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Let h be a nonvanishing analytic function in the open unit disc with h(0) � 1. Consider the class consisting of normalized analytic
functions f whose ratios f(z)/g(z), g(z)/zp(z), and p(z) are each subordinate to h for some analytic functions g and p. +e
radius of starlikeness of order α is obtained for this class when h is chosen to be either h(z) �

�����
1 + z

√
or h(z) � ez. Further,

starlikeness radii are also obtained for each of these two classes, which include the radius of Janowski starlikeness, and the radius of
parabolic starlikeness.

1. Two Subclasses of Normalized
Analytic Functions

Let A denote the class of normalized analytic functions
f(z) � z + 􏽐

∞
k�2 akzk in the unit disc D � z ∈ C: |z|< 1{ }. A

prominent subclass of A is the class S∗ consisting of
functions f ∈ A such that f(D) is a starlike domain with
respect to the origin. Geometrically, this means the linear
segment joining the origin to every other point w ∈ f(D)

lies entirely in f(D). Every starlike function in A is nec-
essarily univalent.

Since f′(0) does not vanish, every function f ∈ A is
locally univalent at z � 0. Further, each function f ∈ A
mirrors the identity mapping near the origin and thus, in
particular, maps small circles |z| � r onto curves which
bound starlike domains. If f ∈ A is also required to be
univalent in D, then it is known that f maps the disc |z|< r

onto a domain starlike with respect to the origin for every
r≤ r0 ≔ tan h(π/4) (see [1], Corollary, p. 98). +e constant
r0 cannot be improved. Denoting byS the class of univalent
functions f ∈ A, the number r0 � tan h(π/4) is commonly
referred to as the radius of starlikeness for the class S.

Another informative description of the class S is
its radius of convexity. Here, it is known that every f ∈ S
maps the disc |z|< r onto a convex domain for every

r≤ r0 ≔ 2 −
�
3

√
([1], Corollary, p. 44). +us, the radius of

convexity for S is r0 � 2 −
�
3

√
.

To formulate a radius description for other entities
besides starlikeness and convexity, consider in general two
families G and M of A. +e G-radius for the class M,
denoted by RG(M), is the largest number R such that
r− 1f(rz) ∈ G for every 0< r≤R and f ∈M. +us, for
example, an equivalent description of the radius of star-
likeness for S is that the S∗-radius for the class S is
RS∗(S) � tanh(π/4).

In this paper, we seek to determine the radius of star-
likeness and certain otherG-radius, for particular subclasses
G of A. Several widely studied subclasses of A have simple
geometric descriptions; these functions are often expressed
as a ratio between two functions. Among the very early
studies in this direction is the class of close-to-convex
functions introduced by Kaplan [2] and Reade’s class [3] of
close-to-starlike functions. Close-to-convex functions are
necessarily univalent, but not so for close-to-starlike
functions.

In this paper, we examine two different subclasses of
functions in A satisfying a certain subordination of ratios.
Interestingly, these classes contain nonunivalent functions.
An analytic function f is subordinate to an analytic function
g, written f≺g, if
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f(z) � g(w(z)), z ∈ D, (1)

for some analytic self-map w in D with |w(z)| ≤ |z|. +e
function w is often referred to as a Schwarz function.

Now, let h be a nonvanishing analytic function inD with
h(0) � 1. +e classes treated in this paper consist of func-
tions f ∈ A whose ratios f(z)/g(z), g(z)/zp(z), and p(z)

are each subordinate to h for some analytic functions g and
p:

f(z)

g(z)
≺ h(z),

g(z)

zp(z)
≺ h(z),

p(z) ≺ h(z).

(2)

When p is the constant one function, then the class
contains functions f ∈ A satisfying the subordination of
ratios

f(z)

g(z)
≺h(z),

g(z)

z
≺h(z).

(3)

When f ∈ A satisfies RE(f(z)/g(z)) > 0 and
RE(g(z)/z) > 0, or their variants, these functions have
earlier been studied, notably by MacGregor in [4–7] and
Ratti in [8, 9]. For related investigations, see [10, 11] and
several recent references therein. Under the present context,
this amount to choosing h(z) � (1 + z)/(1 − z) or some
other appropriate choices of h.

In this paper, two specific choices of the function h are
made: h(z) �

�����
1 + z

√
and h(z) � ez.

+e class T1: this is the class given by

T1 ≔ f ∈ A:
f(z)

g(z)
≺

�����
1 + z

√
,

g(z)

zp(z)
≺

�����
1 + z

√
, for someg ∈ A, p(z)≺

�����
1 + z

√
􏼨 􏼩. (4)

+is class is nonempty: let f1, g1, p1: D⟶ C be given
by

f1(z) � z(1 + z)
3/2

,

g1(z) � z(1 + z),

p1(z) �
�����
1 + z

√
.

(5)

+en, f1(z)/g1(z)≺
�����
1 + z

√
and g1(z)/zp1(z)≺

�����
1 + z

√
,

so that f1 ∈ T1. +e function f1 will be shown to play the
role of an extremal function for the class T1. Since f1′
vanishes at z � − 2/5, the function f1 is nonunivalent, and
thus, the class T1 contains nonunivalent functions. In-
cidentally, f1 demonstrates the radius of univalence for
T1 is at most 2/5. In +eorem 1, the radius of starlikeness
for T1 is shown to be 2/5, whence T1 has radius of
univalence 2/5.

+e following is a useful result in investigating the
starlikeness of the class T1.

Lemma 1. Let p(z)≺
�����
1 + z

√
. .en, p satisfies the sharp

inequalities
����
1 − r

√
≤ |p(z)|≤

����
1 + r

√
, |z|≤ r, (6)

zp′(z)

p(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

r

2(1 − r)
, |z|≤ r. (7)

Proof. If p(z)≺
�����
1 + z

√
, then p2(z) � 1 + w(z) for some

Schwarz function w. +e well-known Schwarz lemma shows
that |w(z)|≤ |z| and

w′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1 − |w(z)|

2

1 − |z|
2 . (8)

+erefore,

|p(z)|
2

� |1 + w(z)|≤ 1 +|w(z)|≤ 1 +|z|≤ 1 + r, (9)

for |z|≤ r, that is, |p(z)|≤
����
1 + r

√
for |z|≤ r. Similarly,

|p(z)|≥
����
1 − r

√
for |z|≤ r.

Since 2zp′(z)/p(z) � zw′(z)/(1 + w(z)), the inequality
(8) readily shows

2
zp′(z)

p(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

|z| w′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 − |w(z)|
≤

|z|(1 +|w(z)|)

1 − |z|
2

≤
|z|(1 +|z|)

1 − |z|
2 �

|z|

1 − |z|
≤

r

1 − r
,

(10)

for |z|≤ r. +is proves (7). +e inequalities are sharp for the
function p: D⟶ C defined by p(z) �

�����
1 + z

√
. □

For f ∈ T1, let p1(z) � f(z)/g(z) and p2(z) �

g(z)/zp(z). +en, f(z) � zp(z)p1(z)p2(z) and

zf′(z)

f(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

zp′(z)

p(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

zp1′(z)

p1(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

zp2′(z)

p2(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (11)

Since p, p1, p2≺
�����
1 + z

√
, we deduce from (7) and (11) that

zf′(z)

f(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

3r

2(1 − r)
, |z|≤ r, (12)

for each function f ∈ T1. Sharp growth inequalities also
follow from (6):

r(1 − r)
3/2 ≤ |f(z)|≤ r(1 + r)

3/2
, (13)
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for each f ∈ T1. Crude distortion inequalities can readily be
obtained from (12) and the growth inequality; however,
finding sharp estimates remain an open problem.

+e class T2: this class is defined by

T2 ≔ f ∈ A:
f(z)

g(z)
≺ez

,
g(z)

zp(z)
≺ez

, for someg ∈ A, p(z)≺ez
􏼨 􏼩.

(14)

Let f2, g2, p2: D⟶ C be given by

f2(z) � ze
3z

,

g2(z) � ze
2z

,

p2(z) � e
z
.

(15)

Evidently, f2(z)/g2(z)≺ez, g2(z)/zp2(z)≺ez, so that
f2 ∈ T2, and the classT2 is nonempty. Similar to f1 ∈ T1,
the function f2 plays the role of an extremal function for the
class T2. +e Taylor series expansion for f2 is

f2(z) � z + 3z
2

+
9z

3

2
+
9z

4

2
+
27z

5

8
+ · · · . (16)

Comparing the second coefficient, it is clear that f2 is
nonunivalent. Hence, the class T2 contains nonunivalent
functions. +e derivative f2′ vanishes at z � − 1//3, which
shows the radius of univalence for T2 is at most 1/3. From
+eorem 1, the radius of starlikeness is shown to be 1/3, and
so the radius of univalence for T2 is 1/3.

Lemma 2. Every p(z)≺ez satisfies the sharp inequalities

e
− r ≤ |p(z)|≤ e

r
, |z|≤ r, (17)

zp′(z)

p(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

r, |z|≤ r≤
�
2

√
− 1,

1 + r
2

􏼐 􏼑
2

4 1 − r
2

􏼐 􏼑
, |z| � r≥

�
2

√
− 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

Proof. Let p(z)≺ez. Since p(z) � ew(z) for some Schwarz
self-map w satisfying |w(z)|≤ |z|, it follows that

e
− |z| ≤ e

− |w(z)| ≤ |p(z)| � e
Rew(z) ≤ e

|w(z)| ≤ e
|z|

. (19)

+e inequalities become equality for the function
p: D⟶ C defined by p(z) � ez respectively at z � − r and
z � r.

+e function w also satisfies the sharp inequality (see [1],
Corollary, p. 199)

w′(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤

1, r � |z|≤
�
2

√
− 1,

1 + r
2

􏼐 􏼑
2

4r 1 − r
2

􏼐 􏼑
, r≥

�
2

√
− 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

From zp′(z)/p(z) � zw′(z), we conclude that

zp′(z)

p(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

r, r � |z|≤
�
2

√
− 1,

1 + r
2

􏼐 􏼑
2

4 1 − r
2

􏼐 􏼑
, r≥

�
2

√
− 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

+is inequality is sharp for the function p: D⟶ C

defined by p(z) � ez when r � |z|≤
�
2

√
− 1. It is also sharp

in the remaining interval for the function p(z) � ew(z),
where w is the extremal function for which equality holds in
(20). □

For f ∈ T2, let p1(z) � f(z)/g(z) and
p2(z) � g(z)/zp(z). +en, f(z) � zp(z)p1(z)p2(z) and

zf′(z)

f(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

zp′(z)

p(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

zp1′(z)

p1(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

zp2′(z)

p2(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (22)

Since p, p1, p2≺ez, estimates (18) and (22) show that

zf′(z)

f(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

3r, r � (z)≤
�
2

√
− 1,

3 1 + r
2

􏼐 􏼑
2

4 1 − r
2

􏼐 􏼑
, r≥

�
2

√
− 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

for each function f ∈ T2. It also follows from (17) that

re
− 3r ≤ |f(z)|≤ re

3r (24)

holds for each function f ∈ T2 and that these estimates are
sharp.

In this paper, we shall adopt the commonly used no-
tations for subclasses of A. First, for 0≤ α< 1, let S∗(α)

denote the class of starlike functions of order α consisting of
functions f ∈ A satisfying the subordination

zf′(z)

f(z)
≺
1 +(1 − 2α)z

1 − z
. (25)

+us,

Re
zf′(z)

f(z)
> α, z ∈ D. (26)

+e case α � 0 corresponds to the classical functions
whose image domains are starlike with respect to the
origin. Various other starlike subclasses ofA occurring in
the literature can be expressed in terms of the
subordination

zf′(z)

f(z)
≺φ(z), (27)

for suitable choices of the superordinate function φ. When
φ: D⟶ C is chosen to be φ(z) ≔ (1 + Az)/(1 + Bz),
− 1≤B<A≤ 1, the subclass derived is denoted by S∗[A, B].
Functions f ∈ S∗[A, B] are known as Janowski starlike
functions. When φ(z) ≔ 1 + (2/π2)((log((1 +

�
z

√
)

/(1 −
�
z

√
)))2), the subclass is denoted by S∗p, and its

functions are called parabolic starlike functions.
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In Section 2 of this paper, the radius of starlikeness of
order α, Janowski starlikeness, and parabolic starlikeness are
found for the classes Ti, with i � 1, 2. Section 3 deals with
the determination of the G-radius for the class Ti with
i � 1, 2, for certain other subclasses G occurring in the lit-
erature. +ese classes are associated with particular choices
of the superordinate function φ in (27). As mentioned
earlier, theG-radius for a given classM, denoted by RG(M),
is the largest number R such that r− 1f(rz) ∈ G for every
0< r≤R and f ∈M. It will become apparent in the
forthcoming proofs that there are common features in the
methodology of finding the G-radius for each of these
subclasses.

2. Starlikeness of Order α, Janowski
Starlikeness, and Parabolic Starlikeness

+e first result deals with the S∗(α)-radius (radius of
starlikeness of order α) for the classes T1 and T2. +is
radius is shown to equal the S∗α-radius, where S∗α is the
subclass containing functions f ∈ A satisfying
|zf′(z)/f(z) − 1|< 1 − α. +e latter condition also implies
that S∗α ⊂ S

∗(α).

Theorem 1. Let 0≤ α< 1. .e radii of starlikeness of order α
for T1 and T2 are

(i) RS∗(α)(T1) � RS∗α
(T1) � 2(1 − α)/(5 − 2α),

(ii) RS∗(α)(T2) � RS∗α
(T2) � (1 − α)/3.

Proof

(i) +e function σ(r) � (2 − 5r)/(2 − 2r) is a decreasing
function on [0, 1). Further, the number R1 ≔ 2(1 −

α)/(5 − 2α) is the root of the equation σ(r) � α. For
f ∈ T1 and 0< r � |z|≤R1, the inequality (12)
readily yields

Re
zf′(z)

f(z)
≥ 1 −

3r

2(1 − r)
�
2 − 5r

2 − 2r
� σ(r)≥ σ R1( 􏼁 � α,

zf′(z)

f(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

3r

2(1 − r)
� 1 − σ(r)≤ 1 − σ R1( 􏼁 � 1 − α.

(28)

At z � − R1, the function f1 ∈ T1 given by f1(z) �

z(1 + z)3/2 yields

zf1′(z)

f1(z)
�
2 + 5z

2 + 2z
�
2 − 5R1

2 − 2R1
� α. (29)

+us,

Re
zf1′(z)

f1(z)
� α,

zf1′(z)

f1(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 1 − α.

(30)

+is proves that the S∗(α) and S∗α radii for T1 are
the same number R1.

(ii) Consider ω(r) � 1 − 3r, 0≤ r< 1. +e number R2 �

(1 − α)/3< 1/3 is clearly the root of the equation
ω(r) � α. Since ω is decreasing, then ω(r)≥ω(R2) �

α for 0< r≤R2. It follows from (23) that for
0< r � |z|≤R2,

Re
zf′(z)

f(z)
≥ 1 − 3r � ω(r)≥ α,

zf′(z)

f(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 3r � 1 − ω(r)≤ 1 − α.

(31)

Evaluating the function f2(z) � ze3z at z � − R2 yields

zf2′(z)

f2(z)
� 1 − 3R2 � α. (32)

Hence,

Re
zf2′(z)

f2(z)
� α,

zf2′(z)

f2(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 1 − α.

(33)

+is proves that the S∗(α) and S∗α radii for the classT2
are the same number R2. □

Next, we find the S∗[A, B]-radius (Janowski starlike-
ness) for T1 and T2. Recall that S

∗[A, B] consists of an-
alytic functions f ∈ A satisfying the subordination
zf′(z)/f(z)≺(1 + Az)/(1 + Bz), − 1≤B<A≤ 1.

Theorem 2.
(i) Every f ∈ T1 is Janowski starlike in the disc Dr �

z: |z|< r{ } for r≤ 2(A − B)/(3(1 + |B|) + 2(A − B)).
If B< 0, then RS∗[A,B](T1) � 2(A − B)/
(3 + 2A − 5B)).

(ii) .e radius of Janowski starlikeness for T2 is
RS∗[A,B](T2) � (A − B)/(3(1 + |B|)).

Proof. Since S∗[A, − 1] � S∗((1 − A)/2), the results in the
case B � − 1 follow from +eorem 1. We now prove the
results when − 1<B<A≤ 1.

(i) Let f ∈ T1 and write w � zf′(z)/f(z). +en, (12)
shows that |w − 1|≤ 3r/(2(1 − r)) for |z|≤ r. For
0≤ r≤R1 ≔ 2(A − B)/(3(1 + |B|) + 2(A − B)), then
3R1/(2(1 − R1)) � (A − B)/(1 + |B|).
For 0≤ r≤R1, we first show that the disc

w: |w − 1|≤
3R1

2 1 − R1( 􏼁
�

A − B

1 +|B|
􏼨 􏼩 (34)

is contained in the images of the unit disc under the
mapping (1 + Az)/(1 + Bz). As B≠ − 1, the image is
the disc given by
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w: w −
1 − AB

1 − B
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<

A − B

1 − B
2􏼨 􏼩. (35)

Silverman ([12], p. 50–51) has shown that the disc

w: |w − c|<d{ } ⊂ w: |w − a|< b{ }, (36)

if and only if |a − c|≤ b − d. With the choices c � 1,
d � (A − B)/(1 + |B|), a � (1 − AB)/(1 − B2), and
b � (A − B)/(1 − B2), then |a − c| � |B|(A − B)/
(1 − B2) � b − d. +is proves that S∗[A, B] radius is
at least R1.
To prove sharpness, consider the function f1 ∈ T1
given by f1(z) � z(1 + z)3/2. Evidently, zf1′(z)/f1
(z) � (2 + 5z)/(2 + 2z). For B< 0, evaluating
at z � − R1, then zf1′(z)/f1(z) � 1+ 3z/(2 + 2z) �

1 − (A − B)/(1 + |B|) � (1− A)/(1 − B). +is shows
that

zf1′(z)

f1(z)
−
1 − AB

1 − B
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�
1 − A

1 − B
−
1 − AB

1 − B
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

A − B

1 − B
2, (37)

proving sharpness in the case B< 0.
(ii) Let f ∈ T2 and w ≔ zf′(z)/f(z). It follows from

(23) that |w − 1|≤ 3r for |z|≤ r. For
0≤ r≤R2 ≔ (A − B)/(3(1 + |B|)), we see that the
disc w: |w − 1|≤ 3R2 � (A − B)/(1 + |B|)􏼈 􏼉 is con-
tained in the disc w: |w − (1 − AB)/{

(1 − B2)|< (A − B)/(1 − B2)}, as in the proof of (i).
+is proves that S∗[A, B] radius is at least R2. +e
result is sharp for the function f2 ∈ T2 given by the
function f2(z) � ze3z. □

+e function φPAR: D⟶ C given by

φPAR(z) ≔ 1 +
2
π2

log
1 +

�
z

√

1 −
�
z

√􏼠 􏼡

2

, IM
�
z

√
≥ 0, (38)

maps D into the parabolic region

φPAR(D) � w � u + iv: v
2 < 2u − 1􏽮 􏽯 � w: REw>|w − 1|{ }.

(39)

+e class C(φPAR) � f ∈ A: 1 + zf″(z)/f′(z)􏼈

≺φPAR(z)} is the class of uniformly convex functions in-
troduced by Goodman [13]. +e corresponding class
S∗p ≔ S∗(φPAR) � f ∈ A: zf′(z)/f(z)≺φPAR(z)􏼈 􏼉 intro-
duced by Rønning [14] is known as the class of parabolic
starlike functions. +e class S∗p consists of functions f ∈ A
satisfying

Re
zf′(z)

f(z)
􏼠 􏼡>

zf′(z)

f(z)
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, z ∈ D. (40)

Evidently, every parabolic starlike function is
also starlike of order 1/2. +e radius of parabolic star-
likeness for the classes T1 and T2 is given in the next
result.

Corollary 1. .e radius of parabolic starlikeness for T1 and
T2 is respectively equal to its radius of starlikeness of order 1/
2. .us,

(i) RS∗p
(T1) � 1/4,

(ii) RS∗p
(T2) � 1/6.

Proof. Shanmugam and Ravichandran ([15], p. 321) proved
that

w: |w − a|< a −
1
2

􏼚 􏼛⊆ w: REw>|w − 1|{ }, (41)

for 1/2< a≤ 3/2. Choosing a � 1, this implies that
S∗1/2 ⊂ S

∗
p. Every parabolic starlike function is also starlike of

order 1/2, whence the inclusion S∗1/2 ⊂ S
∗
p ⊂ S

∗(1/2).
+erefore, for any class F, readily RS∗1/2

(F)≤RS∗p
(F)≤RS∗(1/2)(F).

When F � Ti, i � 1, 2, +eorem 1 gives RS∗(α)(Ti) �

RS∗α
(Ti). +is shows that RS∗1/2

(Ti) � RS∗p
(Ti) � RS∗

(1/2)(Ti). Since RS∗(1/2)(T1) � 1/4 and RS∗(1/2)(T2) � 1/6
from +eorem 1, it follows that RS∗p

(T1) � 1/4 and
RS∗p

(T2) � 1/6. □

3. Further Radius of Starlikeness

In this section, we find the G-radius for the class Ti with
i � 1, 2, for certain other widely studied subclasses G. +ese
are associated with particular choices of the superordinate
function φ in (27).

Denote by S∗exp ≔ S∗(ez) the class associated with
φ(z) ≔ ez in (27). +is class was introduced by Mendiratta
et al. [16], and it consists of functions f ∈ A satisfying the
condition |log(zf′(z)/f(z))|< 1. +e following result gives
the radius of exponential starlikeness for the classes T1 and
T2.

Corollary 2. .e S∗exp-radius for the class T1 is

RS∗exp
T1( 􏼁 �

(2 − 2e)

(2 − 5e)
≈ 0.296475, (42)

while that of T2 is

RS∗exp
T2( 􏼁 �

(e − 1)

3e
. (43)

Proof. Mendiratta et al. ([16], Lemma 2.2) proved that

w: |w − a|< a −
1
e

􏼚 􏼛 ⊆ w: |log w|< 1􏼈 􏼉, (44)

for e− 1 ≤ a≤ (e + e− 1)/2, and this inclusion with a � 1 gives
S∗1/e ⊂ S

∗
exp. It was also shown in ([16], +eorem 2.1 (i)) that

S∗exp ⊂ S
∗(1/e). +erefore,S∗1/e ⊂ S

∗
exp ⊂ S

∗(1/e), which, as
a consequence of +eorem 1, established the result. □

Corollary 3 investigates the radius of cardioid starlike-
ness for each class T1 and T2. +e class S∗C ≔ S∗(φCAR),

Journal of Mathematics 5



where φCAR(z) � 1 + 4z/3 + 2z2/3 in (27), was introduced
and studied in [17]. Descriptively, f ∈ S∗C provided
zf′(z)/f(z) lies in the region bounded by the cardioid
ΩC ≔ w � u + iv: (9u2 + 9v2 − 18u +􏼈 5)2 − 16(9u2 + 9v2 −

6u + 1) � 0}.

Corollary 3. .e following are the S∗C-radius for the classes
T1 and T2:

(i) RS∗
C
(T1) � 4/13,

(ii) RS∗
C
(T2) � 2/9.

Proof. Sharma et al. [17] proved that
w: |w − a|< a − 1/3{ } ⊆ ΩC for 1/3< a≤ 5/3, and this in-
clusion with a � 1 gives S∗1/3 ⊂ S

∗
C. +us,

RS∗1/3
(Ti)≤RS∗C

(Ti) for i � 1, 2. To complete the proof, we
demonstrate RS∗C

(Ti)≤RS∗1/3
(Ti) for i � 1, 2.

(i) Evaluating the function f1(z) � z(1 + z)3/2 at z �

− R � − RS∗1/3
(T1) � − 4/13 gives

zf1′(z)

f1(z)
�
2 + 5z

2 + 2z
�
2 − 5R

2 − 2R
�
1
3

� φCAR(− 1). (45)

+us, RS∗
C
(T1)≤ 4/13.

(ii) Similarly, at z � − R � − RS∗1/3
(T2) � − 2/9, the func-

tion f2(z) � ze3z yields

zf2′(z)

f2(z)
� 1 + 3z � 1 − 3R �

1
3

� φCAR(− 1). (46)

+is proves that RS∗
C
(T2)≤ 2/9. □

In 2019, Cho et al. [18] studied the class S∗sin ≔ S∗(1 +

sin z) consisting of functions f ∈ A satisfying the condition
zf′(z)/f(z)≺1 + sin z. We find the S∗sin-radius for the
classes T1 and T2.

Corollary 4. .e following are the Ssin∗-radius for each class
T1 and T2:

(i) RSsin∗
(T1) � 2(sin 1)/(3 + 2 sin 1) ≈ 0.35938,

(ii) RSsin∗
(T2) � (sin 1)/3.

Proof. It was proved in [18] that
w: |w − a|< sin 1 − |a − 1|{ } ⊆ q(D) for |a − 1|≤ sin 1,
where q(z) ≔ 1 + sin z. For a � 1, this implies that
S∗1− sin1 ⊂ Ssin∗.+us,RS∗1− sin1

(Ti)≤RS∗sin
(Ti) for i � 1, 2.+e

proof is completed by demonstrating
RS∗sin

(Ti)≤RS∗1− sin1
(Ti) for i � 1, 2.

(i) Evaluating the function f1(z) � z(1 + z)3/2 at z �

− R � − RS∗1− sin 1
(T1) � − 2 sin 1/(3 + 2 sin 1) gives

zf1′(z)

f1(z)
�
2 + 5z

2 + 2z
�
2 − 5R

2 − 2R
� 1 − sin 1 � q(− 1). (47)

+us, RSsin∗
(T1)≤ 22 sin 1/(3 + 2 sin 1).

(ii) Similarly, at z � ±R � ±RS∗1− sin 1
(T2) �

± (sin 1)/3, the function f2(z) � ze3z yields

zf2′(z)

f2(z)
� 1 + 3z � 1 ± 3R � 1 ± sin 1 � q(±1). (48)

+is proves that RSsin∗
(T2)≤ (sin1)/3. □

Consider next the class S∗© ≔ S∗(z +
�����
1 + z2

√
) intro-

duced by Raina and Sokół in [19]. Functions f ∈ S∗© pro-
vided zf′(z)/f(z) lies in the region bounded by the lune
Ωl ≔ w: |w2 − 1|< 2|w|􏼈 􏼉. +e result below gives the radius
of lune starlikeness for each class T1 and T2.

Corollary 5. .e following are the S∗©-radius for each class
T1 and T2:

(i) RS∗©
(T1) � 2(

�
2

√
− 2)/(2

�
2

√
− 7) ≈ 0.280847,

(ii) RS∗©
(T2) � (2 −

�
2

√
)/3.

Proof. It was shown by Gandhi and Ravichandran ([20],
Lemma 2.1) that w: |w − a|< 1 − |

�
2

√
− a|􏼈 􏼉⊆Ωl for�

2
√

− 1< a≤
�
2

√
+ 1. Choosing a � 1, the inclusion gives

S∗�2
√

− 1 ⊂ S
∗
©. +us, RS∗�2√

− 1
(Ti)≤RS∗©

(Ti) for i � 1, 2. We
complete the proof by demonstrating RS∗©

(Ti)≤
RS∗�2√

− 1
(Ti) for i � 1, 2.

(i) Evaluating the function f1(z) � z(1 + z)3/2 at z �

− R � − RS∗�
2

√
− 1

(T1) � − 2(
�
2

√
− 2)/(2

�
2

√
− 7) gives

zf1′(z)

f1(z)
􏼠 􏼡

2

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

2 + 5z

2 + 2z
􏼒 􏼓

2
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

2 − 5R

2 − 2R
􏼒 􏼓

2
− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 2(
�
2

√
− 1) � 2

zf1′(z)

f1(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(49)

+us, RS∗©
(T1)≤ 2(

�
2

√
− 2)/(2

�
2

√
− 7).

(ii) Similarly, at z � − R � − RS∗�
2

√
− 1

(T2) � − (2 −
�
2

√
)/3,

the function f2(z) � ze3z yields

zf2′(z)

f2(z)
􏼠 􏼡

2

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� (1 + 3z)

2
− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � (1 − 3R)

2
− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2(
�
2

√
− 1) � 2

zf2′(z)

f2(z)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(50)

+is proves that RS∗©
(T2)≤ (2 −

�
2

√
)/3. □

As a further example, consider next the class
S∗R ≔ S∗(η(z)), where η(z) � 1 + ((zk + z2)/(k2 − kz)),
k �

�
2

√
+ 1.+is class associated with a rational function was

introduced and studied by Kumar and Ravichandran in [21].

Corollary 6. .e following are the S∗R-radius for the classes
T1 and T2:
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(i) RS∗R
(T1) � 2(− 3 + 2

�
2

√
)/(4

�
2

√
− 9) ≈ 0.102642,

(ii) RS∗R
(T2) � (3 − 2

�
2

√
)/3.

Proof. It was shown in [21] that
w: |w − a|< a − 2(

�
2

√
− 1)􏼈 􏼉 ⊆ η(D) for 2(

�
2

√
− 1)

< a≤
�
2

√
. +is inclusion with a � 1 gives S∗2(

�
2

√
− 1)
⊂ S∗R.

+us, RS∗2(
�
2

√
− 1)

(Ti)≤RS∗R
(Ti) for i � 1, 2. We next show

that RS∗R
(Ti)≤RS∗2(

�
2

√
− 1)

(Ti) for i � 1, 2.

(i) At z � − R � − RS∗
2(

�
2

√
− 1)

(T1) � − 2(− 3 + 2
�
2

√
)/

(4
�
2

√
− 9), the function f1(z) � z(1 + z)3/2 yields

zf1′(z)

f1(z)
�
2 − 5R

2 − 2R
� 2(

�
2

√
− 1) � η(− 1). (51)

+us, RS∗R
(T1)≤ 2(− 3 + 2

�
2

√
)/(4

�
2

√
− 9).

(ii) Evaluating f2(z) � ze3z at z � − R � − RS∗
2(

�
2

√
− 1)

(T2) � − (3 − 2
�
2

√
)/3 gives

zf2′(z)

f2(z)
� 1 − 3R � 2(

�
2

√
− 1) � η(− 1). (52)

+us, RS∗R
(T2)≤ (3 − 2

�
2

√
)/3. □

+e class S∗Ne
≔ S∗(ψ(z)), where ψ(z) � 1 + z − z3/3,

was introduced and studied by Wani and Swaminathan in
[22]. Geometrically, f ∈ S∗Ne

provided zf′(z)/f(z) lies in
the region bounded by the nephroid: a 2-cusped kidney-
shaped curve ΩNe

≔ w � u + iv: ((u − 1)2 + v2 − 4/9)3 −􏽮

4v2/3 � 0}.

Corollary 7. .e following are the S∗Ne
-radius for the classes

T1 and T2:

(i) RS∗Ne

(T1) � 4/13,
(ii) RS∗Ne

(T2) � 2/9.

Proof. It was shown in [22] that
w: |w − a|< a − 1/3{ } ⊆ ΩNe

for 1/3< a≤ 1. +is inclusion
with a � 1 gives S∗1/3 ⊂ S

∗
Ne
. +is shows that RS∗1/3

(Ti)

≤RS∗Ne
(Ti) for i � 1, 2. We next show that RS∗Ne

(Ti)

≤RS∗1/3
(Ti) for i � 1, 2.

(i) Evaluating the function f1(z) � z(1 + z)3/2 at z �

− R � − RS∗1/3
(T1) � − 4/13 results in

zf1′(z)

f1(z)
�
2 − 5R

2 − 2R
�
1
3

� ψ(− 1). (53)

+us, RS∗
Ne

(T1)≤ 4/13.
(ii) Similarly, evaluating f2(z) � ze3z at z � − R �

− RS∗1/3
(T2) � − 2/9 yields

zf2′(z)

f2(z)
� 1 − 3R �

1
3

� ψ(− 1). (54)

+is proves that RS∗
Ne

(T2)≤ 2/9. □

Finally, we consider the class S∗SG ≔ S∗(2/(1 + e− z))

introduced by Goel and Kumar in [23]. Here, 2/(1 + e− z) is
the modified sigmoid function that maps D onto the region
ΩSG ≔ w � u + iv: |log(w/(2 − w))|< 1}. +us, f ∈ S∗SG
provided the function zf′(z)/f(z) maps D onto the region
lying inside the domain ΩSG.

Corollary 8. .e S∗SG-radius for the class T1 is

RS∗SG
T1( 􏼁 �

(2e − 2)

(1 + 5e)
≈ 0.23552, (55)

while that of T2 is

RS∗SG
T2( 􏼁 �

(e − 1)

(3(1 + e))
. (56)

Proof. +e inclusion w: |w − a|< ((e − 1)/(e + 1)) − |a −{

1|} ⊆ ΩSG holds for 2/(1 + e)< a< 2e/(1 + e) (see [23]). At
a � 1, the set inclusion shows that S∗2/(e+1) ⊂ S

∗
SG. It was

also shown in [23] that S∗SG ⊂ S
∗(α) for 0≤ α≤ 2/(e + 1).

+e desired result is now an immediate consequence of
+eorem 1. □
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