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In this study, we familiarise a novel class of Janowski-type star-like functions of complex order with regard to (j, k)-symmetric
points based on quantum calculus by subordinating with pedal-shaped regions. We found integral representation theorem and
conditions for starlikeness. Furthermore, with regard to (j, k)-symmetric points, we successfully obtained the coefficient bounds
for functions in the newly specified class. We also quantified few applications as special cases which are new (or known).

1. Definitions and Preliminaries

(e set of all analytic functions constructed on the unit disc
U � z ∈ C: |z|< 1{ } is symbolised by H(U). Also, A indi-
cates the subclass of H(U) that has a Taylor series
representation:

f(ξ) � ξ + 􏽘
∞

n�2
anξ

n
, (ξ ∈ U � ξ: |ξ|< 1{ }). (1)

(e family of functions f ∈ A that are univalent in U is
represented byS.(is is well established that iff(ξ), assume by
(1), is in S, then [f(ξk

)]1/k (k is a positive integer) is conse-
quently in S.

Definition 1 (see [1], Definition 3). Assume k is a positive
integer. A domain D is known to be k-fold symmetric if a
rotation of D about the origin through an angle 2π/k carries
D onto itself. For U, a function f is said to be k-fold
symmetric if and only if for each ξ in U

f e
2πi/kξ􏼐 􏼑 � e

2πi/k
f(ξ). (2)

Fk represents the family including all k-fold symmetric
functions.

(e concept of k-symmetrical function was protracted to
so-called (j, k)-symmetrical function by Liczberski and
Połubiński in [2]. To be specific, a function f(ξ) is reported
for being (j, k)-symmetrical if

f(εξ) � εj
f(ξ), (ξ ∈ U), (3)

where k≥ 2 is a fixed integer, j � 0, 1, 2, . . . , k − 1 and
ε � exp(2πi/k). (e family of (j, k)-symmetrical functions
will indeed be indicated byFj

k. We believe thatF1
2,F

0
2, and

F1
k are quite well groups of odd functions, even functions,

and k-symmetrical functions. Consider the subsequent
equivalence demarcate fj,k(ξ) as well

fj,k(ξ) �
1
k

􏽘

k− 1

]�0

f ε]ξ( 􏼁

ε]j
, (f ∈ A; k � 1, 2, . . . ; j � 0, 1, 2, . . . , (k − 1)).

(4)
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It is evident that fj,k(ξ) is a linear operator from U into
U. If ] is an integer, then the subsequent assumptions result
directly from (4):

fj,k ε]ξ( 􏼁 � ε]j
fj,k(ξ),

fj, k
′ ε]ξ( 􏼁 � ε]j− ]

fj, k
′ (ξ) �

1
k

􏽘

k− 1

]�0

f′ ε]ξ( 􏼁

ε]j− ] ,

fj,k
″ ε]ξ( 􏼁 � ε]j− 2]

fj,k
″ (ξ) �

1
k

􏽘

k− 1

]�0

f″ ε]ξ( 􏼁

ε]j− 2] .

(5)

Let the function f ∈ A provided by (1) and g ∈ A of the
form g(ξ) � ξ + 􏽐

∞
n�2 Υnξ

n, the Hadamard product (or
convolution) of these two functions is indicated by

H(ξ) ≔ (f∗g)(ξ) ≔ ξ + 􏽘
∞

n�2
anΥnξ

n
, ξ ∈ U. (6)

Using Hadamard product, various authors studied the
univalent function theory in dual with the theory of special
functions, see [3–5] and references provided therein.
(roughout this whole article, we will assume that k ∈ N,
ε � exp(2πi/k), and

Hj,k(ξ) �
1
k

􏽘

k− 1

]�0
ε− ]j

(f∗g) ε]ξ( 􏼁􏼂 􏼃 � ξ + · · · , (7)

where

f, g ∈ A; k � 1, 2, . . . ; j � 0, 1, 2, . . . , (k − 1). (8)

From (7), we, thus, have

Hj,k(ξ) � 􏽘

∞

n�1
anΥnΔn,jξ

n
, a1 � Υ1 � 1( 􏼁,

Λn,j �
1
k

􏽘

k− 1

]�0
ε(n− j)]

.

(9)

(e investigation of q-calculus (q stands for quantum)
fascinated and inspired many scholars due its use in various
areas of the quantitative sciences. Jackson [6, 7] was among
the key contributors of all the scientists who introduced and
developed the q-calculus theory. Just like q-calculus was used
in other mathematical sciences, the formulations of this idea
are commonly used to examine the existence of various
structures of function theory. (ough it is the first article in
which a link was established between certain geometric
nature of the analytic function and the q-derivative operator
and the usage of q-calculus in function theory, a solid and
comprehensive foundation is given in [8] by Srivastava.
After this development, many researchers introduced and
studied some useful operators in q-analog with the appli-
cations of convolution concepts. For example, Kanas and
Raducanu [9] established the q-differential operator and
then examined the behavior of this operator in function
theory. For more applications of this operator, see [10, 11].

For f ∈ A assumed by (1) and 0< q< 1, the Jackson’s
q-derivative operator or q-difference operator for f ∈ A is
specified under (see [12–14])

Dqf(ξ) ≔

f′(0), if ξ � 0,

f(ξ) − f(qξ)

(1 − q)ξ
, if ξ ≠ 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

From (10), if f is assumed as in (1), we can effortlessly see
that

Dqf(ξ) � 1 + 􏽘
∞

n�2
[n]qanξ

n− 1
, (11)

for ξ ≠ 0, provided the q-integer number [n]q is represented
by

[n]q ≔
1 − q

n

1 − q
, (12)

and take into consideration lim
q⟶1−

Dqf(ξ) � f′(ξ). During
our study, we let signify

[n]q􏼐 􏼑κ ≔ [n]q[n + 1]q[n + 2]q . . . [n + κ − 1]q. (13)

(e q-Jackson integral is defined by (see [6])

Iq[f(ξ)] ≔ 􏽚
ξ

0
f(t)dqt � ξ(1 − q) 􏽘

∞

k�0
q

k
f ξq

k
􏼐 􏼑. (14)

If the q-series converges, further witness that

DqIqf(ξ) � f(ξ),

IqDqf(ξ) � f(ξ) − f(0),
(15)

where the second equality grasps if f is continuous at ξ � 0.
Let the classes of star-like functions of order η (0≤ η< 1)

and convex functions of order η (0≤ η< 1) are symbolised
by S∗(η) and C(η), respectively. In A, we categorize the
collection P of functions p(ξ) ∈ A with p(0) � 1 and
Rp(ξ)> 0. (e functions in the P class are not univalent.

With U, let f, g be analytic. (e function f is said to be
subordinate to g inU if the Schwarz function ω(ξ) exists inU
such that |ω(ξ)|< |ξ| and f(ξ) � g(ω(ξ)), as shown through
f≺g. Whenever g is univalent in U, consequently the
subordination is identical to f(0) � g(0) and f(U) ⊂ g(U).

Using the concept of subordination for holomorphic
functions, Ma and Minda [15] proposed the classes:

S
∗
(ψ) � f ∈ A:

ξf′(ξ)

f(ξ)
≺ψ􏼨 􏼩,

C(ψ) � f ∈ A: 1 +
ξf″(ξ)

f′(ξ)
⎛⎝ ⎞⎠≺ψ

⎧⎨

⎩

⎫⎬

⎭,

(16)

where ψ ∈ P with ψ′(0)> 0 maps U onto a region star-like
with respect to 1 and symmetric with respect to the real axis.
By making a choice ψ to map unit disc on to some specific
regions such as cardioid, parabolas, lemniscate of Bernoulli,
and booth lemniscate in the right-half of the complex plane,
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various interesting subclasses of star-like and convex
functions could be gained well.

Lots of fascinating subclasses of star-like and convex
functions may be constructed by using ψ to map unit disc on
to particular areas such as cardioid, parabolas, lemniscate of
Bernoulli, and booth lemniscate on the right-half of the
complex plane.

For arbitrary fixed numbers C, D, − 1<C≤ 1, and − 1≤
D<C, we express through P(C, D) the family of functions
p(ξ) � 1 + p1ξ + p2ξ

2
+ · · · analytic in the unit disc and

p(ξ) ∈ P(C, D) if and only if

p(ξ) �
1 + Cw(ξ)

1 + Dw(ξ)
, (17)

where w(ξ) is the Schwarz function. Geometrically,
p(ξ) ∈ P(C, D) if and only if p(0) � 1 and p(U) lies inside
an open disc centred with center 1 − C D/(1 − D2) on the
real axis having radius C − D/(1 − D2) with diameter end
points p1(− 1) � 1 − C/(1 − D) andp1(1) � 1 + C/(1 + D).
On observing that w(ξ) � p(ξ) − 1/(p(ξ) + 1) for p(ξ) ∈ P,
we have S(ξ) ∈ P(C, D) if and only if for some p(ξ) ∈ P

S(ξ) �
(1 + C)p(ξ) + 1 − C

(1 + D)p(ξ) + 1 − D
. (18)

For detailed study on the class of Janowski functions, we
refer [16]. (e class of Janowski star-like functions and
Janowski convex functions is defined as follows:

S
∗
(C, D) ≔ f ∈ A:

ξf′(ξ)

f(ξ)
≺
1 + Cξ
1 + Dξ

, − 1≤D<C≤ 1􏼨 􏼩

C(C, D) ≔ f ∈ A: 1 +
ξf′′(ξ)

f′(ξ)
⎛⎝ ⎞⎠≺

1 + Cξ
1 + Dξ

, − 1≤D<C≤ 1
⎧⎨

⎩

⎫⎬

⎭.

(19)

Inspired by the theory familiarized by Sakaguchi [17],
and the study on analytic functions with respect to
(j, k)-symmetrical points by various authors (see [18–22]),
under this article, we formulate new subclasses listed in
Definition 2.

Definition 2. For − (π/2)< θ< (π/2), b ∈ C∖ 0{ }, and
Hj,k(ξ)/ξ ≠ 0 be defined as in (7). We say that
f ∈Kb

s (ϑ; θ;ψ; g; C, D) if H(ξ) � (f∗g)(ξ) satisfies the
subordination condition:

1 +
(1 + i tan θ)

b

ϑξ2H″(ξ) + ξH′(ξ)

(1 − ϑ)Hj,k(ξ) + ϑξHj,k
′(ξ)

− 1⎡⎢⎣ ⎤⎥⎦

≺
(C + 1)ψ(ξ) − (C − 1)

(D + 1)ψ(ξ) − (D − 1)
,

(20)

where ψ ∈ P and is given by

ψ(ξ) � 1 + L1ξ + L2ξ
2

+ L3ξ
3

+ · · · , ξ ∈ U, L1 ≠ 0. (21)

Remark 1. Here, we list few exceptional cases of the defined
class Kb

s (ϑ; θ;ψ; g; C, D).

(1) If we let C � 1, D � − 1, θ � 0, b � 1 and
g(ξ) � ξ + 􏽐

∞
n�2 ξ

n, then K1
s (0; 0;ψ; g; 1, − 1) ≡

S(j,k)
s (ψ)[19] and K1

s (1; 0;ψ; g; 1, − 1) ≡ C(j,k)
s (ψ)

[19]
(2) Fixing θ � 0, b � 1, g(ξ) � ξ + 􏽐

∞
n�2 ξ

n and
ψ(ξ) � 1 + ξ/(1 − ξ), then Kb

s (ϑ; 0;ψ; g; C, D) re-
duces to the class S(j,k)(C, D) ([18], Definition 5)

For completeness, we will now define q-analogue of the
as follows.

Definition 3. For − (π/2)< θ< (π/2), b ∈ C∖ 0{ } and
Hj,k(ξ)/ξ ≠ 0 be defined as in (7). We say that
f ∈ QKb

s (ϑ; θ;ψ; g; C, D) if H(ξ) � (f∗g)(ξ) holds the
subordination condition:

1 +
(1 + i tan θ)

b

ϑqξ2D2
q(H(ξ)) + ξDqH(ξ)

(1 − ϑ)Hj,k(ξ) + ϑξDqHj,k(ξ)
− 1⎡⎢⎣ ⎤⎥⎦

≺
(C + 1)ψ(ξ) − (C − 1)

(D + 1)ψ(ξ) − (D − 1)
,

(22)

where ψ ∈ P and ψ is defined as in (21).

By letting ψ(ξ) � 1 + ξ/(1 − qξ), q ∈ (0, 1) in
QKb

s (ϑ; θ;ψ; g; C, D), we have

1 +
(1 + i tan θ)

b

ϑqξ2D2
q(H(ξ)) + ξDqH(ξ)

(1 − ϑ)Hj,k(ξ) + ϑξDqHj,k(ξ)
− 1⎡⎢⎣ ⎤⎥⎦

�
(C + 1)w(ξ) + 2 +(C − 1)qw(ξ)

(D + 1)w(ξ) + 2 +(D − 1)qw(ξ)
,

(23)

where q ∈ (0, 1), w(ξ) is analytic in U, and w(0) � 0,
|w(ξ)|< 1.

Remark 2. (e impact of Janowski functions on a particular
conic region was initiated by Noor and Malik [23] and was
subsequently studied by various authors (see [11, 24, 25] and
references provided therein).

2. Inclusion Relationships and Integral
Representations of the Classes
Kb

s (ϑ; θ;ψ; g; C, D) and QKb
s (ϑ; θ;ψ; g; C, D)

Let us begin with the following.

Theorem 1. Let Fj,k(ϑ; ξ) � (1 − ϑ)Hj,k(ξ) + ϑξHj,k
′(ξ). If

f ∈Kb
s (ϑ; θ;ψ; g; C, D), then

R 1 +
k(1 + i tan θ)

b

ξFj, k
′(ϑ; ξ)

Fj, k(ϑ; ξ)
−
1
k

􏼠 􏼡􏼢 􏼣> 0. (24)

Proof. From the definition of Kb
s (ϑ; θ;ψ; h; C, D) and

(18), we have
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R 1 +
(1 + i tan θ)

b

ϑξ2H″(ξ) + ξH′(ξ)

(1 − ϑ)Hj, k(ξ) + ϑξHj, k
′(ξ)

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦> 0.

(25)

Replacing ξ by ε]ξ in (25), then for all
] � 0, 1, 2, . . . , k − 1, we have

R 1 +
(1 + i tan θ)

b

ε2]ϑξ2H″ ε
]ξ( 􏼁 + ε]ξH′ ε

]ξ( 􏼁

(1 − ϑ)Hj, k ε]ξ( 􏼁 + ϑε]ξHj, k
′ ε]ξ( 􏼁

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦> 0, (ξ ∈ U). (26)

Using (5) in (26), we get

R 1 +
(1 + i tan θ)

b

ε2]ϑξ2H″ ε
]ξ( 􏼁 + ε]ξH′ ε]ξ( 􏼁

(1 − ϑ)ε]j
Hj,k(ξ) + ϑε]jξHj, k

′(ξ)
− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦> 0, (ξ ∈ U). (27)

Suppose ] � 0, 1, 2, . . . , k − 1 in (27), respectively, and
summing them, we arrive at

R 1 +
(1 + i tan θ)

b

ϑξ2􏽐k− 1
]�0ε

2]− ]j
H″ ε

]ξ( 􏼁 + ξ􏽐
k− 1
]�0ε

]− ]j
H′ ε

]ξ( 􏼁

(1 − ϑ)Hj, k(ξ) + ϑξHj, k
′(ξ)

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦> 0. (28)

or equivalently,

R 1 +
k(1 + i tan θ)

b

ξFj,k
′(ϑ; ξ)

Fj,k(ϑ; ξ)
−
1
k

􏼠 􏼡􏼢 􏼣> 0, (ξ ∈ U).

(29)

Hence the proof.
Now, by using the following two equivalent forms (see

([14], page 3)) of product rule of the q-difference operator,

Dq[f(ξ)g(ξ)] � g(ξ)Dq[f(ξ)] + f(qξ)Dq[g(ξ)]

� g(qξ)Dq[f(ξ)] + f(ξ)Dq[g(ξ)],
(30)

we can establish the following result by retracing the steps as
in (eorem 1.

Theorem 2. Let Fj, k(ϑ; ξ) � (1 − ϑ)Hj, k(ξ) + ϑξDq

[Hj, k(ξ)], where Hj, k(ξ)/ξ ≠ 0. If f ∈ QKb
s (ϑ; θ;ψ; g;

C, D), then

R 1 +
k(1 + i tan θ)

b

ξDq Fj, k(ϑ; ξ)􏽨 􏽩

Fj, k(ϑ; ξ)
−
1
k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦> 0. (31)

Theorem 3. Let f ∈Kb
s (ϑ; θ;ψ; g; C, D), then

Hj, k(ξ) � ξ exp
1
k

􏽘

k− 1

]�0
􏽚
ε]ξ

0

b(C − D)[ψ(w(t)) − 1]

(1 + i tan θ)t[(D + 1)ψ(w(t)) − (D − 1)]
dt

⎧⎨

⎩

⎫⎬

⎭, if ϑ � 0,

Hj, k(ξ) � 􏽚
ξ

0
exp

1
k

􏽘

k− 1

]�0
􏽚
ε]ζ

0

b(C − D)[ψ(w(t)) − 1]

(1 + i tan θ)t[(D + 1)ψ(w(t)) − (D − 1)]
dt

⎧⎨

⎩

⎫⎬

⎭dζ , if ϑ � 1,

(32)

where Hj, k(ξ) is given by (7), w(ξ) is analytic in U, and
w(0) � 0, |w(ξ)|< 1.

Proof. Let f ∈Kb
s (ϑ; θ;ψ; g; C, D). In view of (20), we have

ϑξ2H″(ξ) + ξH′(ξ)

(1 − ϑ)Hj, k(ξ) + ϑξHj, k
′ (ξ)

− 1

�
b(C − D)[ψ(w(ξ)) − 1]

(1 + i tan θ)[(D + 1)ψ(w(ξ)) − (D − 1)]
,

(33)
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where w(ξ) is analytic in U and w(0) � 0, |w(ξ)|< 1.
Substituting ξ by ε]ξ in equality (33) and ensuing the steps as
in (eorem 1, we get

ξFj, k
′ (ϑ; ξ)

Fj, k(ϑ; ξ)
− 1 �

1
k

􏽘

k− 1

]�0

b(C − D) ψ w ε]ξ( 􏼁( 􏼁 − 1􏼂 􏼃

(1 + i tan θ) (D + 1)ψ w ε]ξ( 􏼁( 􏼁 − (D − 1)􏼂 􏼃
.

(34)

From this equality, we get

ξFj, k
′ (ϑ; ξ)

Fj, k(ϑ; ξ)
−
1
ξ

�
1
k

􏽘

k− 1

]�0

b(C − D) ψ w ε]ξ( 􏼁( 􏼁 − 1􏼂 􏼃

(1 + i tan θ)ξ (D + 1)ψ w ε]ξ( 􏼁( 􏼁 − (D − 1)􏼂 􏼃
. (35)

Upon integration, we get

log
Fj, k(ϑ; ξ)

ξ
􏼨 􏼩 �

1
k

􏽘

k− 1

]�0
􏽚
ξ

0

b(C − D) ψ w ε]ζ( 􏼁( 􏼁 − 1􏼂 􏼃

(1 + i tan θ)ζ (D + 1)ψ w ε]ζ( 􏼁( 􏼁 − (D − 1)􏼂 􏼃
dζ. (36)

or equivalently,

(1 − ϑ)Hj, k(ξ) + ϑξHj, k
′(ξ) � ξ exp

1
k

􏽘

k− 1

]�0
􏽚
ε]ξ

0

b(C − D)[ψ(w(t)) − 1]

(1 + i tan θ)t[(D + 1)ψ(w(t)) − (D − 1)]
dt

⎧⎨

⎩

⎫⎬

⎭. (37)

(is concludes the proof of (eorem 3. □ Theorem 4. Let f ∈ QKb
s (ϑ; θ;ψ; g; C, D), then we have

Hj, k(ξ) � ξ exp
ln q

(q − 1)k
􏽘

k− 1

]�0
􏽚
ε]ξ

0

b(C − D)[ψ(w(t)) − 1]

(1 + i tan θ)t[(D + 1)ψ(w(t)) − (D − 1)]
dqt

⎧⎨

⎩

⎫⎬

⎭, (if ϑ � 0),

Hj, k(ξ) � 􏽚
ξ

0
exp

ln q

(q − 1)k
× 􏽘

k− 1

]�0
􏽚
ε]ζ

0

b(C − D)[ψ(w(t)) − 1]

(1 + i tan θ)t[(D + 1)ψ(w(t)) − (D − 1)]
dqt

⎧⎨

⎩

⎫⎬

⎭dqζ, (if ϑ � 1).

(38)

where Hj, k(ξ) defined by equality (7), w(ξ) is analytic in U,
and w(0) � 0, |w(ξ)|< 1.

Proof. Let f ∈ QKb
s (ϑ; θ;ψ; g; C, D). In sight of (eo-

rems 2 and 3, we have

ξFj, k
′ (ϑ; ξ)

Fj, k(ϑ; ξ)
−
1
ξ

�
1
k

􏽘

k− 1

]�0

b(C − D) ψ w ε]ξ( 􏼁( 􏼁 − 1􏼂 􏼃

(1 + i tan θ)ξ (D + 1)ψ w ε]ξ( 􏼁( 􏼁 − (D − 1)􏼂 􏼃
, (39)

where w(ξ) is analytic in U and w(0) � 0, |w(ξ)|< 1. For
f ∈H(U) and 0< q< 1, we obtain (see [10])

Iq

Dqf(ξ)

f(ξ)
�

q − 1
ln q

log f(ξ), (40)
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where Iqf is the Jackson q-integral, defined as in (14). In-
tegrating the above equality, we get

q − 1
lnq

log
Fj, k(ϑ; ξ)

ξ
􏼨 􏼩 �

1
k

􏽘

k− 1

]�0
􏽚
ξ

0

b(C − D) ψ w ε]ζ( 􏼁( 􏼁 − 1􏼂 􏼃

(1 + i tan θ)ζ (D + 1)ψ w ε]ζ( 􏼁( 􏼁 − (D − 1)􏼂 􏼃
dqζ, (41)

or equivalently,

(1 − ϑ)Hj,k(ξ) + ϑξHj,k
′(ξ) � ξ exp

lnq

(q − 1)k
􏽘

k− 1

]�0
􏽚
ε]ξ

0

b(C − D)[ψ(w(t)) − 1]

(1 + i tan θ)t[(D + 1)ψ(w(t)) − (D − 1)]
dqt

⎧⎨

⎩

⎫⎬

⎭. (42)

(is concludes the proof of (eorem 3.
By fixing C � 1, D � − 1, θ � 0, b � 1, and

g(ξ) � ξ + 􏽐
∞
n�2 ξ

n in (eorem 3, we state the subsequent
result.

Corollary 1 (see ([19], (eorems 3 and 4)). Let fj,k(ξ)≠ 0
be assumed as in (4).

(i) If f ∈ S(j, k)
s (ϕ), then

fj, k(ξ) � ξ exp
1
k

􏽘

k− 1

]�0
􏽚
ε]ξ

0

ϕ(w(t)) − 1
t

dt
⎧⎨

⎩

⎫⎬

⎭. (43)

(ii) If f ∈ C(j, k)
s (ϕ), then

fj, k(ξ) � 􏽚
ξ

0
exp

1
k

􏽘

k− 1

]�0
􏽚
ε]ξ

0

ϕ(w(t)) − 1
t

dt
⎧⎨

⎩

⎫⎬

⎭dxieta,

(44)

where w(ξ) is analytic in U and w(0) � 0, |w(ξ)|< 1.

Corollary 2. Let fj, k(ξ)≠ 0 be assumed as in (4). If
f ∈ S(j, k)(C, D), then

fj, k(ξ) � ξ exp
1
k

􏽘

k− 1

]�0
􏽚
ε]ξ

0

1
t

1 + Cw(t)

1 + Dw(t)
􏼢 􏼣dt

⎧⎨

⎩

⎫⎬

⎭, (45)

where w(ξ) is analytic in U and w(0) � 0, |w(ξ)|< 1.

3. Coefficient Inequalities for
Kb

s (ϑ; θ;ψ; g; C, D) and QKb
s (ϑ; θ;ψ; g; C, D)

(e coefficient estimate |an| of the defined function classes is
determined in this section.

Theorem 5. Let |ψ(ξ)|< |D − 1/(D + 1)|, ∀ξ ∈ U and Υn’s
be real. If f ∈Kb

s (ϑ; θ;ψ; g; C, D), then for n≥ 2,

an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
Υn

􏽙

n− 1

m�1

[(1 − ϑ) + ϑm]Λm,j(C − D)L1b − 2(1 + i tan θ) ϑm m − 1 − Λm,j􏼐 􏼑 + m − (1 − ϑ)Λm,j􏽨 􏽩D
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2 sec θ ϑ(m + 1) m − Λm+1,j􏼐 􏼑 +(m + 1) − (1 − ϑ)Λm+1,j􏽨 􏽩
. (46)

Proof. By the definition of Kb
s (ϑ; θ;ψ; g; C, D), we have

1 +
(1 + i tan θ)

b

ϑξ2H″(ξ) + ξH′(ξ)

(1 − ϑ)Hj,k(ξ) + ϑξHj,k
′(ξ)

− 1⎡⎢⎣ ⎤⎥⎦ � p(ξ), (47)

where p(ξ) ∈ P and satisfies the condition p(ξ)≺((C + 1)ψ
(ξ) − (C − 1))/((D + 1)ψ(ξ) − (D − 1)).

Equivalently, (47) can be rewritten as

(1 + i tan θ) 􏽘

∞

n�2
ϑn n − 1 − Λn,j􏼐 􏼑 + n − (1 − ϑ)Λn,j􏽨 􏽩Υnanξ

n⎡⎣ ⎤⎦

� b 􏽘
∞

n�1
[(1 − ϑ) + ϑn]Λn,janΥnξ

n⎡⎣ ⎤⎦ 􏽘

∞

n�1
pnξ

n⎡⎣ ⎤⎦, a1 � Υ1 � Λ1,j � 1􏼐 􏼑.

(48)

On equating the coefficient of ξn, we get

(1 + i tan θ) ϑn n − 1 − Λn,j􏼐 􏼑 + n − (1 − ϑ)Λn,j􏽨 􏽩Υnan

� b pn− 1Λ1,j + pn− 2(1 + ϑ)Λ2,jΥ2a2 + · · · + p1􏽨

· 1 +(n − 2)ϑ)Υn− 1an− 1( 􏼃.

(49)

From Lemma 6 of [26], we have |pn|≤ |L1|(C − D)/2,
n≥ 1. On computation, we have

an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 sec θ ϑn n − 1 − Λn,j􏼐 􏼑 + n − (1 − ϑ)Λn,j􏽨 􏽩Υn

· 􏽘

n− 1

m�1
[(1 − ϑ) + ϑm]Λm,jΥm am

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦.

(50)
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Taking n � 2, in (50), we get

a2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
|b|(C − D) L1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 sec θ 2ϑ 1 − Λ2,j􏼐 􏼑 + 2 − (1 − ϑ)Λ2,j􏽨 􏽩Υ2
. (51)

On substituting n � 2 in (46), we can see the hypothesis
is true for n � 2. Now, taking n � 3 in (50), we get

a3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
|b|(C − D) L1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 sec θ 3ϑ 2 − Λ3,j􏼐 􏼑 + 3 − (1 − ϑ)Λ3,j􏽨 􏽩Υ3
1 +(1 + ϑ)Λ2,jΥ2 a2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩

≤
|b|(C − D) L1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 sec θ 3ϑ 2 − Λ3,j􏼐 􏼑 + 3 − (1 − ϑ)Λ3,j􏽨 􏽩Υ3
1 +

(1 + ϑ)Λ2,j|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 sec θ 2ϑ 1 − Λ2,j􏼐 􏼑 + 2 − (1 − ϑ)Λ2,j􏽨 􏽩
⎡⎢⎣ ⎤⎥⎦.

(52)

If we let n � 3, in (46), we have

a3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
Υ3

|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Λ1,j

2 sec θ 2ϑ 1 − Λ2,j􏼐 􏼑 + 2 − (1 − ϑ)Λ2,j􏽨 􏽩
×

(C − D)L1b(1 + ϑ)Λ2,j − 2(1 + i tan θ) 2ϑ 1 − Λ2,j􏼐 􏼑 + 2 − (1 − ϑ)Λ2,j􏽨 􏽩D
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2 sec θ 3ϑ 2 − Λ3,j􏼐 􏼑 + 3 − (1 − ϑ)Λ3,j􏽨 􏽩

⎡⎢⎢⎣ ⎤⎥⎥⎦

≤
1
Υ3

|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Λ1,j

2 sec θ 3ϑ 2 − Λ3,j􏼐 􏼑 + 3 − (1 − ϑ)Λ3,j􏽨 􏽩
×

|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(1 + ϑ)Λ2,j + 2 sec θ 2ϑ 1 − Λ2,j􏼐 􏼑 + 2 − (1 − ϑ)Λ2,j􏽨 􏽩|D|

2 sec θ 2ϑ 1 − Λ2,j􏼐 􏼑 + 2 − (1 − ϑ)Λ2,j􏽨 􏽩
⎡⎢⎣ ⎤⎥⎦

≤
|b|(C − D) L1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 sec θ 3ϑ 2 − Λ3,j􏼐 􏼑 + 3 − (1 − ϑ)Λ3,j􏽨 􏽩Υ3
1 +

(1 + ϑ)Λ2,j|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 sec θ 2ϑ 1 − Λ2,j􏼐 􏼑 + 2 − (1 − ϑ)Λ2,j􏽨 􏽩
⎡⎢⎣ ⎤⎥⎦.

(53)

Hence, the hypothesis of the theorem is true for n � 3.
Now, let us suppose (46) is valid for n � 2, 3, . . . r. On using
triangle inequality in (46), we get

ar

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
Υr

􏽙

r− 1

m�1

[(1 − ϑ) + ϑm]Λm,j|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 sec θ ϑm m − 1 − Λm,j􏼐 􏼑 + m − (1 − ϑ)Λm,j􏽨 􏽩

2 sec θ ϑ(m + 1) m − Λm+1,j􏼐 􏼑 +(m + 1) − (1 − ϑ)Λm+1,j􏽨 􏽩
. (54)

By induction hypothesis, we have

|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 sec θ ϑr r − 1 − Λr,j􏼐 􏼑 + r − (1 − ϑ)Λr,j􏽨 􏽩Υr

􏽘

r− 1

m�1
[(1 − ϑ) + ϑm]Λm,jΥm am

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦

≤
1
Υr

􏽙

r− 1

m�1

[(1 − ϑ) + ϑm]Λm,j|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 sec θ ϑm m − 1 − Λm,j􏼐 􏼑 + m − (1 − ϑ)Λm,j􏽨 􏽩

2 sec θ ϑ(m + 1) m − Λm+1,j􏼐 􏼑 +(m + 1) − (1 − ϑ)Λm+1,j􏽨 􏽩
.

(55)

From the above inequality, we have
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􏽙

r

m�1

[(1 − ϑ) + ϑm]Λm,j|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2 sec θ ϑm m − 1 − Λm,j􏼐 􏼑 + m − (1 − ϑ)Λm,j􏽨 􏽩􏽨 􏽩

2Υr+1sec θ ϑ(m + 1) m − Λm+1,j􏼐 􏼑 +(m + 1) − (1 − ϑ)Λm+1,j􏽨 􏽩

≥
|b|(C − D) L1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2 sec θ ϑ(r + 1) r − Λr+1,j􏼐 􏼑 +(r + 1) − (1 − ϑ)Λr+1,j􏽨 􏽩Υr+1
􏽘

r

m�1
[(1 − ϑ) + ϑm]Λm,jΥm am

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦,

(56)

which implies that inequality (46) is true for n � r + 1. Hence
the proof of the theorem. □

Theorem 6. Let |ψ(ξ)|< |D − 1/(D + 1)| for all ξ ∈ U and
Υn be real. If f ∈ QKb

s (ϑ; θ;ψ; g; C, D), then for n≥ 2,

an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
Υn

􏽙

n− 1

m�1

(1 − ϑ) + ϑ[m]q􏽨 􏽩Λm,j(C − D)L1b − 2(1 + i tan θ) qϑ[m]q [m − 1]q − Λm,j􏼐 􏼑 +[m]q − (1 − ϑ)Λm,j􏽨 􏽩D
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2 sec θ ϑq[m + 1]q [m]q − Λm+1,j􏼐 􏼑 +[m + 1]q − (1 − ϑ)Λm+1,j􏽨 􏽩
. (57)

Proof. From the definition of QKb
s (ϑ; θ;ψ; g; C, D), we

have

(1 + i tan θ) 􏽘
∞

n�2
ϑ[n]q q[n − 1]q − Λn,j􏼐 􏼑 +[n]q − (1 − ϑ)Λn,j􏽨 􏽩Υnanξ

n⎡⎣ ⎤⎦ � b 􏽘
∞

n�1
(1 − ϑ) + ϑ[n]q􏽮 􏽯Λn,janΥnξ

n⎡⎣ ⎤⎦ 􏽘

∞

n�1
pnξ

n⎡⎣ ⎤⎦.

(58)

Equating the coefficient of ξn and retracing the steps as in
(eorem 5, we get

an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

|b|(C − D) L1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2 sec θ ϑ[n]q q[n − 1]q − Λn,j􏼐 􏼑 +[n]q − (1 − ϑ)Λn,j􏽨 􏽩Υn

× 􏽘
n− 1

m�1
(1 − ϑ) + ϑ[m]q􏽨 􏽩Λm,jΥm am

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦.

(59)

Now, by repeating the processes in (eorem 5, we ac-
quire the required outcome. □ □

If we let ψ(ξ) � 1 + ξ/(1 − qξ) in(eorem 6, we have the
following.

Corollary 3. Let f ∈ QKb
s (ϑ; θ;ψ; g; C, D) and Υn be real,

then for n≥ 2,

an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

1
Υn

􏽙

n− 1

m�1

(1 − ϑ) + ϑ[m]q􏽨 􏽩Λm,j(C − D)(1 + q)b − 2(1 + i tan θ) qϑ[m]q [m − 1]q − Λm,j􏼐 􏼑 +[m]q − (1 − ϑ)Λm,j􏽨 􏽩[D(1 + q) +(1 − q)]
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2 sec θ ϑq[m + 1]q [m]q − Λm+1,j􏼐 􏼑 +[m + 1]q − (1 − ϑ)Λm+1,j􏽨 􏽩
.

(60)

If we let θ � 0, b � 1, g(ξ) � ξ + 􏽐
∞
n�2 ξ

n, and ψ(ξ) �

1 + ξ/1 − ξ in (eorem 5, we have the following.

Corollary 4. (see [18], Meorem 2) Let f ∈ S(j,k)(C, D) and
Υn be real, then for n≥ 2,

an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽙

n− 1

m�1

Λm,j[(C − D) − 1] + m

(m + 1) − Λm+1,j

. (61)

4. Conclusion

Very few studies have been showed on analytic functions
with regard to (j, k)-symmetric points. Since we have ar-
ticulated the problem differently so as to deviate from the
similar studies, only few special cases could be discussed.
Furthermore, by swapping the ordinary differentiation with
quantum differentiation, we have tried at the discretization
of some of the familiar findings.
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