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It is known, in harmonic analysis theory, that maximal operators measure local smoothness of Lp functions. +ese operators are
used to study many important problems of function theory such as the embedding theorems of Sobolev type and description of
Sobolev space in terms of the metric and measure. We study the Sobolev-type embedding results on weighted Besov–
Triebel–Lizorkin spaces via the sharp maximal functions. +e purpose of this paper is to study the extent of smoothness on
weighted function spaces under the condition M#

α (f) ∈ Lp,μ, where μ is a lower doubling measure, M#
α (f) stands for the sharp

maximal function of f, and 0≤ α≤ 1 is the degree of smoothness.

1. Introduction and Main Result

In this paper, we consider the some continuous embeddings
on weighted Besov–Triebel–Lizorkin spaces via a general
sharp maximal function introduced by Calderón and Scott
[6]. Furthermore, we investigate the spaces introduced by
Hajłasz [13] that are defined via pointwise inequalities and
their connection with the Triebel–Lizorkin spaces. For more
details, see [11, 12].

Now, let us begin by recalling some definitions and
classical results in harmonic analysis on the n-dimensional
Euclidean space Rn needed for later sections.

(1) A cube on Rn will always mean a cube with sides
parallel to the axes and has nonempty interior. For j ∈ Z and
k ∈ Zn, we denote by Qjk the dyadic cube 2− j([0, 1]n + k),
where l(Qjk) � 2− j is its side length, xQjk

� 2− jk is its lower

“left-corner,” and cQjk
is its center. We set Q � Qjk: j ∈ Z,􏽮

k ∈ Zn} and jQ � − log2l(Q) for all Q ∈ Q. When the dyadic
cube Q appears as an index, such as 􏽐Q∈Q, it is understood
that Q runs over all dyadic cubes in Rn. For a function ] and
dyadic cube Q � Qjk, set

]Q(x) � |Q|
− (1/2)] 2j

x − k􏼐 􏼑 � |Q|
(1/2)]j x − xQ􏼐 􏼑, (1)

for all x ∈ Rn, where ]j(x) � 2nj](2jx).
(2) +roughout the paper, w denotes a weight function,

i.e., w is an almost every (a.e.) positive locally integrable
function on Rn. A function f ∈ Lp(w), 0<p<∞⟺

‖f‖p,w � 􏽚
Rn

|f(x)|
p
w(x)dx􏼒 􏼓

1/p
<∞, (2)

and f belongs to the weak-Lp spaces, denoted by
Lp,∞(w)⟺

‖f‖Lp,∞(w) � sup
λ>0

λw x ∈ Rn
: f(x)> λ􏼈 􏼉( 􏼁

1/p <∞. (3)

If w � 1, we do not write the subscription w.
A weight function w is said to be in the Muckenhoupt

classes Ap,where 1≤p<∞, if there exists a constant Cp > 0
such that for every cube Q,

1
|Q|

􏽚
Q

wdy
1

|Q|
􏽚

Q
w

1− p′dy􏼠 􏼡

p− 1

≤Cp. (4)
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When 1<p<∞, (1/p) + (1/p′) � 1; for p � 1,
1

|Q|
􏽚

Q
w(y)dy≤C1w(x), (5)

for a.e. x ∈ Q, or equivalently Mw(x)≤C1w(x) for a.e.
x ∈ Rn, where M is the Hardy–Littlewood maximal
operator.

+e class Ap was introduced by Muckenhoupt [16] in
order to characterize the boundedness of the Har-
dy–Littlewood maximal operator M on the weighted Leb-
esgue spaces [8, 12]. +e pioneering work of Muckenhoupt
[16] showed that

M: L
p
(w)⟶ L

p
(w), (6)

⟺w ∈ Ap when 1<p<∞ and

M: L
1
(w)⟶ L

1,∞
(w), ⟺w ∈ A1. (7)

A weight function w is in Muckenhoupt’s class Ap(Rn),
1≤p<∞, of weights if there exists a constant Cp > 0 such
that for all cubes Q in Rn,

1
|Q|

􏽚
Q

w(y)dy􏼠 􏼡
1

|Q|
􏽚

Q
w(y)

1− p′dy􏼠 􏼡

p− 1

≤Cp. (8)

When 1<p<∞, (1/p) + (1/p′) � 1; well, for p � 1,
1

|Q|
􏽚

Q
w(y)dy≤C1w(x), (9)

for a.e. x ∈ B, or equivalently Mw(x)≤C1w(x) for a.e.
x ∈ Rn, where M is the Hardy–Littlewood maximal
operator.

(3) Note that if w ∈ Ap, then w is a doubling measure,
i.e., there exists a constant C≥ 1 such that for all x and all
r> 0,

w(B(x, 2r))≤Cw(B(x, r)). (10)

Another class of functions that plays an important role in
harmonic analysis and in partial differential equation theory
is the class of functions with bounded mean oscillation
denoted by BMO(w), i.e., φ ∈ BMO(w), if there is a
constant C:

sup
Q

1
w(Q)

􏽚
Q
φ(y) − φQ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌w(y)dy<C, (11)

where φQ � (1/w(Q))􏽒
Q
φ(y)w(y)dy is the average of f on

Q with respect to dw. +e smallest constant C for which (11)
is satisfied is taken to be the norm of φ in the space BMO(w)

and is denoted by ‖φ‖BMO(w).
(4) +e sharp maximal function M#f(x) of f is defined

by

M
#

f(x) � sup
Q

inf
c∈R

1
|Q|

􏽚
Q

|f(x) − c|dx, (12)

where Q is taken over all cubes in Rn. Let α≥ 0. +e sharp
fractional maximal function M#

α (f) of f is defined by

M
#
α (f)(x) � sup

x∈Q
inf
c∈R

1
|Q|

(α/n)
􏽚

Q
|f(x) − c|dx. (13)

(5) +e space of Schwartz functions: let S(Rn) be the
space of all Schwartz functions on Rn with the classical
topology generated by the family of seminorms:

‖]‖k,N � sup
x∈Rn

sup
|β|≤N

(1 +|x|)
k

z
β](x)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 k, N ∈ N0, ] ∈ S R
n

( 􏼁.

(14)

+e topological dual space S′(Rn) of S(Rn) is the set of
all continuous linear functional the spaceS(Rn) is endowed
with the weak ∗ -topology. We denote by S∞(Rn) the
topological subspace of functions in S(Rn) having all
vanishing moments:

S∞ R
n

( 􏼁 � ] ∈ S R
n

( 􏼁: 􏽚
Rn

x
β](x)dx � 0, for every β ∈ Nn

􏼚 􏼛.

(15)

S∞′(R
n) denotes the topological dual space of S∞(Rn),

namely, the set of all continuous linear functional on
S∞′(R

n). +e space S∞′(Rn) is also endowed with the weak
∗ -topology. It is well known that S∞′(R

n) � (S′(Rn)/
P(Rn)) as topological spaces, where P(Rn)denotes the set
of all polynomials onRn; see, for example, ([21], Proposition
8.1). Similarly, for any R ∈ N, the spaceSR(Rn) is defined to
be the set of all Schwartz functions having vanishing mo-
ments of order R and SR

′(Rn) is its topological dual space.
We write S− 1(R

n) � S(Rn).
+e Fourier transform,F] � 􏽢], of Schwartz function ] is

defined by

􏽢](ξ) � (2π)
− n

􏽚
Rn

e
− iξ·x](x)dy. (16)

+e convolution of two functions ], μ ∈ S(Rn) is defined
by

]∗ μ(x) � 􏽚
Rn

v(x − y)μ(y)dy (17)

and still belongs to S(Rn).
+e convolution operator can be extended to S(Rn) ×

S′(Rn) via ]∗f(x) � 〈f, μ(x − ·)〉. It makes sense point-
wise and is a C∞ function on Rn of at most polynomial
growth.

To simplify notation, we write often ]f � ]∗f. In some
other situations, to avoid confusion, we keep the notation
]∗f. As usual, ]t denotes the function defined by
]t(x) � t− n](x/t).

(6) In the rest of this paper, C expresses unspecified
positive constant, possibly different at each occurrence; the
symbol A≤B means thatA≤CB. If A≤B and B≤A, then we
write A≃B. +e Greek letter χS denotes the characteristics
function of a sphere S, where S is a measurable subset of Rn

and |S| represents its Lebesgue measure; p′ and s′ always
denote the conjugate index of any p> 1 and s> 1, that is,
(1/p′): � 1 − (1/p) and (1/s′): � 1 − (1/s).

Function spaces play a crucial role in the genesis of
functional analysis and are widely used in the development
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of the modern analysis of partial differential equations. For
instance, the classical Besov–Triebel–Lizorkin spaces are a
class of function spaces containing many well-known
classical function spaces and are more suitable in the
treatment of a large type of partial differential equations (see
for instance [5, 10]). A comprehensive treatment of these
function spaces and their history can be found in Triebel’s
monographs [18, 19] and in the fundamental paper of
Frazier and Jawerth [11].

In recent years, there has been increasing interest in a
new family of function spaces, called new class of Besov–
Triebel–Lizorkin spaces. +ese spaces unify and generalize
many classical spaces including Besov spaces, Morrey spaces,
and Triebel–Lizorkin spaces (see for instance [20]).

In this paper, we study the extent of smoothness on
weighted function spaces under the condition M#

α f ∈ Lp,μ,
where μ is a lower doubling measure, M#

α f stands for the
sharp maximal function of f, and 0≤ α≤ 1 is the degree of
smoothness. When α � 0, M#

0 f � M#f is the classical sharp
maximal function. It is well known that the Hardy–Little-
wood maximal function Mf is controlled by the sharp
maximal function M#f via the celebrated Stein–Fefferman
inequality: ‖Mf‖p ≤ ‖M#f‖p and in the case of α � 1, it is
shown that ‖M#

1 f‖p: ‖f‖Hp
for some range of p. As a result,

we extend the above results to the some general weighted
spaces. Embedding results on weighted Besov–
Triebel–Lizorkin spaces are obtained. Namely, ‖f‖ _F

c,q

p∗ ,w
≤

‖M#
α (f)‖p,w (+eorem 1). As a consequence, we obtain

‖f‖ _F
c,q

p∗ ,w
≤ ‖f‖ _W

α,p
(w)

, where _W
α,p

(w) stands for the frac-
tional Sobolev space.

Now, we are ready to present the main theorem of this
section.

Theorem 1. Let α and c be real numbers satisfying 0≤ α≤ 1
and c< α, and w is the lower d− regular doubling measure.
Suppose that w f(x)> ε􏼈 􏼉<∞ for every ε> 0 and
M#

α (f) ∈ Lp(w) for (d/(n + α))<p< (d/(α − c)). :en, for
each 0< q≤∞,

‖f‖ _F
c,q

p∗ ,w
≤ M

#
α (f)

�����

�����p,w
,

1
p∗

�
1
p

−
α − c

d
. (18)

Remark 1. +e condition that w f(x)> ε􏼈 􏼉<∞ for every
ε> 0 is necessary. On the other hand, under this condition,
M#

α (f) ∈ Lp(w) only if p> (d/(n + α)).

Proof. If f is not a constant function, then there exists a ball
B(x0, R) such that

inf
c∈R

􏽚
B x0 ,R( )

|f(y) − c|dy � c0 > 0. (19)

+erefore, for all x ∈ Rn,

M
#
α (f)(x) ± R + x − x0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

− α− n
. (20)

Hence,

􏽚
Rn

M
#
α (f)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p

w(x)dy ± 􏽚
x− x0| |>R

R + x − x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
(− α− n)p

w(x)dx

± 􏽘
k≥ 0

R + 2k+1
R􏼐 􏼑

(− α− n)p
􏽚

x− x0| |< 2k+1R
w(x)dx

± R
(− α− n)p+d

􏽘
k≥ 0

2k(− α− n)p+kd
�∞,

(21)

if p≤ (d/(n + α)). □

Corollary 1. Under the same conditions in :eorem 1, we
have, for each 0< q≤∞,

‖f‖ _B
c,q

p∗ ,w
≤ M

#
α (f)

�����

�����p,w
,

1
p∗

�
1
p

−
α − c

d
, (22)

for each 0<p∗ < q≤∞.

Proof. By Minkowski’s inequality, we have

‖f‖ _B
c,q

p∗ ,w
≤ ‖f‖ _F

c,q

p∗ ,w
, 0<p∗ < q≤∞. (23)

+en, applying +eorem 1, we obtain (22). +is com-
pletes the proof. □

2. Preliminaries

In this section, we introduce some necessary and important
definitions, notations, lemmas, and results.

Definition 1. Let v be in the Schwartz space with supp 􏽢]
contained in an annulus about the origin and

􏽘
j∈Z

􏽢] 2− jξ􏼐 􏼑 � 1 for all ξ ≠ 0. (24)

Let μ be a doubling measure and 0<p, q≤∞ and c ∈ R;
the homogeneous Triebel–Lizorkin space _F

c,q

p,v is the set of all
distributions f (modulo polynomials) such that

‖f‖ _F
c,q

p,μ
� 􏽘

j ∈ Z
2jcq

v2− j f
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
q⎛⎝ ⎞⎠

1/q�����������

�����������p,μ

<∞; 0 <p, q<∞,

‖f‖ _F
c,q

∞,μ
� sup

Q

1
μ(Q)

􏽚
Q

􏽘
j�− log2l(Q)∞

2jcq
v2− j f

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
qdμ(x)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

1/q

<∞; 0< q≤∞,

(25)

Journal of Mathematics 3



with the interpretation that when q �∞,

‖f‖ _F
c,q

∞,w
� sup

Q

sup
j≥− log2l(Q)

1
μ(Q)

􏽚
Q
2jc

v2− j f
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌dμ(x)<∞.

(26)

+e homogeneous Besov–Lipschitz space _B
c,q

p is the set
of all distributions f (modulo polynomials) such that

‖f‖ _B
c,q

p
� 􏽘

j ∈ Z
2jcq

v2− j f
����

����
q

p,w
⎛⎝ ⎞⎠

1/q

<∞; 0<p, q<∞.

(27)

+e supremum is taken over all dyadic cubes Q, and l(Q)

denotes the length of sides of the cube Q.

Moreover, it is well known that the Besov–Lipschitz
spaces and the Triebel–Lizorkin spaces are independent of
the choices of ] (see, for example [2–4, 11]). +roughout this
paper, ] will be taken as in Definition 1. It is well known that
many classical smoothness spaces are covered by the Besov
and Triebel–Lizorkin spaces. We recall some examples in the
case when dμ � wdx and w ∈ A∞:

(1) _F
0,2
p,w � Hp,w, 0<p<∞.

(2) F0,2
p,w � hp,w, 0<p<∞, where Hp,w denotes the

weighted Hardy spaces of f ∈ S′ for which

‖f‖Hp,w
� sup

t>0
μt ∗f

��������

��������p,w

<∞ (28)

and hp,w is the local weighted Hardy space of f ∈ S′
for which

‖f‖hp,w
� sup

0<t<1
μt ∗f

��������

��������p,w

<∞, (29)

where μ is a fixed function in S with 􏽒
Rnμ(x)dx≠ 0.

By the fundamental work of Fefferman and Stein [9]
adapted to the weighted case, Hp,w or hp,w does not
depend on the choices of μ. In particular,

_F
0,2
p,w � L

p
(w), 1<p<∞. (30)

(3) _F
c,2
p,w � H

c
p,w, 1<p<∞, where H

c
p,w denotes the

weighted Bessel potential space defined by

‖f‖H
c
p,w

� F
− 1 1 +|ξ|

2
􏼐 􏼑

c/2
Ff

�����

�����p,w
. (31)

In particular, when the exponent is a natural
number, say c � N ∈ N, then the weighted Bessel
potential space can be identified with the classical
Sobolev space:

W
N
p,w � f ∈ L

p,w
: 􏽘

|σ|≤N

z
σ
f

����������

����������
Lp,w

<∞
⎧⎨

⎩

⎫⎬

⎭, 1<p<∞.

(32)

(4) _F
0,2
∞,w � BMO(w).

All the above identities have to be understood in the
sense of equivalent quasi-norms.

Definition 2. We say that a doubling measure μ is lower
d− regular, where d≥ n, if there is some constant C> 0 such
that

μ(B(x, t))≥Ct
d (33)

holds for all ball B(x, t) ⊂ Rn.

Remark 2. An example of measure μ lower d− regular is
dμ � wdx,where

w(x) � |x|
αlogβ 2 +|x|

− 1
􏼐 􏼑. (34)

In fact, w ∈ Ap if − n< α< n(p − 1) and β ∈ R; hence, w

is doubling. Moreover, if 0≤ α< n(p − 1) and β≥ 0, then w

satisfies w(B(x, t))≥Ctn+α for all 0< t<∞ and all x.

Lemma 1. Let w ∈ Ap and d− regular. :en, we have

M
#
α (f)

�����

�����p,w
≤ 􏽚

Rn
􏽚
Rn

|f(x) − f(y)|p

|x − y|αp+d
w(x)w(y)dxdy􏼠 􏼡

1/p

,

1≤p<∞.

(35)

Proof. Let Q be a cube and x, y ∈ Q. +en,

f(y) − fQ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � f(y) −

1
|Q|

􏽚
Q

f(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dz≤

1
|Q|

􏽚
Q

|f(y) − f(z)|dz

≤ |f(y) − f(x)| +
1

|Q|
􏽚

Q
|f(z) − f(x)|dz.

(36)

Integrating over the cube Q with respect to y, we get

􏽚
Q

f(y) − fQ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dy≤􏽚

Q
|f(y) − f(x)|dy. (37)

If w ∈ A1, then we have for almost all x ∈ Q,
w(x)≽(1/|Q|)􏽒

Q
w(y)dy≽|Q|− 1+(d/n). Hence,

􏽚
Q

f(y) − fQ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dy≤ |Q|

1− (d/n)
􏽚

Q
|f(y) − f(x)|w(y)dy.

(38)

+e last inequality implies that

1
|Q|

(α/n)+1 􏽚
Q

f(y) − fQ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dy≤ |Q|

(− α− d)/n
􏽚

Q
|f(y) − f(x)|w(y)dy

≤􏽚
Rn

|f(y) − f(x)|

|y − x|
α+d

w(y)dy.

(39)

On the other hand, if w ∈ Ap, p> 1; then using (37) and
Hölder’s inequality, we obtain
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􏽚
Q

f(y) − fQ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dy≤ 􏽚

Q
|f(y) − f(x)|

p
w(y)dy􏼠 􏼡

1/p

􏽚
Q

w
1− p′

(y)dy􏼠 􏼡

(p− 1)/p

≤ |Q|
1− (d/np)

􏽚
Q

|f(y) − f(x)|
p
w(y)dy􏼠 􏼡

1/p

≤ |Q|
1− (d/np)

􏽚
Q

|f(y) − f(x)|
p
w(y)dy􏼠 􏼡

1/p

≤ |Q|
1+(α/n)

􏽚
Rn

|f(x) − f(y)|p

|x − y|αp+d
w(y)dy􏼠 􏼡

1/p

.

(40)

+erefore, we conclude that

M
#
α (f)(x)≤ 􏽚

Rn

|f(x) − f(y)|p

|x − y|αp+d
w(y)dy􏼠 􏼡

1/p

, 1≤p<∞.

(41)

+is completes the proof. □

Lemma 2. We say that f is in the fractional Sobolev space
_W
α,p

(w), 0< α< 1, 1≤p<∞, if

‖f‖ _W
α,p

(w)
� 􏽚

Rn
􏽚
Rn

|f(x) − f(y)|p

|x − y|αp+d
w(x)w(y)dxdy􏼠 􏼡

1/p

<∞.

(42)

Corollary 2. Let w ∈ Ap and lower d− regular, 0< α< 1,
1≤p<∞, and f ∈ _W

α,p
(w). :en,

M
#
α (f)

�����

�����p,w
≤ ‖f‖ _W

α,p
(w)

. (43)

One can immediately obtain the following corollary.

Corollary 3. Let α and c be real numbers satisfying 0< α< 1
and c< α. Assume w ∈ Ap and f ∈ _W

α,p
(w) with

(d/(n + α))<p< (d/(α − c)). :en, for each 0< q≤∞,

‖f‖ _F
c,q

p∗ ,w
≤ ‖f‖ _W

α,p
(w)

, (44)

where p∗ is given by (1/p∗) � (1/p) − ((α − c)/d).

Recall that for 0< α< 1, 1<p<∞ and w ∈ A∞; we have
(see [17])

‖f‖ _F
α,∞
p,w
≈ M

#
α (f)

�����

�����p,w
. (45)

In particular,

‖f‖ _F
c,q

p∗ ,w
≤ ‖f‖ _F

α,∞
p,w

, (46)

with 0< α< 1, 1<p<∞, and p∗ is as before.

Lemma 3. Let f ∈W1,1
loc(R

n) and 0≤ α≤ 1. :en, for every
x ∈ Rn, there is a constant C(n) such that

M
#
α (f)(x)≤C(n)M1− α(|∇f|)(x). (47)

Proof. +e proof is an immediate consequence of the well-
known Poincaré inequality.

For all ball B(x, R) and all f ∈W1,1
loc(R

n), there is a
constant C(n) such that

􏽚
B(x,R)

f(y) − fB(x,R)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dy≤C(n)R􏽚

B(x,R)
|∇f(y)|dy

(48)

holds. □

Corollary 4. Let f be a locally integrable function such that
|∇f| ∈ Hr(w) and 0<p∗ ≤∞ are determined by

1
p⋆

�
1
r

+
c − 1

d
. (49)

:en, f is in _F
c,q

p∗,w
. Moreover, we have

‖f‖ _F
c,q

p∗ ,w
≤ ‖|∇f|‖Hr(w). (50)

Proof. Let Pt(x) � (cnt/(t2 + |x|2)(n+1)/2) be the Poisson
kernel with the constant C(n) such that 􏽒

Rn Pt(x)dx � 1.
+en, there exists a constant C � C(n) such that
Mf(x)≤Csupt>0Pt ∗ |f|. In fact, if Q is a cube with diam
(Q) � t and x ∈ Q, then we have

1
|Q|

􏽚
Q

|f(y)|dy �
1

|Q|
􏽚

Q

t
2

+|x − y|
2

􏼐 􏼑
(n+1)/2

C(n)t

· Pt(x − y)|f(y)|dy

≤C(n)
t
n

|Q|
􏽚

Q
Pt(x − y)|f(y)|dy

≤C(n)Pt ∗ |f|.

(51)

+us, we have

Mf(x)≤C sup
t>0

Pt ∗ |f(x)|. (52)
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Using Lemma 3 with α � 1 and Proposition 2 (see be-
low), we obtain

‖f‖ _F
c,q

p∗ ,w
≤ M

#
1 (f)

�����

�����r,w
≤ sup

t>0
Pt ∗ |∇f|

��������

��������r,w

≤ ‖|∇f|‖Hr(w).

(53)
□

Remark 3. If we take c � 0, q � 2, r> 1, and w � 1, in
Corollary 4, we obtain the classical Sobo-
lev–Gagliardo–Nirenberg inequality:

‖f‖p∗
≤ ‖|∇f|‖r, (54)

with
1

p∗
�
1
r

−
1
n

. (55)

3. Some Useful Lemmas

We start this section with some useful lemmas that will be
helpful in proving our main result.

Lemma 4 (see [7]). Provided c< 1, λ> 0, and 0< q≤ 1, there
exist Schwartz functions v and μ on Rn such that

(1) supp v ⊂ B(0, 1) and 􏽢](0) � 0
(2) supp 􏽢μ ⊂ (1/2)≤ |ξ|≤ 2{ } and 􏽢μ(ξ)≥ c> 0 on (3/5)≤{

|ξ|≤ (25/3)}

(3) 􏽐j∈Z2jcq|μ∗2− j f|q ≤C􏽐j∈Z2jcq|v∗2− j f|q

Lemma 5. Assume that w(B(x, t))≥Cwtd for each x ∈ Rn

and each t> 0, and let v ∈ S supported on B(0, 1) such that

􏽚
Rn

v(x)dx � 0. (56)

Fix a large λ> 0, and define

v
∗
t f(x) � sup

y∈Rn

vt ∗f(y)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

(1 +(|x − y|/t))λ
. (57)

:en,

v
∗
t f(x)≤min s

α
M
#
α (f)(x), s

α− (d/p)
M
#
α (f)

�����

�����p,w
􏼒 􏼓. (58)

Proof. We adapt here the proof given in [7] in the un-
weighted case. Use the well-known estimate

1 +
|x − z|

s
􏼠 􏼡

− λ

≤ 􏽘
∞

k�1
2− kλχ

|x − z|

2k
s

􏼠 􏼡, λ> 0, (59)

where χ denotes the characteristic function of the interval
[0, 1], to obtain, for any λ> 0,

]∗s f(x)≤ 􏽘
∞

k�1
2− kλ sup

z∈Rn

]s ∗f(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌χ
|x − z|

2k
s

􏼠 􏼡. (60)

By taking any z ∈ B(x, 2ks) and using the fact that ] is
supported in the unit ball and has mean equal zero, we
obtain

]s ∗f(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤􏽚
B z, 1+2k( )s( )

]s(z − y) f(y) − fB x, 1+2k( )s( )􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dy

≤ s
α 1 + 2k
􏼐 􏼑

n+α
M
#
α (f)(x),

(61)

which holds. Hence,

]∗s f(x)≤ s
α

􏽘

∞

k�1
2− kλ 1 + 2k

􏼐 􏼑
n+α

M
#
α (f)(x). (62)

If we choose λ large enough, we obtain

]∗s f(x)≤ s
α
M
#
α (f)(x). (63)

On the other hand, by (61), we have for any fixed
x ∈ B(z, s),

]s ∗f(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ≤ s
α
M
#
α (f)(x). (64)

Rising (65) to the pth power and integrating over the ball
B(z, s) with respect to w(x)dx, one has that

]s ∗f(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤w B(z, s)
− (1/p)

s
α

􏼐􏼐 M
#
α (f)

�����

�����Lp(w)

≤ s
α− (d/p)

M
#
α (f)

�����

�����p,w
.

(65)

By using (60), we obtain

]∗s f(x)≤ s
α− d/p

M
#
α (f)

�����

�����p,w
. (66)

□

Proof. Proof of +eorem 1. □

Proof. We consider only the case when 0< q≤ 1. In the case
when 1< q≤∞, estimate (18) follows from the case q � 1 by
the embedding

_F
c,q0
p,w ⊂ _F

c,q1
p,w , 0< q0 ≤ q1 ≤∞. (67)

Let k> 0 be chosen later and let μ and ] be as in Lemma 4.
Assume 0< ((α − c< d)/p) and 0< q≤ 1. +en, using (58),
we get
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􏽘
j∈Z

2jcq μ∗2− j f(x)( 􏼁
q ≤ 􏽘

j∈Z
2jcq ]∗2− j f(x)( 􏼁

q

≤M
#
α (f)(x) 􏽘

j≤ k

2− j(α− c)q
+ M

#
α (f)

�����

�����p,w
􏽘
j> k

2− j((α− c− d)/p)q

≤ 2− k(α− c)q
M
#
α (f)(x) + 2− k((α− c− d)/p)q

M
#
α (f)

�����

�����p,w
.

(68)

Choose 2− k � (M#
α (f)(x)/‖M#

α (f)‖p,w) to deduce that

􏽘
j ∈ Z

2jcq μ∗2− j f(x)( 􏼁
q⎛⎝ ⎞⎠

1/q

≤ M
#
α (f)(x)􏼒 􏼓

p/p∗

· M
#
α (f)

�����

�����p,w
􏼒 􏼓

1− p/p∗( )
,

(69)

where p∗ is given by (1/p∗) � (1/p) − ((α − c)/d). +us, we
have

‖f‖ _F
c,q

p∗ ,w
≤ M

#
α (f)

�����

�����p,w
. (70)

□

4. Some Extensions

In this section, we will assume that μ is a nonnegative Borel
doubling measure on Rn; there exists β � β(μ)> 0 such that

μ B2r( 􏼁≤ 2βnμ Br( 􏼁, (71)

for all ball Br. +e smallest such β is called a doubling
constant of μ.

For each N ∈ N∪ − 1{ }, m ∈ N0, and l ∈ N, we set

A � A
l
N,m � ] ∈ SN R

n
( 􏼁: ‖]‖m,N+l+1 ≤ 1􏽮 􏽯. (72)

Definition 3. Let c ∈ R, 0<p<∞, and 0< q≤∞. +e ho-
mogeneous grand Tribel–Lizorkin space is the set of all
tempered functions f such that when 0< q<∞,

‖f‖A _F
c,q

p,μ
� 􏽘

j ∈ Z
2jcq sup

v∈A
v2− j f

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q⎛⎝ ⎞⎠

1/q�����������

�����������p,μ

<∞ (73)

and when q �∞,

‖f‖A _F
c,∞
p,μ

� sup
j∈Z

2jc sup
v∈A

v2− j f
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

���������

���������
p,μ

<∞. (74)

Proposition 1. Let c ∈ R, 0<p≤∞, and 0< q≤∞, and μ
is the doubling measure with a constant equal to β.
Set J � nβmax(1, (1/p), (1/q)). If A � Al

N,m with l ∈ N,
N + 1>max(c, J − n − c), and m>max(J, n + N + 1),
then

‖f‖A _F
c,q

p,μ
� ‖f‖ _F

c,q

p,μ
. (75)

Proof. Arguing as in the proof in ([15], +eorem 1.2) and
using the almost-diagonality theorem (see [1],+eorem 4.2),
we obtain the desired result. □

Proposition 2. Let α and c be real numbers satisfying
0≤ α≤ 1 and c< α and μ be a lower d− regular doubling
measure. Assume f is a smooth function and
M#

α (f) ∈ Lp(w) with (d/(n + α))<p< (d/(α − c)). :en,
for each 0< q≤∞,

(1)

‖f‖A _F
c,q

p∗ ,μ
≤ M

#
α (f)

�����

�����p,μ
, (76)

where p∗ is given by (1/p∗) � (1/p) − ((α − c)/d)

(2) For all (n/(n + α))<p≤∞ and 0≤ α<∞,

‖f‖A _F
α,∞
p,μ
≤ M

#
α (f)

�����

�����p,μ
. (77)

(3) For all (n/(n + α))<p≤∞, 0≤ α<∞,

‖f‖
A _F

((α− d)/p),∞
∞,μ
≤ M

#
α (f)

�����

�����p,μ
. (78)

Proof. We have from (58) that if μ is a lower d-regular
measure, then

sup
]∈A

]2− j f
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ≤min 2jα
M
#
α (f)(x), 2j((α− d)/p)

M
#
α (f)

�����

�����p,w
􏼒 􏼓.

(79)

Arguing as in the proof of Proposition 1, we obtain the
desired result easily. □

Definition 4. Let μ be a doubling measure 0<p<∞ and
0< α≤ 1. +e homogeneous fractional Hajłasz–Sobolev
space _M

α,p

μ (Rn) is the set of all measurable functions L
p

μ,loc

for which there exists a nonnegative function g ∈ L
p
μ such

that

|f(x) − f(y)|≤ |x − y|
α
[g(x) + g(y)], (80)

for μ − a.e. x, y ∈ Rn.

_M
α,p

μ (Rn) is equipped with the seminorm

‖f‖ _M
α,p

μ
� inf

g∈D(f)
‖g‖p,μ, (81)

where D(f) denotes the class of all nonnegative Borel
functions g satisfying (80). +us, Lemma 4.1 in [15] implies
the following Sobolev embedding.
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Lemma 6. Let 0< α≤ 1, 0< δ < (n/α), and p∗ be given by
(1/p∗) � (1/δ) − (α/n). :en, for all x ∈ Rn, 0< r<∞,
f ∈ _M

α,p

μ (Rn), and g ∈ D(f),

inf
c∈R

1
μ(B(x, r))

􏽚
B(x,r)

|f(y) − c|
p∗dμ􏼠 􏼡

1/p∗

≤ r
α 1

μ(B(x, 2r))
􏽚

B(x,2r)
g(y)

δdμ􏼠 􏼡

1/δ

.

(82)

Remark 4. Lemma 6 is due to Hajłasz ([13], +eorem 8.7)
when α � 1.

Corollary 5. Let α, c, and δ be real numbers satisfying
0≤ α≤ 1, c< α, and (n/(n + α))<p< (n/(α − c)). Assume
f ∈ _M

α,p

μ (Rn). :en, for each 0< q≤∞,

‖f‖A _F
c,q

p∗ ,μ
≤ ‖f‖ _M

α,p

μ
, (83)

where (1/p∗) � (1/p) − ((α − c)/n).

Proof. Fix a ball B(x, 2r). +en, using Lemma 6 and by
taking δ � (n/(n + α)) and Hölder’s inequality, we obtain

inf
c∈R

1
μ(B(x, r))

􏽚
B(x,r)

|f(y) − c|dμ

≤ r
α 1

μ(B(x, 2r))
􏽚

B(x,2r)
|g(y)|

δdμ􏼠 􏼡

1/δ

.

(84)

Hence,

M
#
α (f)(x)≤ Mμ g

δ
􏼐 􏼑􏼐 􏼑

1/δ
(x) (85)

holds, where Mμ(g) is the maximal function with respect to
the measure μ. +e Lp/δ-boundedness of Mμ when δ <p<∞
and Proposition 2 lead to estimate (83). □

Also, recall that _M
α,p

μ (Rn) � A _F
α,∞
p,μ (Rn) for 0< α≤

1 and (n/(n + α))<p<∞ in [15] and _M
1,p

μ (Rn) �

_F
1,2
p,μ(Rn) ≈ _H

p

μ for (n/(n + 1))<p<∞ in [14]. Here, _H
p

μ
denotes, for p> 0, the homogeneous Hardy–Sobolev space,
i.e., the space of tempered distributions f on Rn, such that
zjf ∈ H

p
μ for each j � 1, . . . , n and

‖f‖ _H
p

μ
� 􏽘

n

j�1
zjf

�����

�����Hp,μ
. (86)

Consequently, if f ∈ _H
p

μ with (n/n + 1)<p<
(n/(1 − c)), then

‖f‖ _F
c,q

p∗
≤ ‖f‖ _H

p

μ
,

1
p∗

�
1
p

−
1 − c

n
. (87)

In particular, we have, for (n/(n + 1))<p< n, the fol-
lowing well-known result:

‖f‖p∗
≤ ‖f‖ _H

p ,
1

p∗
�
1
p

−
1
n

. (88)
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[17] M. Paluszyński, “Characterization of the Besov spaces via the
commutator operator of coifman, rochberg and weiss,”
Indiana University Mathematics Journal, vol. 44, no. 1,
pp. 1–17, 1995.

[18] H. Triebel, “+eory of function spaces II,” Monographs in
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