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In this paper, we want to establish an averaging principle for Mckean-Vlasov-type Caputo fractional stochastic differential
equations with Brownian motion. Compared with the classic averaging condition for stochastic differential equation, we propose a
new averaging condition and obtain the averaging convergence results for Mckean-Vlasov-type Caputo fractional stochastic

differential equations.

1. Introduction

For complex systems, we usually want to locate an effective
simplified model to approximate the original complex
system or extract the main dynamical behavior of the
original system. Based on these ideas, a lot of effective
methods have been generated in dynamical systems, such as
invariant manifolds, averaging principle, and homogeniza-
tion principle. These effective methods have now been ex-
tended to deal with stochastic systems, such as stochastic
invariant manifolds see [1, 2] and stochastic averaging
principle, see [3-9].

Currently, the problem of averaging for stochastic differ-
ential equations have received a lot of attention and various
types of stochastic differential equations have been studied, see
[4, 6, 7, 10-12]. However, there are no relevant results of
averaging principle for distribution dependent-type stochastic
differential equations which we will consider in this paper.

On the contrary, the problem of averaging for stochastic
fractional order differential equations have received a lot of
attention in recent years, and some results [13] have been
obtained under averaging condition consistence with the
classic case (see [4, 5, 14]). Noting that the fractional order
derivative is a nonlocal operator, therefore, the fractional
order differential equation is more effective for describing
certain phenomena in the real world (see [15-17]). Current

research studies on stochastic fractional order differential
equations mainly focused on the existence and uniqueness of
the solutions, with fewer results from the dynamical system
perspective.

Based on the above discussion, we shall study the av-
eraging principle for the following Mckean-Vlasov-type
Caputo fractional stochastic differential equations:

DiX, = f(t Xy, py)dt + g(t, X 4y, )dB,,  £20,
p(t) = probability distribution of X, (1)
X, = x, € L*(Q, H),

where a € (1/2,1] and B, is a scalar Brownian motion.
Nonlinear terms f and g are H-valued functions defined on
R* x H x M, (H), and M, (H) denotes a proper subset of
probability measure on H. If the terms f and g do not
depend on the probability distribution y () of the process X
at time ¢, such equations have been studied by [13] and other
authors. If a =1, the equation becomes a classical
Mckean-Vlasov-type stochastic differential equations which
have been considered by many authors with different ap-
proaches (see [18-20]). In this paper, we just focused on
a € (1/2,1), and more details can be seen in Section 2.
The paper is structured as follows. We introduce some
notation and assumptions in Section 2. The existence and
unique solution for distribution dependent fractional
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stochastic differential equations will be discussed in Section
3. An averaging principle for the above equation is estab-
lished in Section 4.

2. Preliminaries

First, we introduce some notation. Let C (H) be the space of
continuous functions on H. Let 9% (H) be the Borel

Cp(H) ={¢ € C(H): l¢llc. = sup —
’ xeH Y (

For any p>1, let My, (H) denote the Banach space of
signed measures m on H and IIyllyp = _[Hyplml (dx) < 0.
lml=m*+m~ and m=m"-m~ are the Jordan

p(u,v) = sup{(¢w =) l1gll, = sup =
xeH Y (x) x+y

Then, (M. (H),p) is a complete metric space. Let
Cc([0,T], (Myz (H),p)) be the complete metric space of
continuous functions from [0, T] to (Myz (H), p) with the
following metric:

Dy (u,v) = sup p(u(t),v(t)), forv,ue C( [O,T],Myz (H),p).

te[0,T]
(4)

More details can be seen in [18].
In order to obtain the existence and uniqueness of the
solution of (1), we introduce the following conditions.

(i) H1 (Lipschitz condition): for all x,y € H and
te[0,T], ueC([0,T], M, (H), p), and there exists
a bounded function k; () >0, such that

|f (& x,0) = £ (& y, )P +lg (6 x,0) = g (8 y, 9
<k, (O)(lx = yI* + p* (u, 7).
(5)
(ii) H2 (growth condition): for all (x,t) € H x [0,T],

there exists a bounded function k, (t) >0 such that

1f (ool +g (6w <k, ()(1+Ix). (6)

In this paper, we assume there existence of a constant k
such that max{k, (£), k, (1)} <k.

First, we give an important lemma, which is a type of
promotion form of Gronwall’s inequality with singular
kernels.

Lemma 1 (see [21, 22]). Suppose b>0, >0, and a(t) is a
nonnegative function locally integrable on 0<t<T (some

¢ ()l
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o-algebra of subsets of H. M (H) is the space of probability
measures on % (H) and carries the usual topology of weak
convergence. (¢, $) denotes _[Hgb(x p(dx). Let y(x) = 1+
|x|, Vx € H, and then, define the Banach space

(2)

+ sup
X x#y

¢ (x) —¢(y)|<00
lx — yl '

decomposition of m. M, (H) = MS (H)N M (H) is the set
of probability measures on % (H), and there exists second
moments. Define the following metric:

LI

90 =W _, } 3)

|x =yl

T < +00), and suppose u(t) is nonnegative and locally in-
tegrable on 0<t <T with

u(t)<a(t) +br (t - s)" 'u(s)ds, (7)
0

on this interval. Then,

u(t)<a(t) + Jt [OZO: (bl"([j’))”(t - s)"ﬁla(s)]ds, 0<t<T.

olg T(np)
(8)
3. Existence and Uniqueness
Consider the integral form of equation (1):
X, = t =) f (s, Xoop,)ds
t ‘XO r( ) j ( S) (S s Aut)
9)

1

Under the assumptions of H1 and H2, we will prove the
existence and uniqueness of solution for the above equation.

Definition 1. An ¥ ,-adapted stochastic process X, with law
L(X,) = u(t) is called a solution of (1) if X, is continuous,
and for Vt € [0 T] with X, = x,,

LNt )J (t =)' f (s, X 1) ds
(10)
a—1
T )J (t=9)""'g(t, X, 4;)dB,, P - as.

Theorem 1. Assume that HI and H2 hold; then, for
Vx, € L*(Q,H), equation (10) has a unique solution
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X, € C([0,T]; L*(Q, H)) with the associate probability dis-
tribution p, = L(X,), t € [0,T] belonging to C([0,T],
(Mf,(X),p)), such that

2
sup E|X,|" < oo. (11)
0<t<T

We will proof the theorem by several steps.

(i) First, we prove that X, € L* ([0, T],L*(Q; H)) for
Vu e C([0,T], (Myz (H),p)). Using the following
inequality,

la+b+cl? <3(lal* +[bl” +IcI*). (12)

Tk
T'(a)

Tk
S5
I'(a)

I, <

s (1 sup
T(a) a—-1)\  ozezr' '

For I, by It 0’s isometry formula and H2, we have

Ko .
b jo (t-s)? 2(1 +EIX(s)P +||‘utH§)ds

<L(1+ sup | ||2)
“T(a)?(a-1) 05th Helly

r(k) j (t - % 2E|X (s)Pds.
(15)

Combining the above estimate results, we finally obtain

t
EX(OP<r, +1, j (t =2 D IEX ()Pds,  (16)
0

where
ry = 3»E|x0|2 +3

(kT* ) (T + 1)(

I'(a)?Qa-1)

+ sup [ )

0<t<T

k(T+ 1)
()’

ry =

(17)

We see that

EIX () <3E|x0| +3E‘

o [ el

2
+3Elr( )J (t—9)"""g(t, X, p,)dB,

=31, + 31, + 315.
(13)

For I,, applying Cauchy-Schwarz’s inequality and
H2, it follows

t
2 JO - S)za—2<l +EIX(s)] +||[,¢t||]2,>ds
t2cx—1 5 ¢ - ,
2a-1 (1 " oxror "’”"V) o], -9 mx ds] (14)

_ 20—2
) fo? J (t - % 2E|X (s)Pds.

With the help of Lemma 1, it follows

EX @) <r1< Jti (r,T 2a - 1)) (t _S)(thl)nlds>

I'((2a—1)n

nfne g

= rl(l + EZa,l,l(rZF(Zoc - l)Tzafl)) <00,

(18)

for Vt € [0,T], and E,, |, (-) is a two-parameter
function of the Mittag-Leffler type [21].

Then,

sup E[X (t)]* < oo, (19)
0<t<T
and X, € L® ([0, T], L*(Q; H)).

(ii) Now, we show that X, € C([0,T],L*(Q;H)) for
VYu e C([0,T], (Myz (H), p)):
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t to
D A I e | IO ACE AR IR ey JCP WRLE
0 T'(x)“llJo 0
‘ a1 fo a1 : (20)
+ 2E—2 J (t-s) f(S, Xs’.“s)st - J (tO - S) f(S, X :us)st
T'(a)l)o 0
=2(J; + 7).
For J,, we have
1| ?
JIS2E—— J (t =9 f (s X, py)ds
T(a) |l 4
(21)
1 o a-1 a-1 :
+ ZEW Jo ((t -9 = (t—s) )f(s, X p)ds|| =2] 11 +2] ;.
By the Cauchy-Schwartz inequality, For J,,, we have
1 f 20-2 t 2
e - E , X
Tn sr(“)szU (t-s) dsLO 1 (5, X, ) ds
st [ (B s
T ()’ (20— 1) t R
Ck 2a
Sr(oc)z(Zoc— 1)(t o)™
(22)
] =ELJt°((t—s)“‘1 ~(tg -5 ) f (s Xoop )ds2
12 F(OC)Z o 0 > Ao hs
k ty . 112 ty 5
< [ (=9 == Yas (1 B+l as
(23)
CTk (% 2 1) (a-1)
SF((x)Z JO((to—s) —(t -9t )ds

§ CTk (t _ tO)Zocfl N tétx—l tsz—l 3 CTk (t _ t0)20c—1
“T(w)?| 2a-1 20-1 2a-1]| T(a)* 2a-1

2 Ck(1+T) (t—t,)"*!
For J,, using the It 0 isometry formula, in the similar E”Xt - Xl = (o) ( 20(0—) 1
way as J;, we can prove that (a) (25)
Ck 2
20— 1 + 70 _t ) ,
I, Ck_(t=t) . (24) T ()’ (2a— 1) °

<
“T(a)? 2a-1
which implied X, € C([0, T],L?(Q; H)) for each
Results of J, and J, combined together show that fixed p € C([0,T7, (Myz,p)).
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(iii) By virtue of the fixed point theorem for contraction
mappings, we can show that, for each fixed
peC([0,T], (M z,p)) equation (10) has a unique
solution in C ([0, T] L*(Q; H)). Similar arguments
are also discussed in [18]. Now, we define an op-
erator @, (-) on C( [0,T], L?(Q; H)):

(@, X) (1) = x, + j (t— 9" (s X py)ds

T(a)

1 ! a—1
+ @ Jo (t—9)" "g(t,X,,u,)dB,.

(26)

(@,X) ) ~(0,¥) ()

It is easy to verify that &, is from
C([0,T], L* (Q: H)) into itself.
For X,,Y, € C([0,T],L*(Q; H)) with x, = y,, let
|- |; denote the norm of C([0,T],L*(Q;H)) and
B =2a—1>0; then, we obtain

2

1 ! a—1
<2 % JO (t _S) (f(S, Xs’[’ls) _f(s’Ys"“s))ds . (27)
I 1 d 2
2l | (-9 (gt Xopu)—g(t, Y, B
w2l J -9 (00 Ko~ 96 Yo pe)aB|
Using the Cauchy-Schwartz inequality and It 0 Kq;’“ X) (t)_(q)1+1y)(t)|2
isometry formula, it is readily seen that ! ! :
2Tk+2k
< (t =) (@, X) () -(@,Y) (s)] d
(@.X) @ ~(@,r) 0 (2’ I SOLRCREIE
2Tk+2kj (t- 9P |x, - v [ds. (28) 2Tk +2k Jf (t_S)ﬁ_Q(sz+2k>’r(ﬁ)ls,ﬁlx Y [d
R NCYE T )’ Jo B\ T(w? JT(kB) "¢ ¢
I+1 k ¢
Our goal is now to prove the following inequality: < <2Trlzl:)22 k) % ?(Z;)I ;= Yt|§ jo (t -9 'Pds.
(31)

(@) (1) (@) ()]

1(2Tk+2k\"T(B)" gy 12
Sﬁ( Ty )F(n/sr =Yl

(29)

The proof is based on mathematical induction over
n. Forn=1,

(0,%) 1) ~(0,¥) )]
2Tk + 2k (30)

v,
I(a)

Ea

o Xi-

which is fulfilled.

For the induction step from n=[to n=1+1, we
assume that, for n=1, equation (29) is satisfied;
then,

Thus, we only need to discuss the following integral:

Jt (t - s)f '8 ds, (32)
0

Let s = tz; then,
t 1
j (t-s)f 1sds = J (1-2)f 1P 1P Pz
0 0
= (P jl (1-2)"'2%dz
0
LB Ip+1)

T(I+1Dp+1)
(33)

t "B+ 1,8) = 1P

where B(-,-) is the Beta function. Substitute the
above equality into (31), and we derive that
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(Zlec + 2k>l“l r(/j)lixt _y [ e0s T(AT (B +1)
I* () B TUB) ¢ I(I+1)p+1)
2Tk+2k\""1 . ., TUB+1) g
:< T2 (a) ) Br(ﬁ) T((I+1)B+ 1L (P) X, - vl (34)
2Tk + 2K\ BT (IB) R )
( I? () ) Br(ﬁ) (l+1)/31“((l+1)ﬁ)1“(lﬁ) lX Yl
2Tk +2k\"'1 gt 2
<|“—) T X, Y.
<( I (o) ) 1B E g Yk
By the above discussion, we finally obtain which implies
2
O"X) (t) — (DY) (t)
K “ ) ( “ ) |C tlﬂlsP(L(XM(f)):L(Xﬂ(S))): (38)

2Tk + 2k " 9
2
(i) 5 g

Note that (Tk + /T ()" (1/B)T(B)" (T™/ T (np))
— 0 as n— +o0o. Then, we have
(Tk + k/T ()" (1/B)T (B)" (T"™/T (nB)) <1 for any
sufficiently large n. And, this shows that ®,(-) is a
contraction map on C ([0, T], L? (Q; H)). So, it has a
unique fixed point for y € C([0,T7], (Myz (H), p)).
(iv) L(X,) = {L(X,(t)): t € [0,T]} is the probability
law of X,. Now, we prove that L(X )
e C([o0,T], (M z,p)) Notice that X, €C ([o, T]
L2 (Q; H)), L(X ) € M, (H) for Vt € [0 T]. So, we
only need to prove t —> L(X (t)) is continuous.
In step (ii), we have
2
E|X, (1) - X, ()] — 0, (36)
ast — s.

By the definition of p, we have
[(6:L(%(0) = L(X, )] = E[¢(X, () = 9(X, (9)]
<161, E|X, (0 - X, 9] <o, (B[, 0~ X, 0 )
(37)

Hence, we verify that L(X,) € C([0,T], (M2, p)).
(v) Define ¥ on C([0,T], (Myz,P)) as follows:

You— L(Xﬂ). (39)

In the following, we will show that the operator ¥ has a
unique fixed point in C([0,T], (Myz,p)). Take

v € C([0,T], (M2, p)), and let X, (t) and X, (t) be the
corresponding solutions of the following equations:

X, 0 =0+ i [ (=97 F (5. X )

1 t
+ - JO (t _S)a_lg(t) Xs’lus)dBt’

I'(a)
(40)
X, 00 = %0+ 1 )J (t =9 £ (s, X, v,)ds
a—1
I‘( )J (t-9)" g(t,X,,v,)dB,.

Thus,
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t
E|X,, () -X, (t)|2 < E J-o (t - 5)2“_2|f(s, X, (s),ys) - f(sX,(s), ) 2ds
2 t o 2
+ WE Jo (t —5)* 2'g(s, X, (s),ys) -9(s, X, (s),7)| ds
(41)
2kT 2a2
o j (6= [[X,09 = X, ) 97 (o 7,) s
2k ‘ 20-2 Z 2
+WEJO (6= 9 2[[%,(9 - X, )+ () s
After simple calculation, we have that
_2k(T +1) 72!
Os<l;1<pTE|X (t) - X (t)] T 2 Li?ff'x (t) - X (t)] + D} (w)]- (42)
Select the appropriate T = T, > 0, such that Xet) =xo + F( ) J (£ =) F (5, Xc (), e (9))ds
2%k (To+1) T 1
I () w13 (43) r\(/g) j (t=9)"""g(s, X (), pc (5))dB
Then, it follows (48)

Sup ouer E[X, () - X, 0] < %Déo Wy,  (44)
By the definition of p (4, 7) and D2 (u,v), we can obtain
P> () <E|X, (1) - X, )] (45)

Taking sup-norm on both sides, we obtain

Dy (¥ (), ¥ (v) < P EX,0-X,0. ()
<t<

Combine this result with equation (44), and we finally
derive

D, (¥ (1, ¥ () < 3%, (7). 47)

Since V¥ is a contraction in C ([0, T,], (Myz (H),p)), it
has a unique fixed point. Thus, equation (10) has a unique
solution X, with 4 = L(X,) on [0, T;]. Because X, belongs to
C([0,T], L*(Q; H)), we can extend the solution to [0, T] by
considering [0,T], [T, 2T, ], and so on. This completes the
proof.

4. An Averaging Principle

In this section, we study an averaging principle for the
following distribution dependent fractional stochastic dif-
ferential equations in H:

where x,, € L* (Q; H). We will show that the solution of (48)
will be approximated by the following simpler or averaged
process under certain conditions:

Z.(t) = xy + I (t =) (Z.(s),7.(5))ds

m
\/_
T@

Equation (49) is called the averaged equation for (48).
Now, we prove that the solution of (49) converges to the
solution of the original equation (48) under the following
additional conditions.

H3:

tz“l‘ J (-

<o (1)(1 +x* +[ul®).

(49)
J (t = 9 1G(Z. (), . (s))dB,.

@I f (s,,u) = f (x, @) Pds
(50)

H4.

1 ¢ 2(
2! Jo (t=9)

<, (O(1 +1xl” +]ull®),

o 1)|g (s, 2,u) - g(x, y)2|ds

(51)
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where ¢; (t) are positive and bounded with lim, ,,  ¢;(t) =0
fOI‘ i= 1, 2. O<t<Le(-Bl2a-1)

Remark 1. Note that when we take « = 1, then this condition .
is consistence with the classic case, see [4]. Let us consider

Theorem 2. Let H1 — H4 hold. Then, for V3, >0, there exist
constants L>0, ¢; € (0,¢,] and B € (0, 1) such that, for any
€€ (0,¢], 1/2<a< 1, we have

X020 = 5 [, =9 [ 6 X9 9) - F (2]
’ % J (=9 [9(5 X (9 (9)) = G (Ze (51,7 () 1B

By the arithmetic inequality, it follows that

E|X.(t) - Z.(t) <

2

E‘ﬁ JO (=) [f (5 X (9), e () = F(Ze (9), 7 (9)) ] ds
2
t 2
+E TZ) J = (5 Xe (9,1 (9) = G (Ze (), 7 (9))]dB,
=2(Q, + Q).
For Q,, we have
€ t a—1 F 2
Q = Efr s JO (t =) [f (5 Xe (9 (9)) = f (Ze (9,7 (5)) ] ds
t 2
, | E J (t =) [ (5 Xe (), e (9)) = £ (5 Ze (), % (9)) ] ds
2¢ 0
T(w)? 2

+E JO (£ =9 [f (5 Ze (9,9 (9)) = F(Ze (), %, (5))]ds

sup  E[X.(t) - Z.(D[ <84,.

(52)

(53)

(54)

(55)
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Applying the Cauchy-Schwarz inequality, H1, H3, and
the definition of the metric p, we obtain

2tke®

: T'(a)

Q

2€

2«
+
I'(a)?

= <

,[o (t—s)** 2E[|X€ (s) - Z, (s)|2 + 0 (e (5), 7, (s))]ds

1

v E jo (t = %2 f (5, Ze (), (9)) — F(Ze (), % () dls

atke* [t - 2
Sr(06)2 Jo (t=s) E|Xe(5)—Z€(s)| ds
+ 262 tlot(P (t)(l +E|Z (5)|2+”V (S)")2

r((x)z 1 € e

For Q,, using the Ito isometry formula, we obtain

€

&=

2e
I(a)

<

[ =9 2Bl (6%, (9.1, 9) - 9 (29 () s
J (- SV 2E|g (5, X, (), 4 () = 9 (Ze (), ())[ds

+ JO (t = 1 2E|g (Z. (5),.(5)) - G(Z. (5), %, () ds

Applying conditions H1 and H4, we derive

2ke
Q< T(a)?

4ke

[ =9 B (9 - 2O+ (1D ()]s
0

+ Jt (t - s> VE|g(Z.(5), v (5)) = G(Ze (), v ()| ds
0

< r (t - s> VE|X,(s) - Zo(s)|'ds
0

TT(a)?

+

I'(x)

2 -1y, (t)(l +E|Z, (5)* +|. (5)"2).

(56)

(57)

(58)
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Therefore, from the above discussion, (56)-(58), and

Theorem 1, we have

atke’
I'(a)

E|X.()-Z.(t)| < I (t-s)"“ VE|X,(s) -

Journal of Mathematics

s)lzds

262 2a 2 2
g o O(1+EZ.OF +]e @)

(59)
4k t 2
€ J (t - 9> VE[X_(s) - Z,(s)|'ds + —eztz“*l(pzr(a)z@ + E|Z () +. (s)|l2>
F( )? I'(a)
k
=2€T2£X—1( C1€2T+ Cy 2)+4€< 2T )J (t )(Za_l)_1E|X€(S)—ZE(S)|2dS.
I'(a) T(a) I@’  T(a)
Denote 7, = 2((c,e/T(0)*)T + (¢,/T(«)*)) and r, =
4((ke/T ()*)T + (/T (@)*)); using Lemma 1, we have
[ee]
2 20— 1 (TZGF (2“ ) (2a—1)n—1
E\X (t)-Z.(t T 1 -
[Xe(®) =z <e ”( +J 2 T a—m ¢ &
20-1
gt 1+§(1’26F 20 - )T (60)
= T(Q2a-1n+1)
< eTz'X*lrl(l + Ezlx,l,l(rzeF(Z(x -1 1))
Dy (ye,v.) = sup p(u. (t), v (t)
Select some f$ € (0,1), L>0, such that, for Vt € (0, Le i )= 0<t<T ( )
(-Bl2a—1) :
], we obtain <s sup E|Xe(t) - Ze(t)|2 —0, €—0,
su E\X_ (t)-Z_.(t) < Ce' ost<T
OstsLe(g/Z“’” | ‘ ¢ | (61) (64)
where C =7, (1 + B, ; (r,Le P2 DT (2a - 1))). which means that, as e — 0, g, (t) corresponding to X ()
Consequently, for V3, >0, one can select some  converges to v (t) of Z.(t) in C([0,T; (M;,p)]).

€ (0,e,] such that, for each €€ (0,¢], Vte
(0, Le P2~ 1], we have
2
w d0-zol< @
0<t<Le(-P2a-1)

This completes the proof.

Remark 2. Using the definition of p, we obtain

p (4 (0,7 (1)) S E|X () - Z ()| < E|X.(8) - Z. (D).
(63)

From the above estimate, we actually obtain

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partiality supported by the NNSFs of China
(nos. 11901584, 61876192, 11926322, and 11801575), “the
Fundamental Research Funds for the Central Universities,”



Journal of Mathematics

the South-Central University for Nationalities (nos.

CZY20013, CZY20014, CTZ20020, and KTZ20051).

References

[1] J. Duan, K. Lu, and B. r. Schmalfuss, “Smooth stable and
unstable manifolds for stochastic evolutionary equations,”
Journal of Dynamics and Differential Equations, vol. 16, no. 4,
pp. 949-972, 2004.

[2] J. Duan, K. Lu, and B. Schmalfuss, “Invariant manifolds for
stochastic partial differential equations,” Annals of Proba-
bility, vol. 31, no. 4, pp. 2109-2135, 2003.

[3] H. Fuand J. Liu, “Strong convergence in stochastic averaging
principle for two time-scales stochastic partial differential
equations,” Journal of Mathematical Analysis and Applica-
tions, vol. 384, no. 1, pp. 70-86, 2011.

[4] Y. Xu, J. Duan, and W. Xu, “An averaging principle for
stochastic dynamical systems with Lévy noise,” Physica D:
Nonlinear Phenomena, vol. 240, no. 17, pp. 1395-1401, 2011.

[5] J. Xu and J. Liu, “An Averaging principle for multivalued
stochastic differential equations,” Stochastic Analysis and
Applications, vol. 32, no. 6, pp. 962-974, 2014.

[6] W. Mao, L. Hu, S. You, and X. Mao, “The averaging method
for multivalued SDEs with jumps and non-Lipschitz coeffi-
cients,” Discrete ¢ Continuous Dynamical Systems-B, vol. 24,
no. 9, p. 4937, 2019.

[7] W. Mao, S. You, X. Wu, and X. Mao, “On the averaging
principle for stochastic delay differential equations with
jumps,” Advances in Difference Equations, vol. 2015, no. 1,
pp. 1-19, 2015.

[8] J.Bao, G. Yin, and C. Yuan, “Two-time-scale stochastic partial
differential equations driven by -stable noises: averaging
principles,” Bernoulli, vol. 23, pp. 645-669, 2017.

[9] J. Hu and C. Yuan, “Strong convergence of neutral stochastic
functional differential equations with two time-scales,” Dis-
crete and Continuous Dynamical Systems-B, vol. 24, no. 11,
p. 5831, 2019.

[10] B. Pei, Y. Xu, and J.-L. Wu, “Stochastic averaging for sto-
chastic differential equations driven by fractional Brownian
motion and standard Brownian motion,” Applied Mathe-
matics Letters, vol. 100, Article ID 106006, 2020.

[11] D. Luo, Q. Zhu, and Z. Luo, “An averaging principle for
stochastic fractional differential equations with time-delays,”
Applied Mathematics Letters, vol. 105, Article ID 106290,
2020.

[12] X. He, S. Han, and J. Tao, “Averaging principle for SDEs of
neutral type driven by G-Brownian motion,” Stochastics and
Dynamics, vol. 19, no. 01, Article ID 1950004, 2019.

[13] W. Xu, W. Xu, and S. Zhang, “The averaging principle for
stochastic differential equations with Caputo fractional de-
rivative,” Applied Mathematics Letters, vol. 93, pp. 79-84,
2019.

[14] R. Z. Khasminskii, “On the principle of averaging the it 0
stochastic differential equations,” Kibernetika, vol. 4,
pp. 260-279, 1968.

[15] L. Wu, S. Liu, L. Yao, S. Yan, and D. Liu, “Grey system model
with the fractional order accumulation,” Communications in
Nonlinear Science and Numerical Simulation, vol. 18, no. 7,
pp. 1775-1785, 2013.

[16] C.Yan, L. Wu, L. Liu et al., “Fractional Hausdorff grey model
and its properties,” Chaos Solitons and Fractals, vol. 138,
Article ID 109915, 2020.

[17] J. Wen, C. Wu, R. Zhang, X. Xiao, N. Nv, and Y. Shi, “Rear-
end collision warning of connected automated vehicles based

11

on a novel stochastic local multivehicle optimal velocity
model,” Accident Analysis & Prevention, vol. 148, Article ID
105800, 2020.

[18] T.E.Govindan and N. U. Ahmed, “On yosida approximations
of McKean-Vlasov type stochastic evolution equations,”
Stochastic Analysis and Applications, vol. 33, no. 3, pp. 383-
398, 2015.

[19] X. Huang and F.-Y. Wang, “Distribution dependent SDEs
with singular coeflicients,” Stochastic Processes and Their
Applications, vol. 129, no. 11, pp. 4747-4770, 2019.

[20] F.-Y. Wang, “Distribution dependent SDEs for Landau type
equations,” Stochastic Processes and Their Applications,
vol. 128, no. 2, pp. 595-621, 2018.

[21] Y. Wang, J. Xu, and P. E. Kloeden, “Asymptotic behavior of
stochastic lattice systems with a Caputo fractional time de-
rivative,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 135, pp. 205-222, 2016.

[22] H.Ye,]. Gao, and Y. Ding, “A generalized Gronwall inequality
and its application to a fractional differential equation,”
Journal of Mathematical Analysis and Applications, vol. 328,
no. 2, pp. 1075-1081, 2007.



