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Let G � (V, E) be a connected graph. -e resistance distance between two vertices u and v in G, denoted by RG(u, v), is the
effective resistance between them if each edge of G is assumed to be a unit resistor.-e degree resistance distance of G is defined as
DR(G) �  u,v{ }⊆V(G)(dG(u) + dG(v))RG(u, v), where dG(u) is the degree of a vertex u in G and RG(u, v) is the resistance distance
between u and v in G. A bicyclic graph is a connected graph G � (V, E) with |E| � |V| + 1.-is paper completely characterizes the
graphs with the second-maximum and third-maximum degree resistance distance among all bicyclic graphs with n≥ 6 vertices.

1. Introduction

All graphs considered in this paper are simple and un-
directed. Let G � (V, E) be a graph with n vertices and m

edges. Let NG(v) be the set of vertices adjacent to v in G.
-e degree of v in G, denoted by dG(v), is equal to |NG(v)|.
Denote the minimum degree of vertices in G by δ(G). A
vertex of degree one is called a pendant vertex, and the
edge incident with a pendant vertex is called a pendant
edge. -e distance between two vertices u and v of G,
denoted by dG(u, v) or d(u, v), is the length of a shortest
path connecting u and v in G. For a subset S of V, denote
by G[S], the subgraph induced by S and G − S the graph
G[V(G)∖S]. We use G − v instead of G − v{ } if S � v{ } for
simplicity. Let Pn and Cn be the path and the cycle graphs
on n vertices, respectively.

A topological index or a graph-theoretic index is a real
number related to a graph. Topological indices of molecular
graphs are one of the oldest and most widely used descriptors
in quantitative structure-activity relationships [1, 2]. One of the
most exhaustively studied [3, 4] topological indices is the
Wiener index. -e Wiener index was introduced in 1947 [5]
and defined as W(G) �  u,v{ }⊆V(G)dG(u, v). It is well

correlated with many physical and chemical properties of
organic molecules and chemical compounds.

Based on the electrical network theory, Klein and Randić
[6] proposed a novel distance function called resistance
distance in 1993. -ey treated a graph G as an electric
network by considering each edge of G as a unit resistor.
-en, the resistance distance between two vertices u and v in
G, denoted by RG(u, v), is defined as the effective resistance
between them. Klein and Randić [6] also proved that
RG(u, v)≤dG(u, v), with equality if and only if there is a
unique path connecting u and v in G. In recent years, this
new type of distance between vertices in a graph has
attracted prominent attention in mathematics and chemistry
[6–11].

Similar to the Wiener index, the Kirchhoff index of a
graph G is defined as

Kf(G) � 
u,v{ }⊆V(G)

RG(u, v).
(1)

-is invariant has wide applications in electric circuit,
physical interpretations, chemistry, and graph theory
[12–16].
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In 2012, Gutman et al. [17] introduced the concept of the
degree resistance distance defined as

DR(G) � 
u,v{ }⊆V(G)

dG(u) + dG(v)( RG(u, v). (2)

Palacios called it as additive degree-Kirchhoff index in
[18]. In [17], Gutman et al. [17] presented some properties of
DR(G) and characterized the unicyclic graphs with the
minimum and second-minimumDR(G). Later, the unicyclic
graphs with the maximum and second-maximum DR-value
were considered in [19, 20]. In [21, 22], the cactus graphs
with the minimum, the second-minimum, and the third-
minimum DR-values were also completely characterized.
Recently, the bicyclic graphs with maximum and minimum
DR-values were determined in [23, 24], respectively.

A bicyclic graph G � (V, E) is a connected graph such
that |E| � |V| + 1. -e kernel of G, denoted by G

∧
, is the

unique bicyclic subgraph of G with no pendant vertices. Any
bicyclic graph G is obtained from its kernel G

∧
by attaching

trees to some vertices in G
∧
. Given a family of graphs G, the

graphs with the maximum and second maximum values of
topological indices among G are examined widely, see in
[25–29]. Motivated by this, in this paper, we determine the
graphs with the second-maximum and third-maximum
degree resistance distance among all bicyclic graphs with
n≥ 6 vertices.

2. Preliminaries

LetBn be the set of bicyclic graphs of order n,B∞n be the set
of bicyclic graphs of order n with exactly two cycles, and
Bθ

n � Bn∖B
∞
n . Let B(p, q) be obtained from two vertex-

disjoint cycles Cp and Cq by identifying a vertex u ∈ V(Cp)

and a vertex v ∈ V(Cq), B(p, l, q) be obtained from two
vertex-disjoint cycles Cp and Cq by connecting a vertex
u ∈ V(Cp) and a vertex v ∈ V(Cq) by a path uv1v2 . . . vl− 1v

of length l(l≥ 1), and B(Pr, Ps, Pt) be the union of three
internally disjoint paths Pr, Ps, and Pt, respectively, with
common end vertices, where r, s, t≥ 2 and at most one of
them is 2.

Let G be a graph and v be a vertex in G. Define Kfv(G) �

u∈V(G)RG(u, v) and Dv(G) � u∈V(G)dG(u)RG(u, v).
We present a few lemmas which will be employed later to

establish our main results.

Lemma 1 (see [13]). Let G be a connected graph with a
pendant vertex v with its unique neighbor w. 7en,
Kfv(G) � Kfw(G − v) + n − 1.

Lemma 2 (see [13]). Let G be a bicyclic graph of order n and
v ∈ V(G). 7en, Kfv(G)≤ n2/2 − n/2 − 15/4. Moreover, if
dG(v)≥ 2, then Kfv(G)≤ n2/2 − 3n/2 + 1/3.

-e following remark can be obtained from the proof of
Lemma 2.

Remark 1. Let G be a graph in B∞n and v ∈ V(G). 7en,
Kfv(G)≤ n2/2 − n/2 − 6.

Lemma 3 (see [17]). Let G be a connected graph with a cut
vertex v such that G1 and G2 are two connected subgraphs of
G having v as the only common vertex and
V(G1)⋃V(G2) � V(G). Let n1 � |V(G1)|, n2 � |V(G2)|,

m1 � |E(G1)|, andm2 � |E(G2)|. 7en, DR(G) � DR(G1) +

DR(G2) + 2m2Kfv(G1) + 2m1Kfv(G2) +(n2 − 1)Dv(G1) +

(n1 − 1)Dv(G2).

Lemma 4 (see [17]). Let Ck be a cycle with length k and
v ∈ Ck. 7en, Kf(Ck) � (k3 − k)/12,DR(Ck) � (k3 − k)/3,
Kfv (Ck) � (k2 − 1)/6, and Dv(Ck) � (k2 − 1)/3.

Lemma 5 (see [23]). Let H be a connected graph of order
h> 2 and Ck be a cycle of order k≥ 4. Let F be the graph of
order k obtained from C3 by attaching one pendant path of
order k − 3 to one vertex of C3. Further suppose G1 is the
graph obtained from H and Ck by identifying one vertex in H

and one vertex in Ck; G2 is the graph obtained from H and F

by identifying one vertex in H and the pendant vertex in F.
7en, we have DR(G1)<DR(G2).

By an argument similar to that of Lemma 5, we easily get
the following result.

Lemma 6. Let G be a connected graph of order n> 2 and Ck

be a cycle of order k≥ 5. Let F be obtained by identifying a
pendant vertex of Pk− 3 with any vertex of C4. Suppose G1is the
graph obtained from G and Ckby identifying one vertex in G

and one vertex in Ck;G2 is obtained from G and F by
identifying one vertex in G and the pendant vertex in F. 7en,
DR(G1)<DR(G2).

In [23], Du and Tu characterized the unique bicyclic
graph with maximum degree resistance distance. -ey also
presented two significant lemmas in [23].

Theorem 1 (see [23]). LetG be a bicyclic graph of order n≥ 6;
then, DR(G)≤ 2n3/3 + n2 − 19n + 88/3, with equality if and
only if G � B(3, n − 5, 3).

Lemma 7 (see [23]). Let G be a bicyclic graph of order n and
v ∈ V(G). 7en, Dv(G)≤ n2 + 2n − 73/4.

Lemma 8 (see [23]). Let G be a bicyclic graph of order n, vbe
a pendant vertex of G, and w be its neighbor. 7en, DR(G) �

DR(G − v) + Dw(G − v) +2Kfw(G − v) + 3n.

3. Bicyclic Graphs with the Second-Maximum
Degree Resistance Distance

In this section, we will determine the bicyclic graphs with the
second-maximum degree resistance distance.

Suppose n≥ 6. Let B(3, n − 5, 3) be obtained from two 3-
cycles v1v2v3v1 and vn− 2vn− 1vnvn− 2 by connecting v3 and vn− 2
by a path v3v4 · · · vn− 3vn− 2. Define G1

n � B(3, n − 5, 3)−

vn− 1vn + vn− 1vn− 3 and G2,i
n � G1

n − vn− 2vn + vivn, where
3≤ i≤ n − 3. Let G3

n(G5
n) be obtained from a 4-cycle C4 �

v1v2v3v4v1 and a path P � v5 . . . vn by adding the edges v1v3
(v2v4, resp.) and v4v5. Let G4

n � B(4, n − 6, 3) be obtained
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from a 4-cycle v1v2v3v4v1 and a 3-cycle vn− 2vn− 1vnvn− 2 by
connecting v4 and vn− 2 by a path v4v5 . . . vn− 3vn− 2 (see
Figure 1). -en, we have the following lemma.

Lemma 9. Let G1
n, G2,i

n , G3
n, G4

n, and G5
n be defined as above.

7en, DR(G1
n) � 2/3n3 + n2 − 79/3n + 56,DR(G2,i

n )

� 2/3n3 + n2 − 17n + 4i2 − 4ni + 88/3, DR(G3
n) � 2/3n3 +

n2 − 293/12n + 117/2, DR(G4
n) � 2/3n3 + n2 − 82/3n +

167/3, and DR(G5
n) � 2/3n3 + n2 − 163/6n + 139/2.

Proof. By Lemma 8 and -eorem 1, we easily obtain

DR G
1
n  � DR G

1
n − vn  + Dvn− 2

G
1
n − vn  + 2Kfvn− 2

G
1
n − vn  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
− 19(n − 1) +

88
3

 

+ 2 ·
2
3

+ 3 ·
2
3
+ 2 ·

2
3

+ 1  + 2 ·
2
3

+ 2  + · · · + 2 ·
2
3

+ n − 7  + 3 ·
2
3

+ n − 6 

+ 2 ·
4
3

+ n − 6  + 2 ·
4
3

+ n − 6   + 2 ·
2
3

+
2
3

+
2
3

+ 1 

+
2
3

+ 2  + · · · +
2
3

+ n − 6  + 2
4
3

+ n − 6   + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
− 19(n − 1) +

88
3

 

+ n
2

−
14
3

n +
4
3

  + 2 ·
n
2

2
−
17
6

n + 3  + 3n

�
2
3
n
3

+ n
2

−
79
3

n + 56,

DR G
2,i
n  � DR G

2,i
n − vn  + Dvi

G
2,i
n − vn  + 2Kfvi

G
2,i
n − vn  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
− 19(n − 1) +

88
3

  +[ 2 · 1 + 2 · 2

+ · · · + 2 · (i − 4) + 3 · (i − 3) + 4 · i − 3 +
2
3

  + 2 · 1 + 2 · 2

+ · · · + 2 · (n − 4 − i) + 3 · (n − 3 − i) + 4 · n − 3 − i +
2
3

  

+ 2 · [ 1 + 2 + · · · +(i − 3) + 2 · i − 3 +
2
3

  + 1 + 2 + · · ·

+(n − 3 − i) + 2 · n − 3 − i +
2
3

   + 3n

�
2
3
n
3

− n
2

− 19n +
146
3

  + n
2

+ 2i
2

− 2ni −
38
3

 

+ 2 ·
3n

2
− 3n + 6i

2
− 6ni − 20

6
+ 3n

�
2
3
n
3

+ n
2

− 17n + 4i
2

− 4ni +
88
3

.

(3)

Let H � G3
n[ v1, v2, v3, v4 ]. By Lemma 3,

Journal of Mathematics 3



DR G
3
n  � DR(H) + DR Pn− 3(  + 2(n − 4)Kfv4

(H) + 10Kfv4
Pn− 3( 

+(n − 4)Dv4
(H) + 3Dv4

Pn− 3( 

�
39
2

+
2
3
(n − 3)

3
− (n − 3)

2
+
1
3

(n − 3)  + 2 · (n − 4) ·
9
4

+ 10 ·
(n − 3)(n − 4)

2
+(n − 4) ·

23
4

+ 3 · (n − 4)
2

�
2
3
n
3

+ n
2

−
293
12

n +
117
2

.

(4)

Let F � G4
n − vn− 1, vn . By Lemmas 3 and 6,

DR G
4
n  � DR C3(  + DR(F) + 2(n − 2)Kfvn− 2

C3(  + 6Kfvn− 2
(F)

+(n − 3)Dvn− 2
C3(  + 2Dvn− 2

(F)

� 8 +
2
3
(n − 2)

3
−
53
3

(n − 2) + 48  +
8
3

(n − 2) + 6
(n − 2)

2

2

−
n − 2
2

−
7
2
 +

8
3

(n − 3) + 2 (n − 2)
2

− 11 

�
2
3
n
3

+ n
2

−
82
3

n +
167
3

.

(5)

Let S � G5
n[ v1, v2, v3, v4 ]. By Lemma 3,

v1

v1 v1

v2

v2
v2

v3 v4 v4

v3

v3

v4 v4 v5v5

v1

v2

v3

v4 v5

v1

v2 v3 vi

vn

vn

vn

vn

vn-3

vn-1

vn-1

vn-1

vn-1

vn-2 vn-3vn-4

vn-1

vn-2

vn-2

vn

Gn
3 Gn

4

Gn
5

Gn
1 Gn

2,i

Figure 1: Graphs G1
n, G2,i

n , G3
n, G4

n, and G5
n.
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DR G
5
n  � DR(S) + DR Pn− 3(  + 2(n − 4)Kfv4

(S) + 10Kfv4
Pn− 3( 

+(n − 4)Dv4
(S) + 3Dv4

Pn− 3( 

�
39
2

+
2
3
(n − 4)

3
+(n − 4)

2
+
1
3

(n − 4)  + 2(n − 4) ·
7
4

+ 10 ·
(n − 3)(n − 4)

2
+ 4(n − 4) + 3(n − 4)

2

�
2
3
n
3

+ n
2

−
163
6

n +
139
2

.

(6)

□

Theorem 2. Suppose G is a graph in B∞n with G≇B(3, n −

5, 3) and n≥ 6. 7en, DR(G)≤ 2/3n3 + n2 − 79/3n + 56, with
equality if and only ifG � G1

n, whereG1
n is defined as in Lemma 9.

Proof. It is easy to verify that, for any graph G in B∞6 with
G≇B(3, 1, 3), DR(G)≤ 78 � 2/3 · 63 + 62 − 79/3 · 6 + 56, with
equality if and only if G � G1

6.
Now, we assume n≥ 7 and consider the following two cases.

Case 1 δ(G)� 1: let v be a pendant vertex in G. If
G − v � B(3, n − 6, 3), then either G � G1

n, or G � G2,i
n ,

where G1
n and G � G2,i

n are defined as in Lemma 9. By
Lemma 9,

DR G
2,i
n  �

2
3
n
3

+ n
2

− 17n + 4i
2

− 4ni +
88
3

≤
2
3
n
3

+ n
2

− 17n + 4 · 32 − 4n · 3 +
88
3

<
2
3
n
3

+ n
2

−
79
3

n + 56.

(7)

If G − v≇B(3, n − 6, 3), we prove it by induction on n.
Let w be the neighbor of v. By the inductive hypothesis,
Remark 1, and Lemmas 7–9

DR(G) � DR(G − v) + Dw(G − v) + 2Kfw(G − v) + 3n

≤
2
3
(n − 1)

3
+(n − 1)

2
−
79
3

(n − 1)

+ 56 + (n − 1)
2

+ 2(n − 1)

−
73
4

 + 2
(n − 1)

2

2
−

n − 1
2

− 6  + 3n

�
2
3
n
3

+ n
2

−
79
3

n +
641
12

<
2
3
n
3

+ n
2

−
79
3

n + 56.

(8)

Case 2 (δ(G)≥ 2): in this case, G is of the form B(p, q)

or B(p, l, q). By Lemmas 5 and 6, we have
DR(G)≤DR(G4

n), with equality if and only if G � G4
n.

Note that DR(G4
n)<DR(G1

n) by Lemma 9. -erefore,
the proof is complete. □

Theorem 3. Suppose G is a graph of ordern≥ 4 inBθ
n. 7en,

DR(G)≤ 2/3n3 + n2 − 293/12n + 117/2, with equality if and
only if G � G3

n, where G3
n is defined in Lemma 9.

Proof. It is easy to verify that the only graph inBθ
4 is G3

4 and
DR(G3

4) � 2/3 · 43 + 42 − 293/12 · 4 + 117/2. We assume
n≥ 5 next, and consider the following two cases.

Case 1 (δ(G) � 1): let v be a pendant vertex in G and w

be the neighbor of v. We prove it by induction on n. By
the inductive hypothesis, Lemma 2, and Lemmas 7–9,

DR(G) � DR(G − v) + Dw(G − v) + 2Kfw(G − v) + 3n

≤
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1)

+
117
2

+ (n − 1)
2

+ 2(n − 1)

−
73
4

 + 2 ·
(n − 1)

2

2
−

n − 1
2

−
15
4

  + 3n

�
2
3
n
3

+ n
2

−
293
12

n +
117
2

.

(9)

-e equality DR(G − v) � 2/3n3 + n2 − 293/12n +117/2
holds if and only if DR(G − v) � 2/3(n − 1)3 + (n − 1)2

− 293/12(n − 1) +117/2, Dw(G − v) � (n − 1)2 +2·

(n − 1) − 73/4, and Kfw(G − v) � (n − 1)2/2 − (n

− 1)/2 − 15/4� n2/2 − 3/2n − 11/4. By the inductive hy-
pothesis, G − v � G3

n− 1, which is obtained from a 4-cycle
C4 � v1v2v3v4v1 and a path P � v5 . . .vn− 1 by adding the
edges v1v3 and v4v5. We show that w � vn− 1, i.e., G � G3

n.
By direct calculation, we have Kfvn− 1

(G3
n− 1) �

n2/2 − 3/2n − 11/4, Kfv1
(G3

n− 1) � Kfv3
(G3

n− 1) � n2/2 −

31/8n + 69/8< n2/2 − 3/2n − 11/4, and Kfv2
(G3

n− 1) �

n2/2 − 7/2n + 29/4< n2/2 − 3/2n − 11/4. Obviously,
Kfu(G3

n− 1)<Kfvn− 1
(G3

n− 1) if u ∈ V(G3
n− 1)∖ v1, v2,

v3, vn− 1}. -erefore, w � vn− 1, i.e., G � G3
n.
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Case 2 (δ(G)≥ 2): then, G is of the form B(Pk, Pl, Pm).
Suppose x and y are the only two vertices of degree 3.
Since Kf(G)≤ 1/8n3 (see [13]), we have

DR(G) � 
u,v{ }⊆V(G)

(d(u) + d(v))R(u, v)

� 4Kf(G) + Kfx(G) + Kfy(G)

≤ 4 ·
1
8
n
3

+ 2 ·
1
2
n
2

−
3
2

n +
1
3

 (by Lemma 2)

�
1
2
n
3

+ n
2

− 3n +
2
3
.

(10)

If n≥ 10, then 1/2n3 + n2 − 3n + 2/3< 2/3n3 + n2 −

293/12n + 117/2. For any graph G � B(Pk, Pl, Pm)

when n � 5, 6, 7, 8, 9, we have calculated DR(G) and
found that DR(G)< 2/3n3 + n2 − 293/12n + 117/2.

Combining -eorems 1–3, we can obtain the first main
result of our paper. □

Theorem 4. Suppose G is a bicyclic graph of order n≥ 6 with
G≇B(3, n − 5, 3). 7en, DR(G)≤ 2/3n3 + n2 − 293/12n+

117/2, with equality if and only if G � G3
n, where G3

n is defined
as in Lemma 9.

4. Bicyclic Graphs with the Third-Maximum
Degree Resistance Distance

In this section, we will determine the bicyclic graphs with the
third-maximum degree resistance distance.

Lemma 10. Let G3,i
n be obtained from a 4-cycle C4 �

v1v2v3v4v1, a path P � v5 . . . vn− 1 and an isolated vertex vn by
adding the edges v1v3, v4v5, and vivn, where 1≤ i≤ n − 2 and
n≥ 6. 7en, DR(G3,1

n ) � DR(G3,3
n ) � 2/3n3 + n2 − 455/

12n + 493/4, DR(G3,2
n ) � 2/3n3 + n2 − 437/12n + 237/2, DR

(G3,4
n ) � 2/3n3 + n2 − 485/12n + 277/2, and DR(G3,i

n ) �

2/3n3 + n2 − 293/12n − 4ni + 4i2 + 4i + 117/2, for 5≤ i

≤ n − 2.

Proof. By Lemmas 8 and 9, we easily obtain

DR G
3,1
n  � DR G

3,3
n  � DR G

3
n− 1  + Dv1

G
3
n− 1  + 2Kfv1

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ 2 ·
5
8

+ 3 ·
5
8

+ 3 ·
1
2

+ 2 ·
5
8

+ 1  + · · · + 2 ·
5
8

+ n − 6  + n − 5 +
5
8

 

+ 2 ·
5
8

+
5
8

+
1
2

+
5
8

+ 1  + · · · +
5
8

+ n − 5   + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

  + n
2

−
35
4

n +
91
4

 

+ n
2

−
31
4

n +
69
4

  + 3n �
2
3
n
3

+ n
2

−
455
12

n +
493
4

,

DR G
3,2
n  � DR G

3
n− 1  + Dv2

G
3
n− 1  + 2Kfv2

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ 3 ·
5
8

+ 3 ·
5
8

+ 3 · 1 + 2 · 2 + · · · + 2 · (n − 5) +(n − 4) + 2 ·
5
8

+
5
8

+ 1

+ · · · + n − 4) + 3n
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�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ n
2

− 8n +
83
4

 

+ n
2

− 7n +
29
2

  + 3

� 
2
3
n
3

+ n
2

−
437
12

n +
237
2

,

DR G
3,4
n  � DR G

3
n− 1  + Dv4

G
3
n− 1  + 2Kfv4

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

 + 2 · 3 ·
5
8

+ 2 · 1 + 2 · 1 + 2 · 2 + · · · + 2 · (n − 6) +(n − 5) + 2 · 2 ·
5
8

+ 1 + 1

+ · · · + n − 5 + 3n �
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

  + n
2

− 10n +
123
4

 

+ n
2

− 9n +
49
2

  + 3n �
2
3
n
3

+ n
2

−
485
12

n +
277
2

,

(11)

and for 5≤ i≤ n − 2,

DR G
3,i
n  � DR G

3
n− 1  + Dvi

G
3
n− 1  + 2Kfvi

G
3
n− 1  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ 2 · 1 + 2 · 2 + · · ·

+ 2 · (n − 2 − i) +(n − 1 − i) + 2 · 1 + 2 · 2 + · · · + 2 · (i − 5)

+ 3 · (i − 4) + 2 · 3 · i − 4 +
5
8

  + 2 · (i − 3) + 2 · 1 + 2 + · · ·

+(n − 1 − i) + 1 + 2 + · · · + i − 3 + 2 · i − 4 +
5
8

  + 3n

�
2
3
(n − 1)

3
+(n − 1)

2
−
293
12

(n − 1) +
117
2

 

+ n
2

− 2ni − 2n + 2i
2

+ 4i −
69
4

+ n
2

− 2ni − n + 2i
2

−
15
2

  + 3n

�
2
3
n
3

+ n
2

−
293
12

n − 4ni + 4i
2

+ 4i +
117
2

.

(12)

Proposition 1. Suppose G≇G3
n is a bicyclic graph of

ordern≥ 5 and v ∈ V(G), where G3
n is defined as in Lemma 9.

7en, Kfv(G)≤ n2/2 − n/2 − 17/4.

Proof. It is not hard to verify that, for any bicyclic graph
G≇G3

5 of order 5 and v ∈ V(G), Kfv(G)≤ 52/2 − 5/2 − 17/4.
-us, we assume n≥ 6 in the following cases.
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Case 1 (d(v) � 1): let w be the neighbor of v.
Suppose G − v � G3

n− 1, where G3
n− 1 is obtained from a 4-

cycle C4 � v1v2v3v4v1 and a path P � v5 . . . vn− 1 by
adding the edges v1v3 and v4v5. -en, w≠ vn− 1 since
G≇G3

n. By Lemma 1,

Kfv(G) � Kfw(G − v) + n − 1

≤max Kfvn− 2
G
3
n− 1 , Kfv2

G
3
n− 1   + n − 1

� max
n
2

2
−
5
2

n +
1
4
,
n
2

2
−
7
2

n +
29
4

  + n − 1

� max
n
2

2
−
3
2

n −
3
4
,
n
2

2
−
5
2

n +
25
4

 

<
n
2

2
−

n

2
−
17
4

.

(13)

If G − v≇G3
n− 1, we shall prove it by induction on n.

By the inductive hypothesis, Kfv(G) � Kfw(G − v) +

n − 1≤ (n − 1)2/2 − (n − 1)/2 − 17/4 + n − 1 � n2/2 −

n/2 − 17/4.
Case 2: d(v)≥ 2.

By Lemma 2, Kfv(G)≤ n2/2 − 3n/2 + 1/3< n2/2 −

n/2 − 17/4. □

Lemma 11 (see [23]). Let G be a bicyclic graph of order n, v

be a pendant vertex of G, and w be its neighbor. 7en,
Dv(G) � Dw(G − v) + 2n + 1.

Proposition 2. Let G≇G3
n be a graph inB

θ
n of order n≥ 5 and

v ∈ V(G), where G3
n is defined as in Lemma 9. 7en,

Dv(G)≤ n2 + 2n − 20.

Proof. It is easy to verify that for any graph G ∈Bθ
5 with

G≇G3
5 and v ∈ V(G), Dv(G)≤ 15 � 52 + 2 · 5 − 20. -us, we

assume n≥ 6 in the following cases.

Case 1 (dG(v) � 1): let w be the neighbor of v.
Suppose G − v � G3

n− 1, where G3
n− 1 is obtained from a 4-

cycle C4 � v1v2v3v4v1 and a path P � v5 . . . vn− 1 by
adding the edges v1v3 and v4v5. -en, w≠ vn− 1 since
G≇G3

n. Moreover, Dv(G) � Dw(G3
n− 1) + 2n + 1 by

Lemma 11. By direct calculation, we get Dv1
(G3

n− 1) � Dv3
(G3

n− 1) � n2 − 35/4n + 91/4, Dv2
(G3

n− 1) �

n2 − 8n + 83/4, Dv4
(G3

n− 1) � n2 − 10n + 123/4, and

Dvi
G
3
n− 1  � n

2
− 2n + 2i

2
+(4 − 2n)i −

69
4

≤ n
2

− 2n + 2(n − 2)
2

+(4 − 2n)(n − 2) −
69
4

� n
2

− 2n −
69
4

� Dvn− 2
G
3
n− 1  ,

(14)

if 5≤ i≤ n − 2. -us, Dw(G3
n− 1)≤Dvn− 2

(G3
n− 1) and

Dv(G)≤Dvn− 2
(G3

n− 1) + 2n + 1 � n2 − 65/4< n2+ 2n − 20.
If G − v≇G3

n− 1, we prove it by induction on n. By the
inductive hypothesis, Dv(G) � Dw(G) + 2n + 1≤
(n − 1)2 + 2(n − 1) − 20 + 2n + 1 � n2 + 2n − 20.
Case 2: dG(v)≥ 2.

Subcase 1: v is not contained by any cycle of G.
By the same argument as that of Case 2 of Lemma 2.6
in [23], we can construct a series of bicyclic graphs
G1, G2, . . . , Gk− 1 in Bθ

n such that Dv(G)<Dv

(G1)< · · · <Dv(Gk− 1) and v is a pendant vertex in
Gk− 1, where k � dG(v)≥ 2.
Suppose Gk− 1 � G3

n. -en, Gk− 1 is obtained from a 4-
cycle C4 � v1v2v3v4v1 and a path P � v5 · · · vn− 1v by
adding the edges v1v3 and v4v5. By the transformation
from Gk− 2 to Gk− 1, we can conclude that
Gk− 2 � Gk− 1 − vn− 2vn− 1 + vn− 2v, i.e., Gk− 2 � Gk− 1. Note
that Dv(Gk− 2) � n2 − 73/4. We have Dv(G)≤Dv

(Gk− 2)< n2 + 2n − 20.
If Gk− 1≇G3

n, then, by Case 1, Dv(G)<Dv(Gk− 1)≤
n2 + 2n − 20.
Subcase 2: v is in a cycle of G.

Let G
∧
be the kernel of G. By Claims 1 and 2 of Lemma 2.6

in [23], we can construct a graph G″ in Bθ
n having G

∧
as its

kernel and Dv(G)≤Dv(G″). Moreover, G″ is obtained from
G
∧
by attaching a pendant path to the vertex u, where u is a

vertex of G
∧
such that RG(u, v) � max

w∈V(G
∧

)
RG(w, v).

Suppose G″ has only two vertices of degree three, say w1
and w2. Without loss of generality, we assume that v≠w1,
and v≠w2. -en, by Lemma 2,

Dv G″(  � 3 RG″ w1, v(  + RG″ w2, v( (  + 
w≠w1,w2

2RG″(w, v)

� RG″ w1, v(  + RG″ w2, v(  + 2Kfv G″( 

< dG″ w1, v(  + dG″ w2, v(  + 2Kfv G″( 

≤ n + 2
n
2

2
−
3
2

n +
1
3

 

< n
2

+ 2n − 20.

(15)

Suppose G″ has exactly three vertices of degree three, say
w1, w2, and w3. Let w4 be the pendant vertex of G″. Without
loss of generality, we assume that v≠w1, w2, w3. -en, by
Lemma 2,

Dv G″(  � 3 RG″ w1, v(  + RG″ w2, v(  + RG″ w3, v( (  + RG″ w4, v( 

+ 
w≠w1 ,w2 ,w3 ,w4

2RG″(w, v)

<RG″ w1, v(  + RG″ w2, v(  + RG″ w3, v(  + 2Kfv G″( 

<dG″ w1, v(  + dG″ w2, v(  + dG″ w3, v(  + 2Kfv G″( 
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≤
3(n − 1)

2
+ 2 ·

n
2

2
−
3
2

n +
1
3

 

≤ n
2

+ 2n − 20.

(16)

Suppose G″ has a vertex of degree four, say w1, and a
vertex of degree three, say w2. Let w3 be the pendant vertex
of G″. Without loss of generality, we assume that v≠w1, w2.
-en, by Lemma 2,

Dv G″(  � 4RG″ w1, v(  + 3RG″ w2, v( 

+ RG″ w3, v(  + 
w≠w1 ,w2 ,w3

2RG″(w, v)

< 2RG″ w1, v(  + RG″ w2, v(  + 2Kfv G″( 

< 2dG″ w1, v(  + dG″ w2, v(  + 2Kfv G″( 

≤
3(n − 1)

2
+ 2 ·

n
2

2
−
3
2

n +
1
3

 

≤ n
2

+ 2n − 20,

(17)

which completes the proof. □

Theorem 5. Suppose G is a graph of order n≥ 5 inBθ
n\ G3

n .
7en, DR(G)≤ 2/3n3 + n2 − 163/6n + 139/2, with equality if
and only if G � G5

n, where G3
n and G5

n are defined as in Lemma
9.

Proof. It is not hard to verify that, for any graph G in
Bθ

5\ G3
5 , DR(G)≤ 42 � 2/3 · 53 + 52 − 163/6 · 5 + 139/2,

with equality if and only if G � G5
5.

We assume that n≥ 6, and consider the following two
cases.

Case 1: δ(G) � 1.
Let vn be a pendant vertex of G. Suppose G − vn � G3

n− 1,
where G3

n− 1 is obtained from a 4-cycle C4 � v1v2v3v4v1,
and a path P � v5 · · · vn− 1 by adding the edges v1v3 and
v4v5. -en, G � G3,i

n , where 1≤ i≤ n − 2, and G3,i
n is

defined in the Lemmas 10. By Lemma 10,

DR G
3,1
n  � DR G

3,3
n  �

2
3
n
3

+ n
2

−
455
12

n +
493
4
<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

DR G
3,2
n  �

2
3
n
3

+ n
2

−
437
12

n +
237
2
<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

DR G
3,4
n  �

2
3
n
3

+ n
2

−
485
12

n +
277
2
<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

DR G
3,i
n  �

2
3
n
3

+ n
2

−
293
12

n − 4ni + 4i
2

+ 4i +
117
2

≤
2
3
n
3

+ n
2

−
293
12

n − 4n(n − 2) + 4(n − 2)
2

+ 4(n − 2) +
117
2

�
2
3
n
3

+ n
2

−
341
12

n +
133
2

<
2
3
n
3

+ n
2

−
163
6

n +
139
2

,

(18)

for 5≤ i≤ n − 2.
If G − vn≇G3

n− 1, we prove it by induction on n. Let w be
the neighbor of vn. By the inductive hypothesis, Lemma
8, and Propositions 1 and 2,
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DR(G) � DR G − vn(  + Dw G − vn(  + 2Kfw G − vn(  + 3n

≤
2
3
(n − 1)

3
+(n − 1)

2
−
163
6

(n − 1)

+
139
2

 +(n − 1)
2

+ 2(n − 1)

− 20 + 2 ·
(n − 1)

2

2
−

n − 1
2

−
17
4

  + 3n

�
2
3
n
3

+ n
2

−
163
6

n +
139
2

.

(19)

-e equality DR(G) � 2/3n3 + n2 − 163/6n + 139/2
holds if and only ifDR(G − vn) � 2/3(n − 1)3 + (n − 1)2

− 163/6(n − 1) + 139/2, Dw(G − vn) � (n − 1)2 + 2(n −

1) − 20, and Kfw(G − vn) � (n − 1)2/2− (n − 1)/2−

17/4 � n2/2 − 3/2n − 13/4. By the inductive hypothesis,
G − vn � G5

n− 1, where G5
n− 1 is obtained from a 4-cycle

C4 � v1v2v3v4v1 and a path P � v5 . . . vn− 1 by adding
the edges v2v4 and v4v5. We show that w � vn− 1, i.e.,
G � G5

n.
By direct calculation, we have Kfvn− 1

(G5
n− 1) �

n2/2 − 3/2n − 13/4, Kfv2
(G5

n− 1) � n2/2 − 4n + 37/4< n2

/2 − 3/2n − 13/4, and Kfv1
(G5

n− 1) � Kfv3
(G5

n− 1) �

n2/2 − 31/8n + 73/8< n2/2 − 3/2n − 13/4. Obviously,
Kfv(G5

n− 1)<Kfvn− 1
(G5

n− 1) if v ∈ V(G5
n− 1)∖ v1, v2,

v3, vn− 1}. -erefore, w � vn− 1, i.e., G � G5
n.

Case 2: δ(G)≥ 2.

By a similar argument to that of Case 2 in-eorem 3, we
obtain

DR(G)≤
1
2
n
3

+ n
2

− 3n +
2
3
. (20)

If n≥ 11, then 1/2n3 + n2 − 3n + 2/3 < 2/3n3 + n2 −

163/6n + 139/2. For any graph of the form B(Pk, Pl, Pm)

when n � 6, 7, 8, 9, 10, we have calculated DR(G) and found
that DR(G)≤ 2/3n3 + n2 − 163/6n + 139/2.

From -eorems 2 and 4, we obtain the following
result. □

Theorem 6. LetG1
nandG5

nbe defined as in Lemma 9. 7en,
among all bicyclic graphs of order n,

(i) If 6≤ n≤ 16, the graph G5
n is the unique graph with the

third-maximum degree resistance distance of value
2/3n3 + n2 − 163/6n + 139/2

(ii) If n≥ 17, the graph G1
n is the unique graph with the

third-maximum degree resistance distance of value
2/3n3 + n2 − 79/3n + 56

5. Conclusion

As a molecular structure descriptor, the Wiener index is one
of the widely employed topological indices, as it is well
correlated with many physical and chemical properties of a
variety of classes of chemical compounds. A weighted

version of theWiener index is the degree resistance distance.
In this paper, we characterize the graphs with the second-
maximum and third-maximum degree resistance distance
among all bicyclic graphs with fixed order. Furthermore, we
present an open problem.

Problem 1. Characterize the tricyclic graphs of order n with
the maximum and second-maximum degree resistance
distance.
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