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#e sum-connectivity index of a graph G is defined as the sum of weights 1/
������
du + dv

􏽰
over all edges uv of G, where du and dv are

the degrees of the vertices u and v in graph G, respectively. In this paper, we give a sharp lower bound on the sum-connectivity
index unicyclic graphs of order n≥ 7 and diameter D(G)≥ 5.

1. Introduction and Preliminaries

Let G be a simple graph with a vertex set V � V(G) and edge
set E(G). #e integers n � n(G) � |V(G)| and m � m(G) �

|E(G)| are the order and the size of the graph G, respectively.
#e open neighborhood of vertex v is NG(v) � N(v) �

u ∈ V(G)|uv ∈ E(G){ }, and the degree of v is dG(v) � dv �

|N(v)|. A pendant vertex is a vertex of degree one. #e
distance between two vertices is the number of edges in the
shortest path connecting them, and the diameter D(G) of G

is the distance between any two furthest vertices in G. A
diametral path is the shortest path in G connecting two
vertices whose distance is D(G). A unicyclic graph is a
connected graph containing exactly one cycle. A subgraph
G′ of a graph G is a graph whose set of vertices is a subset of
V(G), and set of edges is a subset of E(G).

A topological index is a numeric number associated with
a molecular graph that correlates certain physicochemical
properties of chemical compounds. #e topological indices
are useful in the prediction of physicochemical properties
and the bioactivity of the chemical compounds [1–3]. Also,
topological indices invariants are used for Quantitative
Structure-Activity Relationship (QSAR) and Quantitative
Structure-Property Relationship (QSPR) studies. It was
demonstrated that the sum-connectivity index is well cor-
related with a variety of physicochemical properties of

alkanes, such as boiling point and enthalpy of formation.#e
sum-connectivity index is certainly the most widely applied
in chemistry and pharmacology, in particular for designing
quantitative structure-property and structure-activity rela-
tions. #e sum-connectivity index is proposed to quanti-
tatively characterize the degree of molecular branching.

Topological indices have been used and have been shown
to give a high degree of predictability of pharmaceutical
properties. #e sum-connectivity index of a graph G was
proposed in [4] defined as follows:

SCI(G) � 􏽘
uv∈E(G)

1
������
du + dv

􏽰 . (1)

#e applications of the sum-connectivity index have
been investigated in [5, 6]. Some basic mathematical
properties of the sum-connectivity index have been estab-
lished in [4–8].

In [4], it was shown that for a graph G with n≥ 5 vertices
and without isolated vertices, SCI(G)≥ n − 1/

�
n

√
with

equality if and only if G is the star. For n � 4, this is not true
since, for the union of two copies of the path on two vertices,
its sum-connectivity index is

�
2

√
, less than 3/2. In [7],

minimum sum-connectivity indices of trees and unicyclic
graphs of a given matching number are characterized; in [8],
sum-connectivity index of molecular trees are characterized;
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and in [4], some of the lower and upper bounds for the sum-
connectivity index of trees are obtained (see recent bounds
[9–13]). We all know that the sum-connectivity index is one
of the most important and practical indices and therefore
has been considered by many researchers. In this paper, we
will address one of the unresolved issues for the sum-
connectivity index. In fact, we investigate the relationship
between the sum-connectivity index and diameter of the
graph, which is one of the important parameters in graph
theory and we get new results. In other words, in this paper,
we solve the problem of the relationship between the di-
ameter of a graph and the sum-connectivity index for the
unicyclic graph.

2. Main Results

We begin with the following lemma that we will need for
obtaining our main results.

We denote t(G) as the number of pendant vertices in a
graph G.

Lemma 1. Let G be any unicyclic graph andU be a diametral
path of G. If G contains a pendant vertex v not inU, then there
is a unicyclic graph G′ ⊂ G not containing v, such that
D(G) � D(G′), t(G′) � t(G) − 1, and SCI(G′)< SCI(G).

Proof. Let U be a diametral path of G and v ∈ V(G) be a
pendant vertex not inU. We denote by u the closest vertex to
v which is not of degree 2. Let G′ be a subgraph of G obtained
by the removal of the path connecting u and v from G. Let u′
be the neighbor of u on the u − v path (if the path has only
one edge, then u′ � v). Clearly, G′ is a unicyclic graph,
D(G′) � D(G), and t(G′) � t(G) − 1. Furthermore,

SCI(G) − SCI G′( 􏼁≥
1

�������
d(u) + 1

􏽰 + 􏽘

w∈N(u)\ u′{ }

1
�����������
d(u) + d(w)

􏽰 −
1

��������������
d(u) + d(w) − 1

􏽰􏼠 􏼡. (2)

We know that the sum-connectivity index of the path uv

is at least 1/
�������
d(u) + 1

􏽰
. Note that

1
�����������
d(u) + d(w)

􏽰 −
1

��������������
d(u) + d(w) − 1

􏽰 ≥
1

�������
d(u) + 1

􏽰 −
1

����
d(u)

􏽰 ,

(3)

for every w ∈ N(u) u′􏼈 􏼉; hence, we have

SCI(G) − SCI G′( 􏼁≥
1

�������
d(u) + 1

􏽰 +(d(u) − 1)
1

�������
d(u) + 1

􏽰 −
1

����
d(u)

􏽰􏼠 􏼡.

(4)

#erefore, we get SCI(G)> SCI(G′). □

By Lemma 1, it follows that for any unicyclic graph G, if
U is a diametral path of G, then there is a unicyclic graph
G′ ⊂ G containing only pendant vertices of U, where
D(G′) � D(G) and SCI(G′)< SCI(G).

Here, we obtain a sharp bound on the sum-connectivity
index of any unicyclic graph of diameter at least 5.

Theorem 2. Let G be any unicyclic graph of diameter
D(G)≥ 5. +en,

SCI(G)≥
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2. (5)

Proof. We will complete the proof by considering the
following four cases.

Case 1. If G does not contain any pendant vertex, then
G is the cycle either with 2 D(G) or 2 D(G) + 1 ver-
tices, which implies that

SCI(G)≥ 2D(G)
1
�
4

√􏼠 􏼡 � D(G)>
D(G)

2

+
5
�
5

√ +
1
�
3

√ − 2.

(6)

Case 2. If G contains one pendant vertex, then G

consists of the cycle Cr of length r≥ 3 and the path P

having s≥ 1 edges, where Cr ∩P consists of one vertex
which has degree 3 in G. #is degree will be included in
the computation of SCI(Cr) and SCI(P). We have
SCI(G) � SCI(Cr) + SCI(P), where

SCI Cr( 􏼁 � 􏽘

uv∈E Cr( )

1
����������
d(u) + d(v)

􏽰 � (r − 2)
1
�
4

√ + 2
1
�
5

√􏼠 􏼡 �
r

2
+
2

�
5

√

5
− 1,

SCI(P) � 􏽘
uv∈E(P)

1
����������
d(u) + d(v)

􏽰 � (s − 2)
1
�
4

√ +
1
�
3

√ +
1
�
5

√ �
s

2
+

�
3

√

3
+

�
5

√

5
− 1.

(7)
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If s≥ 2 and SCI(P) � 1/2 if s � 1. So, SCI(P)≥ s/2 for
every s≥ 1, and the equality holds if s � 1.
If r≥ 4, then D(G)≤ (r/2) + s and

SCI(G)≥
r

2
+
2

�
5

√

5
+

s

2
− 1

≥
r

2
+
2

�
5

√

5
+

D(G)

2
−

r

4
− 1

�
D(G)

2
+

r

4
+
2

�
5

√

5
− 1

≥
D(G)

2
+
2

�
5

√

5

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(8)

If r � 3, then D(G) � s + 1 and

SCI(G)≥
3
2

+
2

�
5

√

5
+

s

2
− 1,

≥
3
2

+
2

�
5

√

5
+

D(G)

2
−
1
2

− 1

�
D(G)

2
+
2

�
5

√

5

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(9)

Case 3. If G contains 2 pendant vertices, then G consists
of the cycle Cr of length r≥ 3 and two paths X1 and X2
having s1 ≥ 1 and s2 ≥ 1 edges, respectively. We can
assume that Cr ∩X1 consists of one vertex and X2 is
attached either to an internal vertex of X1 or to a vertex
of Cr.
Case 3.1. If X1 ∩X2 � ∅, then we have
SCI(G) � SCI(Cr) + SCI(X1) + SCI(X2). For i � 1, 2,

SCI Xi( 􏼁 � 􏽘

uv∈E Xi( )

1
����������
d(u) + d(v)

􏽰

� si − 2( 􏼁
1
�
4

√ +
1
�
3

√ +
1
�
5

√ �
si

2
+

�
3

√

3
+

�
5

√

5
− 1.

(10)

When si ≥ 2 and SCI(Xi) � 1/2 if si � 1. If X1 and X2
are attached to nonadjacent vertices of Cr, then

SCI Cr( 􏼁 � 􏽘

uv∈E Cr( )

1
����������
d(u) + d(v)

􏽰

� (r − 4)
1
�
4

√ + 4
1
�
5

√􏼠 􏼡 �
r

2
+
4

�
5

√

5
− 2.

(11)

If X1 and X2 are attached to adjacent vertices of Cr,
then

SCI Cr( 􏼁 � 􏽘

uv∈E Cr( )

1
����������
d(u) + d(v)

􏽰 ,

� (r − 3)
1
�
4

√ + 2
1
�
5

√􏼠 􏼡 +
1
�
6

√

�
r

2
+
2

�
5

√

5
+

�
6

√

6
−
3
2

>
r

2
+
4

�
5

√

5
− 2.

(12)

If s1 � s2 � 1, then D(G)≤ (r/2) + 2 and

SCI(G)≥
r

2
+
4

�
5

√

5
− 2 +

1
2

+
1
2
,

≥D(G) +
4

�
5

√

5
− 3

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(13)

So, we can assume that s1 or s2 is at least 2. We have
SCI(X1) + SCI(X2)≥ (s1/2) + (s2/2) + (

�
3

√
/3) + (

�
5

√

/5) − 1 (the equality holds if s1 or s2 is 1).
If r≥ 4, then D(G)≤ (r/2) + s1 + s2 and

SCI(G)≥
r

2
+
4

�
5

√

5
− 2 +

s1

2
+

s2

2
+

�
3

√

3
+

�
5

√

5
− 1,

≥
D(G)

2
+

r

4
+

�
5

√
+

�
3

√

3
− 3

≥
D(G)

2
+

�
5

√
+

�
3

√

3
− 2.

(14)

If r � 3, then D(G)≤ s1 + s2 + 1 and

SCI(G)≥
3
2

+
4

�
5

√

5
− 2 +

s1

2
+

s2

2
+

�
3

√

3
+

�
5

√

5
− 1,

≥
D(G)

2
+
4

�
5

√

5
+

�
3

√

3
+

�
5

√

5
− 2

�
D(G)

2
+

�
5

√
+

�
3

√

3
− 2.

(15)

Case 3.2. X1 ∩X2 is nonempty, and there is a diametral
path containing both pendant vertices of G.
Let U be the diametral path containing both pendant
vertices of G. #en, U⊆X1 ∪X2. One of the internal
vertices, say x, of U is of degree 3 or 4 in graph G. If x is
adjacent to a pendant vertex of U, then
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SCI(U) � 􏽘
uv∈E(U)

1
����������
d(u) + d(v)

􏽰

� (D(G) − 3)
1
�
4

√ +
1
�
3

√ +
1
�
5

√ +
1
�
6

√

�
D(G)

2
+

�
3

√

3
+

�
5

√

5
+

�
6

√

6
−
3
2
.

(16)

If x is not adjacent to a pendant vertex of U, then

SCI(U)≥
D(G) − 4

2
+
2

�
3

√

3
+
2

�
6

√

6

�
D(G)

2
+
2

�
3

√

3
+
2

�
6

√

6
− 2.

(17)

Note that G contains also the cycleCr, where one of the
vertices is of degree 3 or 4 in G. We have

SCI Cr( 􏼁 � 􏽘

uv∈E Cr( )

1
����������
d(u) + d(v)

􏽰

� (r − 2)
1
�
4

√ + 2
1
�
6

√􏼠 􏼡≥
3
2

+
2

�
6

√

6
− 1

�
1
2

+
2

�
6

√

6
,

(18)

which implies that

SCI(G)≥ SCI(U) + SCI Cr( 􏼁

≥
D(G)

2
+

�
3

√

3
+

�
5

√

5
+

�
6

√

6
−
3
2

+
1
2

+
2

�
6

√

6
,

�
D(G)

2
+

�
3

√

3
+

�
5

√

5
+

�
6

√

2
− 1

>
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(19)

Case 3.3. X1 ∩X2 is nonempty and there is a diametral
path containing only one pendant vertex of G. #en, we
denote this diametral path with U containing only one
pendant vertex of G. Since the other pendant vertex is
not in U, by Lemma 1, there is a unicyclic graph G′
having one pendant vertex, such that D(G′) � D(G)

and SCI(G)> SCI(G′), and we know that SCI(G′)>
(D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2.

Case 4. If G contains at least 3 pendant vertices.

LetU be a diametral path of G. Clearly, this path contains
at most 2 pendant vertices of G. Since G contains m≥ 3
pendant vertices, we have at least m − 2 pendant vertices not
in U. By Lemma 1, there is a unicyclic graph G′ ⊆G having
only the pendant vertices of U (at most 2 vertices), such that
D(G′) � D(G), t(G′) � t(G) − 1 and SCI(G)> SCI(G′).

From the previous cases, it follows that SCI(G′)>
(D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2.

It is easy to show that the bound SCI(G)≥ (D(G)/2) +

(5/
�
5

√
) + (1/

�
3

√
) − 2 is best possible because of the graph

H, where V(H) � u, v0, v1, v2, . . . , vD(H)􏽮 􏽯 and E(H) �

v0v1, v1v2, . . . , vD(H)−1vD(H), uv1, uv3􏽮 􏽯 has the sum-con-
nectivity index

SCI(H) � (D(H) − 4)
1
�
4

√ + 5
1
�
5

√􏼠 􏼡 +
1
�
3

√ ,

�
D(H)

2
+

5
�
5

√ +
1
�
3

√ − 2.

(20)

#e proof is completed. □

Now, we obtain lower bounds on the sum-connectivity
index for unicyclic graphs of small diameter.

Theorem 3. Let G be an unicyclic graph of diameter D(G).
+en,

(i) If D(G) � 2, then SCI(G)≥ 1 + 2
�
5

√
/5

(ii) If D(G) � 3, then SCI(G)≥ 2
�
5

√
/5 +

�
6

√
/6 + 1

(iii) If D(G) � 4, then SCI(G)≥ 1 + 4
�
5

√
/5

Proof. We can see that the proof of #eorem 2 holds for
D(G) � 3 and D(G) � 4 except for Case 3.1, where
s1 � s2 � 1.

Let D(G) � 4.We have SCI(G)≥D(G) + (1 + 4
�
5

√
/5) −

3 (as presented in the proof of #eorem 2), which is
(1 + 4

�
5

√
/5). From the other cases, we obtain SCI(G)≥ ((D

(G)/2) + (5/
�
5

√
) + (1/

�
3

√
) − 2) � (

�
5

√
+ (1/

�
3

√
))> (1 + 4�

5
√

/5), which implies that SCI(G)≥ (1 + 4
�
5

√
/5).

Let D(G) � 3. We have SCI(G)≥D(G) + 4
�
5

√
/5 − 3

(obtained in the proof of #eorem 2); Case 3.1 (if
s1 � s2 � 1) is not sufficient now, so we give a better bound
in this case. Since s1 � s2 � 1 and D(G) � 3, then P1 and P2
must be attached to adjacent vertices ofCr, whichmeans that
SCI(Cr) � r/2 + 2

�
5

√
/5 +

�
6

√
/6 − 3/2 in the proof of #eo-

rem 2. Since r≥ 3, we obtain

SCI(G) � SCI Cr( 􏼁 + SCI X1( 􏼁 + SCI X2( 􏼁

�
r

2
+
2

�
5

√

5
+

�
6

√

6
−
3
2

+
1
2

+
1
2
≥
2

�
5

√

5
+

�
6

√

6
+ 1.

(21)

Let D(G) � 2. Except for C5 and C4, the only unicyclic
graphs H of diameter 2 are formed by the cycle C3, where
s≥ 1 pendant vertices are adjacent to one of the vertices of
C3. Let V(C3) � v1, v2, v3􏼈 􏼉. We can assume that the pendant
vertices u1, u2, . . . , up are adjacent to v1. #en, U � v2v1u1 is
a diametral path of H, and from Lemma 1, it follows that
there is a unicyclic graph H′ ⊆H, which contains only one
pendant vertex u1 (the pendant vertex (the pendant vertex in
U)), where SCI(H)≥ SCI(H′). Since
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SCI H′( 􏼁 � 2
1
�
5

√􏼠 􏼡 + 2
1
�
4

√􏼠 􏼡 � 1 +
2

�
5

√

5
, (22)

SCI(C4) � 2 and SCI(C5) � 5/2, we obtain the bound
SCI(G)≥ 1 + 2

�
5

√
/5. □

Corollary 4. Let G be any unicyclic graph of order at least 7
and diameter D(G)≥ 2. +en,

SCI(G)≥
D(G)

2
+

5
�
5

√ +
1
�
3

√ − 2. (23)

Proof. By #eorem 2, for D(G)≥ 5 and any n, we have
SCI(G)≥ ((D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2). By #eorem

3, for D(G) � 2 and any n, we have SCI(G)≥ 1 + 2
�
5

√
/5,

which is greater than ((D(G)/2) + (5/
�
5

√
) + (1/

�
3

√
) − 2). It

remains to prove Corollary 4 for n≥ 7 and 3≤D(G)≤ 4. #e
proof of #eorem 2 holds also for D(G) � 3 and D(G) � 4
except for Case 3.1 where s1 � s2 � 1. We show that if n≥ 7,
then SCI(G)≥ ((D(G)/2) + (5/

�
5

√
) + (1/

�
3

√
) − 2) also in

that case. If n≥ 7 and p1 � p2 � 1, then G contains the cycle
Ck for r≥ 5 and SCI(Cr)≥ r/2 + 4

�
5

√
/5 − 2 (given in Case 3.1

in the proof of#eorem 2). Since SCI(X1) � SCI(X2) � 1/2,
we obtain

SCI(G) � SCI Cr( 􏼁 + SCI X1( 􏼁 + SCI X2( 􏼁≥
3
2

+
4

�
5

√

5
,

(24)

which is greater than SCI(G)≥ ((D(G)/2) + (5/
�
5

√
) + (1/�

3
√

) − 2) for D(G) � 3 and D(G) � 4. □

Corollary 5. Let G be any unicyclic graph of order at least 7
and diameter D(G)≥ 2. +en,

SCI(G)

D(G)
≥

(
�
3

√
/3) +

�
5

√

n − 2
−
1
2
,

SCI(G) − D(G)≥
�
3

√

3
+

�
5

√
−

n

2
− 1.

(25)

Proof. By #eorem 2, we have
SCI(G)≥ (D(G)/2) + (5/

�
5

√
) + 1/

�
3

√
− 2 and since

D(G)≤ n − 2 for any graph G except for the path, hence, by
the definition of sum-connectivity index, we have

SCI(G)

D(G)
≥
1
2

+
5

�
5

√
D(G)

+
1

�
3

√
D(G)

−
2

D(G)
,

≥
1
2

+
5

�
5

√
(n − 2)

+
1

�
3

√
(n − 2)

−
2

D(G)

≥
1
2

+
5

�
5

√
(n − 2)

+
1

�
3

√
(n − 2)

− 1

�
(

�
3

√
/3) +

�
5

√

n − 2
−
1
2
.

(26)

Similarly, we obtain

SCI(G) − D(G)≥
�
3

√

3
+

�
5

√
−

D(G)

2
− 2≥

�
3

√

3
+

�
5

√
−

n

2
− 1.

(27)

□

3. Open Problem and Conclusion

In this paper, we investigate the relationship between the
sum-connectivity index and the diameter of a graph and
obtained a new lower bound for the sum-connectivity
index of unicyclic graphs. However, there are still open
and challenging problems for researchers, for example,
the problem on the relationship between the sum-con-
nectivity index and the diameter of bicyclic and tricyclic
graphs. Moreover, the relationship between other topo-
logical indices such as F-index and GA-index with the
diameter of unicyclic, bicyclic, and tricyclic graphs is still
open.

Data Availability

#e data used to support the findings of the study are in-
cluded within the article.

Conflicts of Interest

#e author declares that there are no conflicts of interest.

References

[1] Z. Shao, M. Siddiqui, and M. Muhammad, “Computing
zagreb indices and zagreb polynomials for symmetrical
nanotubes,” Symmetry, vol. 10, no. 7, p. 244, 2018.

[2] Z. Shao, P. Wu, X. Zhang, D. Dimitrov, and J.-B. Liu, “On the
maximum ABC index of graphs with prescribed size and
without pendent vertices,” IEEE Access, vol. 6, pp. 27604–
27616, 2018.

[3] Z. Shao, P. Wu, Y. Gao, I. Gutman, and X. Zhang, “On the
maximum ABC index of graphs without pendent vertices,”
Applied Mathematics and Computation, vol. 315, pp. 298–312,
2017.
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