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All graphs under consideration are finite, simple, connected, and undirected. Adjacency matrix of a graph G is 0,1 matrix

A � [aij] �
0, if vi � vj or d(vi, vj)≥ 2
1, if d(vi, vj) � 1.

 . Here in this paper, we discussed new type of adjacency matrix known by 1-2 adjacency

matrix defined as A1,2(G) � [aij] �
0, if vi � vj or d(vi, vj)≥ 3
1, if d(vi, vj) � 2 , from eigenvalues of the graph, we mean eigenvalues of the 1-2

adjacency matrix. Let Tc
n be the set of the complement of trees of order n. In this paper, we characterized a unique graph whose

least eigenvalue is minimal among all the graphs in Tc
n.

1. Introduction

Let G � (V, E) be a simple graph with vertex set V � V(G)

and edge set E � E(G). Its order is |V(G)|, denoted by n, and
its size is |E(G)|, denoted by m. (e distance between two
vertices u and v of a graph G is the length of a shortest path
between them.(e 1-2 adjacency matrix of G is defined to be
the matrix A1,2(G) � [aij] of order n with aij � 1 if
1≤ d(vi, vj)≤ 2 and aij is zero for the rest cases. (e solution
of det(xI − A1,2(G)) is the eigenvalues of G. Since A1,2(G) is
always symmetric and real, all the eigenvalues can be
arranged as λ1(G)≤ λ2(G)≤ . . . ≤ λn(G). We write λmin(G)

for the least eigenvalue of G. One can find that λn(G) is
exactly the spectral radius of G.

(e least eigenvalue of any graph is nonpositive. For only
disconnected graph, it is equal to zero. Otherwise, for graphs
with at least one edge, it is less than or equal to −1 (by the
interlacing theorem, see [1], p-19); it is equal to −1 if and
only if G is a disjoint union of complete graphs or equiv-
alently Gc is a null graph or a complete multipartite graph. If
G contains K1,2 as an induced subgraph, then
λmin(G)≤ λmin(K1,2) � −

�
2

√
(again by the interlacing the-

orem). For 1 − 2 adjacency matrix, λmin(K1,2) � −1, and if a

graph G containing P5 is an induced subgraph, then
λmin(G)≤ 1.

(ere are many results in the literature concerning the
largest eigenvalue (spectral radius) of simple graph; see, e.g.,
[2] or [1]. Javaid examined different families of graphs to
pick optimal graph with respect to least eigenvalues via usual
adjacency matrix in their respective graph classes in [3–5].
Lubna et al. examined square power graph of G for their least
eigenvalue [6]. Recently, the problem of minimizing the least
eigenvalue of graphs subject to one or more parameters has
received more attention. Bell et al. [7, 8] discussed the least
eigenvalue of connected graphs with prescribed order and
size. Fan et al. [9] discussed the least eigenvalue of com-
plement of trees. Liu et al. [10] discussed the least eigenvalue
of unicyclic graphs with pendant vertices. Fan et al. [9]
discussed the least eigenvalue of unicyclic graphs with given
girth. Petrovic et al. [11] discussed the least eigenvalue of
bicyclic graphs.

In a family of graphs, a graph is called minimizing if the
least eigenvalue of its adjacency matrix is minimum in the
set of the least eigenvalues of all the graphs. Denote by Tn, Tc

n

the set of trees of order n and the set of the complements of
trees order n, respectively. In this paper, we determine the
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unique minimizing graph in Tc
n for n≥ 6, which is not the

complement of the star graph, and we are limiting our
discussion to the set Tc

n − Kc
n where Kn

c denotes all those
graphs whose λmin is −1.

Theorem 1 (see [7]). If G is a graph whose least eigenvalue is
minimal among all the connected graphs, then

(i) G is either a bipartite graph
(ii) G is a join of two nested split graphs

Theorem 2 (see [12]). Let K(n, m) denote the family of all
connected bipartite graphs and let G ∈ K(n, m) be the graph
such that its least eigenvalue is minimal among all the
connected bipartite graphs, then G must be a double nested
graph.

2. Main Results

We begin with some definitions. Given a graph G of order n,
a vector X ∈ Rn is called defined on G if there exists an
injective function f from V(G) to the entries of X; simply
written Xv � f(v) for each v ∈ V(G), if X is an eigenvector
of A1, 2(G), then it is naturally defined on V(G) and every
entry of X corresponds to the vertex v ∈ V(G). One can
easily prove that

X
T

A1,2(G)X � 2 
d(u,v)∈ 1,2{ }

XuXv, (1)

and λ is an eigenvalue of G corresponding to the eigenvector
X iff X≠ 0 and

λXu � 
v∈NG(u)

Xv, for each vertex u ∈ V(G),
(2)

where NG(u) denotes the neighbourhood of u in the graph
G. Equation (2) is called the eigen equation for the graph G.
Now, for any arbitrary unit vector X ∈ Rn,

λmin(G)≤X
T
A1,2(G)X, (3)

and it will be equal if and only if X is a least eigenvector of G.
Now, let Gc denote the complement of a graph G. One can
easily proof that A1,2(Gc) � J − I − A1,2(G), where I and J

denote the identity matrix and ones matrix of the same size
as A1,2(G). Now, for any vector X,

X
T
A1,2 G

c
( X � X

T
(J − I)X − X

T
A1,2(G)X. (4)

A graph G is said to be a tree if and only if there is a path
between any pair of vertices and has no cycle. A tree is said to
be a star if and only if there exists a vertex of degree n − 1 and
all other vertices have degree 1. We introduce a special tree,
denoted byT(p, q), which is obtained from two disjoint stars
K1,p(p≥ 1) and K1,q(q≥ 1) by joining one pendant vertex of
K1,p and one pendant vertex of K1,q. (e complement of
T(p, q) is Gc � (T(p, q))c, as shown in Figure 1.

Lemma 1. Given n≥ 6, for any positive integer p, q such that
p≥ q≥ 1 and p + q + 2 � n, λmin(T(p, q))c 1, 2{ }≥

λmin(T([(n − 2)/2], [(n − 2)/2])c) 1, 2{ }, with equality if
and only if p � [(n − 2)/2] and q � [(n − 2)/2].

Proof. Suppose n≥ 6. Let λ1 be the least eigenvalue of
(T(p, q))c and X be the corresponding least eigenvector. Let
Xi denote the entries of X corresponding to the vertex vi for
i � 1, 2, 3, 4, 5, 6. Now, by eigen equation (2), all the vertices
attached at v2 and v5 have the same values given by X, say X1
and X6. Now, as λmin(T(p, q))c < − 1, so by an eigen
equation,

λ1X1 � X4 + X5 +(q − 1)X6,

λ1X2 � X5 +(q − 1)X6,

λ1X3 � (q − 1)X6,

λ1X4 � (p − 1)X1,

λ1X5 � (p − 1)X1 + X2,

λ1X6 � (p − 1)X1 + X2 + X3.

(5)

Transform (5) into a matrix equation (B − λ1I)X′ � 0,
where X′ � (X1, X2, X3, X4, X5, X6)

T and the matric B of
order 6 is omitted. We get

f(λ; p, q) � det(B − λI) � (p + q − pq − 1)

− λ2(2p + 2q − 3pq − 1) − λ4(p + q + pq − 2) + λ6,

(6)

and

f(λ; p, q) − f(λ; p − 1, q + 1) � (p − q − 1) λ4 − 3λ2 + 1 .

(7)

Note that λ1 is a least root of f(λ; p, q). In addition,
f(−1, 6180; p, q) � 33.2670 + 0.00024593(pq) −

11.0894(p + q)< 0 as p + q � n − 2≥ 4, which implies
λ1 < − 1.6180.

If p≥ q + 2, by the above discussion, for λ1 < − 1.6180,
we have

f(λ; p, q) − f(λ; p − 1, q + 1)< 0. (8)

In particular, f(λ1; p − 1, q + 1)< 0, which implies

λmin T(p, q)
c

( ≥ λmin(T(p − 1, q + 1))
c
. (9)

(e result now follows. □

u1 u2 u3

v1 v2 v3

up-1 up up+1

vq-1 vq vq+1

Figure 1: Gc � (T(p, q))c graph with m � pq + p + q − 2.
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Lemma 2. Let Tc be a graph in Tn
c − Kn

c and let X be the
least eigenvector of T, then X contains at least two positive
and two negative entries.

Proof. Assume on contrary that X contains exactly one
positive entry corresponding to the vertex w, i.e., Xw > 0.
Since T is not a star, there exists a vertex u ∈ NT(w) such
thatNT(u)∖w≠ 0. Considering the eigen equation (2) on the
vertex u for the graph Tc, we have

0≤ λ1 T
c

( Xu � 
d(v,u)∈ 1,2{ }

Xv ≤ 0. (10)

(is implies that Xu � 0 and Xv � 0 for each v ∈ Nc
T(u),

now as

λ1 T
c

( Xw � 
d(v,w)∈ 1,2{ }

Xv. (11)

Now, let v0 ∈ NT(u), w. (en, by (2) and (11),

1 + λ1 T
c

(  Xv0
� Xv0

+ 

v∈d v,v0( )∈ 1,2{ }∖v0

Xv,

� 

v∈d v,v0( )∈ 1,2{ }

Xv,

� Xw + 

d v,v0( )∈ 1,2{ }∖w

Xv,

� Xw + λ1 T
c

( Xw,

� 1 + λ1 T
c

(  Xw.

(12)

(is implies Xv0
� Xw. Since λ1(Tc)< 1 as T is not a star,

a contradiction, so our supposition is wrong and hence X

contains at least two positive entries. Similarly, if we consider
−X, we also get X which contains at least two negative
entries. (e result follows. □

Before we state other results, we need some definitions.
Let G be a bipartite graph with colour classes U and V

such that V(G) � U∪V. G is said to be a double nested
graph if U � U1 ∪U2 ∪ . . . ∪Uk  and
V � V1 ∪V2 ∪ . . . ∪Vk  such that each ui ∈ U1 is adjacent
to each and every vertex in V, and similarly, each ui ∈ U2 is
adjacent to each and every vertex in
V � V1 ∪V2 ∪ . . . ∪Vk−1  for i � 1, 2, 3, . . . , k{ }.

Now, as we know from [12], if the two vertices u and w

belong to the same colour class and xu ≥ xw, then
deg(u)≥ deg(w).

Let U � u1, u2, . . . , uk  and V � v1, v2, . . . , vk  be the
colour classes such that xu1

≥ xu2
≥xu3
≥ . . . xuk

≥ and
xv1
≥ xv2
≥ xv3
≥ . . . xvk

≥ , where xui
and xvi

for
i � 1, 2, 3, . . . , k{ } are the entries of the corresponding ei-
genvector X of G.

Lemma 3 (see [12]). Let G be a graph with the above as-
sumptions. 3en,

(1) 3e vertices u1 and v1 are adjacent
(2) 3e degree of u1 and v1 is complete

(3) If the vertex u is adjacent to vi, then u is adjacent to vj

for j< k, and if the vertex v is adjacent to ui, then v is
adjacent to uj for j< k

Observation 1. If G is a bipartite of order n and size m, then
λminG goes to its lower bound by increasing the size of G.

Bell [12] discussed the behavior of maximum eigenvalue
by increasing the number of edges and kept V(G) fixed. We
here show the behavior of least eigenvalue of a (T(p, q))c

graph by fixing the number of edges at m � pq + p + q − 2
and let the number of vertices be increased. In Figure 2, the
horizontal axes show vertices and vertical axes represent
least eigenvalues.

Theorem 3. Let T be a tree of order n≥ 4. 3en,

λmin T
c

(  1,2{ } ≥ λmin T
(n − 2)

2
,
(n − 2)

2
 

c

 
1,2{ }

. (13)

Proof. As we know,

λmin(T(p, q))
c
1,2{ } ≥ λmin T

(n − 2)

2
 ,

(n − 2)

2
  

c

 
1,2{ }

.

(14)

By (eorems 1 and 2, it is enough to show that
(T(p, q)c) is a largest double nested graph at 1 − 2 distance.
Let (T(p, q)c) be the graph such that λmin(T(p, q)c) is the
least one among all the graphs and let X be the least ei-
genvector. Now, let G be the graph obtained from (T(p, q)c)

by rotating the edge ris to rit such that s≁t for
i � 1, 2, . . . , k{ }, then λminG≤ λmin(T(p, q)c), and similarly,
if s and t belong to the same colour class s.t xs ≥xt, then
deg(s)≥ deg(t), and so by Lemma 3, it will be a double
nested graph. Next, we will show that it is the largest possible
double nested graph at 1 − 2 distance. As the size (T(p, q)c)

is pq − 3, so all we need to show is that the size cannot exceed

6 7 8 9

-2
-2.5
-3

-3.5
-4

-4.5
-5

-5.5
-6

10 11 12 13

Figure 2: (e behavior of eigenvalues with respect to number of
vertices.
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pq − 3. Suppose on contrary that m> (pq − 3), then either
m � pq − 2 or m � pq − 1. In both cases, the connected
T(p, q) at 1 − 2 distance is not possible, which completes the
proof. □
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