"}’"Ej n Lm||y"5j> +f*(Tj _ijl) a ((tz _ Tj_l) —(tl —Tj_l))

F(‘Uj+1) F(wj+1)

( 1 —K Tl K)(tz )w 1 (Tj_Tj_l)wJ'
+< (l—x)l"( j) K||y||Ej+LW"y"Ej

[N ISR VR (AR ) P8 i 0 o2

F(wj + 1) (- K)F(a)j)

(T;-T;0)" f*(tz_tl)wj
(on o | e

< <(Tf - Tf(i)_w:r((Tj; ) <1< ; L(Tf( JT+ 1)) >||qu ! *(?(;],lel))wH)((tz ~Tpa) (0= Tj0))
(

T K+Lu Iylle )@t —t)% "
(1-x)T ( ) (w]-+ 1) j
(

(T =T

Hence, IWy) (£,) = (Wy)(t, )"E —0 as Step 4: W is k-set contractions.
|ty - t;] — 0. It implies that T'(Bg ) is equicontinuous. Let t < J, and B & By s then,
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EW(B)(1) = E((Wy) (1), y € B)

T -T. Y '(t-T, ) (T - o
O T 1 (5t o

j-

1 ' _ i1 w;
+r(wj) JT” (t-s) ffl(s,y(s), IT]tly(s))ds,y € B}.

By Remark 4, we have, for each s € ] i

(1,-T11) (t-T1)
I(w;)

EW(B) (1) < {

i o ez em (7 crger g TimTie)"5 0 (7
JT“ (T;-5) {KE(B)JT“S ds+L M +1) f(B)Iles ds

1 (“’j

1
F(wj) T,

1
T, F(wj + 1) i

. i w-2 wj
(T} —T}_l)(Tj_ijl) (t_ijl) K+LM &(B)
(1-0r(w;) oy +1)

(T ) <1< UL >?(B)

(I—K)F(a)j) F(wj+1

2T )T ) e
(I—K)F(wj) F(wj+1)

<

~—

Thus,

—Kx —Kk ;=1 h
E(WB)SZ(T} ST )" (e (TimTi) £(B).
(I—K)F(wj) I‘(w]-+1)

Journal of Mathematics

(48)

r (t—s)“ ! [K%(B) J; s “ds+ L@;_—HE(B) J; s_de],y € B]»

(49)

r |:KE(B) Jt s "ds+ LME(B) Jt sts],y € B}
T, T,

(50)
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So, BVP (33) has at least a solution y € By, Since
By, C Ej, we have completed the proof of Theorem 2.

"Now, we will be interested in proving the existence of
solution for BVP (2). We begin by presenting the following
assumption.

(H2) Let f1: ] x R x R — R be a continuous function,
and there exists « € (0,1) such that t*f, € C(J xR x R, R),

and there exist a constants K,L>0, such
thatt®| f, (t,x,2,) — [ (£, x5, 2)| <K|x; — x,] + Llz| — 25,
for any x,,x,,2,,2z, € Rand t € J. O

Theorem 3. Let (H1) and (H2) hold and inequality (39) be
satisfied for any j € {1,2,...,n}. Then, BVP (2) has at least
one solution in C(J,R).

Proof. By Theorem 2, BVP (33) possesses a solution fj €E;
jef{l,2,...,n}

We define the function
0,t € (0, T,
o,

je{l,2,...,n} (51)
ypt el

Thus, for t € ] 4, the integral equation (31) has the so-
lution y, € C([0,T;],R) with y;(0)=0and y,(T,) =

11
is a solution of BVP (2) in C(J, R). O

4. The Stability

In this section, we show that BVP (2) is UH stable.

Theorem 4. Let all the conditions of Theorem 3 be satisfied.
Then, BVP (2) is UH stable.

Proof. Let the function z(t) from z € C(J I R) satisfy in-
equality (21).
We define the functions:

2,(0) - { 0,t € [O,Tj,l],’

jef{l,2,...,nh 53
c0, teg, ! e B

By equality (30), for j € {1,2,...,n} andt € ] ;, we obtain

w(t Eo(t-s) Y o)
0= TP (s
T F(Z - w]-)
Taking the RLFI I 2{1 of both sides of inequality (21), we

obtain

i (Tj - s)wjflfl(s, z; (s), I%lzj (s))ds,

>

(55)

V7(Ty) =0
Then, the function,
[ V1 (1), te I
0, te],
1) =
y2(0) {5’2) te],
yo =1 (52)
0, te[0,T,,]
) =
kyn() {?j, fe),
z4(t)+(Tj‘Tj—l)fl(t‘Tj—l) JT'
F(wj) T,
1 Y o p
_ _ )9 . i
ssr ¢ S)wrldse(Tj_ijl)wj,
T, F(wj) r(wj+1)
e (T;-7;1)"
I(w;+1)

According to Theorem 3, BVP (2) has a solution
y € C(J,R) that is given forany t € J;,  j=1,2,...,n as
y(t) = y]-(t), where

0, teloT
J’j:{ <[o7) (56)
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and y; is a solution of (33), which is given according to
Lemma 7 by

(1T ) (T e
y;(t) = F(wj) JT (Tj s) f1<s,yj(s),ITJ+_71yj(s)>ds .

/

$,7;(s) 1%,171 (s))ds.

J

+F(a)]) J’T;l (t—S) jilfl

Then, by equations (56) and (57), for
te ]j,j =1,2,...,n, we obtain
l2(t) = y (O] =|z (&) - y; ()| =|z; (®) - 7, (1),

(1,=Tp) (t=Tpa) (T

=lz; () + (@) JTj (T;-)""f l(s, ¥ (s),I‘T”jé,lij(s))ds,

j-1

I(w)) jT 1 (t_s)wﬂﬂ(S’yf (S)’I%jf(s)>dsl’

i

T.-T. i Tj w; w;
<lz;(t) + F(w-) JT (Tj—s) ”lfl(s,zj(s),ITjtlzj(s)>ds,
j

j-1

‘ o, v, (1;=T51) (1=T)
- I‘(wj) JT. 1 (t-5s) fl<S,Zj(s), Iijlej(s))dﬂ + F(wj) ,

i

ds,

w.—1 w; - w;
! fl(s,zj (S),ITjtlzj> - f1<s, 7 (s), ITjtlyj>

1 t 0 w; _ ©;
+7r(w].) JT“ (t—s)" 1f1(5’Zj (S)JT;]ZJ) —f1<5,)’j (S)JTf;]yj) ds,
(1, =T50)" (T;=T0) (t=T50) (" w1 - v, -
<e H(w,+1) + () JT“ (T;-5)" s <K|zj(s) —yj(s)| + LI J2;(s) —yj(s)|>ds,

+ (1‘ J‘t (t—s)" s K(K|zj(s)—5/j(s)|+LI%_1|zj(s)—')7j(s)|)ds,

(T,-T,,)" (T;-T;,)"" B o B T
<e I{(wjil) 4+ F(;)j) (K”zj—yj"Ej+L|lIT§_1(zj—yj)l|Ej)Jles ds,

T,-T, )" . £
M(anj_yju%uuzﬁ (z]—)’/])IIE]>J s

T (ey) . Tr
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(T =Ty)” (Tf_Tffl)wrl(T;—Kl -T7%) - (T,-Ty )" .
< € I‘((,()]‘I'l) + (I_K)I'<wf) K"Zj_yf”E]‘FLW"Z]—y]”E]
(T _Tffl)w]_l(tlix_T;—Kl (T, —Tj—l)w]

) Klzg=yslg, + L-—F—=—lz; - ¥/l
s oo

13

(58)
) wg—1 1- 1- )
(T;=T;0)" 2Ty =Ty )" (T -T5%) (Ty-Ts0)” -
<e + K+L—=—"—— |z, -5/,
F(w]+1) (I—K)F(wj) F(wj+1) 7
T,-T,; )"
ss( S 1) +ullz = yl,
M(wy+1)
where
2T, -T, ) (T —Thx Y
u= max ( J J 1) ( rl) K+L( J J—l) (59)
J=120m (1- K)F(wj) F(wj + 1)
Then, Therefore, BVP (2) is UH stable. O
(15 -750)" .
lz=yl(1-p)<————e (60) 5, Illustration
M(w; +1)

In this section, we construct an illustrative example to ex-

Thus, for t € ] 7, we have press the validity of the obtained results.

20 -yt - =TTy
Y= = (1- P‘)r(w]‘l) AT Example 2. Consider the following BVP:
Bt

DBy (t) = te]=1[0,2],

<eet2/1+t + 4€2t + 1)(1 +|y(t)| +|I§(t)y(t)|>’
y(0) =0, y(2)=0.

Suppose that

“13 -t
t
fit%,2) = —— ¢ , (£,%,2) € [0,2] x[0, +00) X [0, +00).
(ee +4e2t+1>(1+y+z)
3
E) te]l = [051]:
w(t) =

? te],=1]1,2]
5) 2= > .

Then, we have

(62)

(63)
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t1/3|f1(t’x1>z1)_f1 (t. %52, I( X ( : 1 )

et2/1+t+462t+1> l+x,+2;, l14+x,+2,

- e_t(|x1 - x| |z, —zz|)

<66t2/1”+4ey+ 1)(1 +x+2)(L+x,+2,) (64)

—t
e

(eem”t +4e* + l)(|x1 - %,| +|zy - z2|)

<

1
<—— |x, - — |z, -2,
) %) = x,] + ) |z, - 2,
Hence, condition (H2) holds with x=1/3 and According to (33) and by (15), we have the following two
K=L=1/e+5. auxiliary BVP:
—1/3 —t
t
CDgizy(t) = 12/14t ) » L€ ]1’
(ee +462t+1><1+|y(t)|+|13/2y(t)|> (65)
y(0)=0, y(1)=0,
and
—1/3 —t
t
CD?isy(t) T et 2t : 9/5 » tey
(< +i
(e +de +1)(1+|y(t)|+|10 y(t)|> )
y(1)=0, y(2)=0.
Next, we shall check that condition (39) is satisfied for
j = 1. Indeed,
(T = To™)(T, - To)" ! 2L(T, - T,)" 2 1
2K L 0 )= 1+ =0.7685 < 1. (67)
(1 -0 (w,) T(w, +1) 23(e+5r 32\ T (5/2)
Accordingly, condition (39) is achieved. By Theorem 2, We shall check that condition (39) is satisfied for j = 2.
BVP (65) has a solution 7, € E;. Indeed,
Tl—K_Tl—x T. _T w,—1 2L(T, - T W, 22/3_1 2
(2 )L -T) ok 4 2L =T)™ 1+ ~0.3913< 1. (68)
(1 -0 (w,) T(w,+1) 2/3T(9/5) e+ 5\ T(14/5)
(@), te]y,
Thus, condition (39) is satisfied. y(®) =‘[ (69)
yz (t)> te ]27

By Theorem 2, BVP (66) has a solution ¥, € E,.
Thus, by Theorem 3, BVP (62) possesses a solution: where
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0, te],

(1) :{ (70)
2 ¥,(), te],

According to Theorem 4, BVP (62) is UH stable.

6. Conclusion

In this work, we presented results about the existence and
uniqueness of solutions to the BVP of Caputo fractional
differential equations of variable-order w(t), where
w(t): [0,T] — (1,2] is a piecewise constant function. All
our results are based on Darbo’s fixed-point theorem, and
we studied Ulam-Hyers (UH) stability of solutions to our
problem. Finally, we illustrated the theoretical findings by
a numerical example.

The variable-order BVPs are important and interesting
to all researchers. Therefore, all results in this paper show
a great potential to be applied in various applications of
multidisciplinary sciences.
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