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This article firstly defines hierarchical data missing pattern, which is a generalization of monotone data missing pattern. Then
multivariate Behrens-Fisher problem with hierarchical missing data is considered to illustrate that how ideas in dealing with
monotone missing data can be extended to deal with hierarchical missing pattern. A pivotal quantity similar to the Hotelling T? is
presented, and the moment matching method is used to derive its approximate distribution which is for testing and interval
estimation. The precision of the approximation is illustrated through Monte Carlo data simulation. The results indicate that the

approximate method is very satisfactory even for moderately small samples.

1. Introduction

Inferences with incomplete data have aroused lots of interest
among statisticians in the past as well as present. The causes
for missing data could be various which will not be discussed
in this article. However, to ignore the process that causes
missing data, it is usually assumed that the data are missing
at random (MAR). For an exposition of such issues, we refer
to Little and Rubin [1] or Little [2]. Lu and Copas [3] pointed
out that inference from the likelihood method ignoring the
missing data mechanism is valid if and only if the missing
data mechanism is MAR.

There are a few missing patterns considered in the lit-
eratures, but the incomplete data with monotone pattern
(see display (1) and (2)) not only occur frequently in practice
but also it allows the exact calculation of the maximum
likelihood estimators (MLEs) and the likelihood ratio sta-
tistics and relevant distributions if multivariate normality is
assumed. Anderson [4], one of the earliest authors in this
area, gave a simple approach to derive the MLEs and present
them for a special case of monotone pattern. Krishna-
moorthy and Pannala [5, 6] provided an accurate, simple
approach to construct a confidence region for a normal
mean vector. Hao and Krishnamoorthy [7] developed an
inferential procedure on a normal covariance matrix. Yu

et al. [8] considered the problem of testing equality of two
normal mean vectors with the assumption that the two
covariance matrices are equal, while Krishnamoorthy and
Yu [9] considered the Behrens-Fisher problem. Yu et al. [10]
considered the problem of testing equality of two normal
covariance matrices with monotone missing data.

Besides, Batsidis [11-13] extends the inferences on
monotone missing data to the assumption of elliptically
contoured distributions of which the multivariate normal is
a special case. For theory and methods of multivariate
analysis based on the elliptically contoured distributions, we
refer to Fang and Zhang [14].

Most of the papers mentioned above use a similar
strategy in dealing with the monotone missing data. To il-
lustrate this, consider the data matrices with 2-block
monotone pattern as shown below:

XX, X0 Xm

Yoo ¥n

(1)

The strategy is as follows: if we do not have the extradata
on y, i.e., we have only the first #n samples on (x, y), usually
we already have a statistics, say Q, out of the complete data.
Similarly, if we have only (n + m) sample on x, we also have a
similar statistics, say Q,, for the lower-dimensional problem.
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We then decompose Q into two parts Q; +Q,, which
correspond to the sample data on x and y, respectively.
However, since we have extradata on y, Q; should be
replaced with Q,. Hence, we get the final statistics for in-
ference Q, + Q,.

In this article, we will define a new data missing pattern,
the hierarchical data missing pattern, which is a general-
ization of monotone missing pattern. Moreover, the strategy
just mentioned can also be used. To see this, we consider the
multivariate Behrens-Fisher problem with hierarchical
missing data. The approach that we will employ is based on
the one due to Krishnamoorthy and Yu [9] for the monotone
missing data.

The article is organized as follows: in the following
section, we define the hierarchical data missing pattern. In
Section 3, an approximate method for the multivariate
Behrens-Fisher problem with hierarchical missing data is
outlined. The accuracy of the approximation is investigated
using the Monte Carlo simulation in Section 4. The methods
are illustrated using an example in Section 5, and some
concluding remarks are given in Section 6.

2. Hierarchical Data Missing Pattern

Suppose (X3, Xy - - > X ) is the i-th observation of the
random vector (X;,X,,...,%), i=12,...,N,. The
monotone pattern of missing data is like following data:

X1 XN - XNy - o XNy
X0 XN .- X
21> > 2N > AN,
k 2 (2)
...... ,
Xkl’ e ,Xka,
where x;; isa p; X 1 vector, Ny >N, > -+ >N, i=1,...,k

In other words, there are N, observations available on the
first p; components, N, observations available on the first
py+p, components, and so on. Notice that
N,2N,>--->2Nand p; +---+ p = p.

X1 XNy XNy - XNy
X1+ > XoN
X3 N,+10 - > X3N,
where x;; isa p; x 1 vector, j=1,...,N;, whiley;; isag; x 1

vector, j=1,...,M;, i=1,2,3. In other words, in the x
sample, there are N, observations available on the first p,
components, N, observations available on the first p, + p,
components, and N, — N, observations available on the first
p; and the last p; components. Notice that N, >N,,
M, 2M,, and p, + p, + p3 =4, + 4, +q5 = .

As pointed in Yu et al. [8], we do not need to consider the
case of unequal pattern, i.e, p; # g;, for some i = 1,2, 3, since
any type of unequal patterns data can be rearranged to form
an equal monotone pattern. For example, assume that
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We define the hierarchical data missing pattern of as the
following pattern:

Xppeen Xy X X Xim+1o - > Xpim+l Xnrm+141> - - > XN
Yoo o¥n Yurooo > Ynem
Zim+1> - > Lyamsl
un+m+1+1) ooy
VsV,
wn+1’ e ’wn+m

(3)
where the index sets satisty following conditions:

(1) The index set of the first row, i.e
(1,...,mn+1,...,.n+mn+m+1,...,
n+m+1l,n+m+1+1...,N), is the union of the
index sets of all the other rows.

(2) The index sets of two different rows are either dis-
joint, or inclusive. It is easy to see that the monotone
pattern is a special case of the hierarchical pattern.

Now we consider the Behrens-Fisher problem with
hierarchical missing data.

To formulate the problem, let x follows a p-variate
normal distribution with mean vector y and covariance
matrix 2, and we write this as x ~ N » (4, Z). Meanwhile, let
y ~ N, (B, A), andy is independent of x. It is assumed that X
and A are unknown and arbitrary positive definite matrices.
Let us consider the problem of testing:

Hy:pu=pvs.H,;: pn#p. (4)

Suppose that we have a sample of N, observations
available on x and a sample of M, observations available on
y. We consider a simple 3-block hierarchical data as shown
below (it is easy to extend the ideas and procedures for 3-
block data to general case as in (3), but the notation will
become very complicated):

YooYy Yim+pc-Yim,

DAIERREED )Y > (5)

DANYSTRREED £578

P1>41> P2 >4 P3<q3> and py <q, +q,. Let ry =q,,7, = p) -
G173 =q1+4, = P74 =P+ Pr—qy — 475 =Pps, then it is
obvious that we have a 5-block equal pattern.

Hence, without loss of generality, we assume that
pi=qni=123

3. Inference on u - f3

3.1. Preliminaries. Consider the data matrices in (5) and
partition the data matrices as follows:
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X, :(xn,... ,XlNl)plle,

Xjp> - - Xpy,

X, = ,
X21> ey X2N2 (p1+p2)><N2 (6)
XN+ - - > XN,

X; = ,
X3’N2+1, ey X3N1 (P1+P3)><N3

where N; = N; - N,.
Partition the matrix Y similarly. That is,

S SRR

Yl =(Y11’ T ’YIMz’ T ’YIMI)P1><M1’
% _<YI1""’Y1M2)
) = >
y213..~,y2M2 (P1+P2)XM2 (7)
Y; = ( My Vim, ) >
Y3»M2+1’ e ’Y3M1 (Pl*Pa)st

where M, = M, — M,.

Let X; and S; denote, respectively, the sample mean
vector and the sum of squares and sum of products matrix
based on X, I = 1,2, 3. Similarly, let y; and V; denote, re-
spectively, the sample mean vector and the sums of squares
and products matrix based on Y, [ = 1,2,3. We partition
these means and matrices accordingly as follows:

- _ <
X =X

7(1)
s 2
L= g0 )
2
=(1)
_ X5
X3 i < i(3) >
’ (8)

s, =sY

(S 50)
SZ ' SZ '

oo (3050)
S3 ' S3 '

The statistics y; and V; based on the data matrix Y in (7)
are also partitioned like X; and S;:

V=7
g - ys"
2 = _ >
7y
(9
VE V(g.) >
g (9)

V(11) V13
V(31) V33

3
Finally, we partition the parameters as follows:
5!
=1 )
W
L Iy Xy
=] %y Zp Xy )
Ly Xy Xy (10)
()
B=| B, |
Bs
Ay Ay Ay
A=| Ay Ay Ay
Ay Ay Ag
where y; is p; dimensional, i = 1,2, 3.
Furthermore, define § = y — 8 so that
I Ul 8
8 = - By (11)
8 =15 - B

Letn;=N;-land m; =M,;-1,i=1,2,3.

The following summary statistics are needed to define
the pivotal quantity that we will use for hypothesis testing
about J. Let

o Sfl’l) Vfl,l)
b m N, m1M1,
S, v,
2 = + >
mN, m,M,
_ S N Vs
3 - 3
N3 msM;
_ - -1
) SZ(2,1) V2(2,1) Sz(1,1) Vél,l)

By, = + + ’ (12)
[N, m,M, |[m,N, m,M,
re(31) 31 1T (1D 1,1 771

B.. = S5 N Vs S \&

3 | n3N3  myM; | [n3N;  myM; ’
ra(22) (22) 1 (1,2) (1,2)
1S \& _B S P

Cy = 2.1 + ]
|[m,N, my,M, | mN, m,M,
ro(3.3) (3,3) (1,3) (1,3)

c =3 Y5 g |2V

3 | n3N;  m3M; | > n3N3  msM;

Furthermore, let
S D _ =) 52 _ XSZ) (2) 6 _ —(3) —(3)’8 _ (81’:52’: 5;)r.
(13)
The pivotal quantity that we propose for hypothesis
testing and confidence estimation of § which is given by



Q=(8,-8)C/'(8,-8)
+((3,-8,) - B, (&" -7V
+((8; - 8;) - By, (x{V -V

=Q; +Q, +Q;s, say.

The idea behind Q is as follows: if there are only N, (M,)
observations on the first p; components of X(Y), the ap-
propriate statistic for hypothesis testing and confidence
estimation of (8,,8,)" = ( (g, —f;)'> (4; —=B,)")" can be
decomposed as the sum of two parts after some algebra:

B B gL yan 7!
(5" -8 |35, * o

& -7)-

Since there are additional observations on the first p,
components, the first part above should be replaced by Q.

Similarly, If there are only the last N (M;) observations
on the first p; components of X (Y), the appropriate statistic
for hypothesis testing and confidence estimation of (§;,8;)’
can be decomposed as the sum of two parts after some
algebra:

(15)
1] +Q,.

- LDyl
(= -5) - [+

50 -

Again, the first part should also be replaced by Q;.

(16)
61] + Q.

=8)) (Con)”
-8) (Cs1) ' ( (83 -8;)-B;, (iél) - Vél) -9,)))
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' ((82 - 52) - B2.1 (iél) - 72(1) - 61)) (14)

3.2. Hypothesis Test and Confidence Region for u-—p.
Because Q is resembling the Hotelling-T? statistic, and its
distribution is free of any parameters, it is reasonable to
approximate its distribution by the distribution of dF,,,,
where d is a positive constant and F(a,b) denotes the F
random variable with numerator degrees of freedom a and
the denominator degrees of freedom b.

To find an approximation to the distribution of Q, we
evaluated its first two approximate moments in the Ap-
pendix. Then, using the “moment matching” method, the
distribution of Q is approximated by dF,,, where d is a
positive constant, and F,; denotes the F random variable
with numerator degrees of freedom a and the denominator
degrees of freedom b. The unknown constants d and v can be
determined so that the first two moments of Q are equal to
those of dF,,. Using the modified Wishart approximation
(see Lemma A.l in Appendix) and following the lines of
Krishnamoorthy and Pannala [6], we evaluated an ap-
proximation G, for E(Q) and an approximation G, for
E(Q?) in Appendix. To express G, and G,, we need the
following terms.

Let S, = (S"Y/(m,N)),V, = (V™ (m,M,)),C, =
S, +V,, and

f1=

Let S, =(Sy/(m,N,)),
C,=S,+V,, and

fz=

and

Pt P%
- - - - - 17
(l/nl){tr[(SICII)Z] ¥ [tr(81CI1)]2} ¥ (uml){tr[(vlc;l)z] ¥ [tr(VICIl)]Z} (7
Vz = (V,/ (m,M,)),
(p1+p2) + (P +P2)2 ] (18)
(1/n2){tr[(§2c;1)2] + [tr(szcgl)]z} N (1/m2){tr[(\72c;1)2] + [tr(\“fzcgl)]z}
Let S; = (S3/(13N3)), Vs, = (V3/msM;), Cy =S, + V3,
(pr+p3) +(pr + P3)2
(19)

f3:

(1/n3){tr[(§3c;1)2] ¥ [tr(ggc;)]z} ¥ (1/m3){tr[(v3c;1)2] ¥ [tr(mc;l)]z}'
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In terms of the above quantities, we have

Gl_ flpl

5
_ N pf>(f2-1) N psfs(f3-1)
fi=pi—-1 (fa-pi—p2-V)(fa-pi—-1) (fs-pi—-ps-1)(f5-p—1)
_ pi(py + Z)ﬁ f1p pafa(f2-1)
G2 = (fl_Pl_l)(fl_P1_3)+2(f1_P _1><(f2_P1_Pz_l)(fz_P1_1)>
fip psfs(f3-1) )
+2(f1_P1_1>((f3_P1_P3_1)(f3_P1_1) (20)
20

pafa(f2-1)

+2<(f2_P1_P2_1)(f2_P1_1)

)( (fs—p 631]:;9(13)2)‘13)— - 1))

Pz(Pz"'z)f;(fz‘l (f-3)

' (fo-pPi-P-V)(fo-Pi— P>

Ps(P3+2)f§(f3_

=3)(fa-pi-D(f2-p1-3)
1)(f5-3)

' (fs=pi—ps-V)(fs-pi—ps=-3)(fs-pi-1)(f5-p-3)

and an approximation to the distribution of the pivotal

quantity Q in (10) is given by Q ~ dF,, approximately,
where
,_ 4G, -2(p+2)G}
G, - (p+2)G;
PG, - (p+2)G; (21)
-2
d=G.2 "~
v

Thus, for a given level « and an observed value Q, of Q,
the null hypothesis that § =y - =0 will be rejected
whenever the p value

P(Qy>dF, |Hy)<a (22)
Furthermore, an approximate 1 — « confidence set for
u —f3 is the set of values of § that satisfy

Q<dF,,(1-a), (23)
where Q is given in (9) and Fpﬂ,(l —a) is the (1 - a)th
quantile of the F,, distribution.

4. Accuracy of the Approximations

We have used two approximations, one for approximating
the sum of two Wishart matrices with different scale ma-
trices and another for approximating the moments of Q to
derive the distribution of Q. So, to understand the accuracy
of the approximation, we estimated the sizes of the test for
hypotheses in (4) when the nominal level is 0.05 using the
Monte Carlo simulation.

To select the parameter configurations for Monte Carlo
simulation, we note that the distribution of Q is location
invariant, and so without loss of generality, we can assume
that gy = =0 to estimate the sizes. As pointed out in the

study of Krishnamoorthy and Yu [9], we can also take X as a
diagonal matrix with positive elements and A as a correlation
matrix.

The estimated sizes are presented in Table 1 for the case
of p, =2, p, =1, p; = 1, and a few selected sample sizes. The
sample sizes are chosen so that the number of data missing is
relatively small in some cases and large in other cases. It is
clear from Table 1 that the coverage probabilities are very
close to 0.95 for all the cases considered. In the worst sit-
uations, the coverage probabilities are around 0.93.

5. An Illustrative Example

We shall now illustrate the methods using “Fisher’s Iris
Data” which represent measurements of the sepal length
and width and pedal length and width in centimeters of
fifty plants for each of three types of iris: Iris setosa, Iris
versicolor, and Iris virginica. The data sets are posted in
many websites, and we downloaded them from http://
javeeh.net/sasintro/introl151.html. For illustration pur-
pose, we use the data on virginica (x) and setosa (y). Since
the sample size is large enough, we simply assume that the
data are following approximately a multivariate normal
distribution.

We created hierarchical patterns by discarding the last 15
measurements on x5 (pedal length of virginica) and the first
35 measurements on x, (pedal width of virginica), the last 30
measurements on y; (pedal length of setosa) and the first 20
measurements on y, (pedal width of setosa). That is, we have
pr=2,p,=1p3=1, and (N,,N,, N;)=(50,15,35),
(M, M,, M;) = (50,20,30). Let 4’ = (p4y, phy, i) = (average
of the sepal length and width, pedal length, and pedal width)
of virginica and B’ = (B,,8,,3;) = (average of the sepal
length and width, pedal length, and pedal width) of setosa.
We want to test
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TaBLe 1: Monte Carlo estimates of the coverage probabilities of the confidence region; X =diag(A;,1,,1;5), A=
L pi P13

<P12 L Py >(P1>P2’P3) = (1, L1);a=0.05.

P13 P23 1

(N}, Ny, N3, My, My, M)

(A A5 A3, P25 Piss P23) (13,6, 14, 7) (14, 6, 20, 12) (18, 10, 20, 10) (25, 13, 15, 8)
1,2,3,03,0.2, -0.4) 0.954 0.949 0.952 0.956
(8, 2, 6, -0.4, -0.5, 0.3) 0.948 0.967 0.954 0.953
(0.4, 3,9, 0.9, 0.3, -0.1) 0.948 0.941 0.947 0.962
1,1, 1,0.2,0.2,0.2) 0.957 0.952 0.954 0.953
(3,3,3,09,09,0.9) 0.946 0.942 0.949 0.951
(0.4, 0.3, 0.1, -0.4, 0.2, —0.1) 0.955 0.951 0.950 0.954
(2, 0.1, 12, 0.1, -0.9, -0.5) 0.952 0.954 0.949 0.944
(0.5, 0.9, 0.1, 0.9, 0.4, 0.5) 0.952 0.944 0.950 0.955
(0.6, 0.5, 0.1, —0.7, 0.5, 0.2) 0.954 0.950 0.952 0.954
1, 25, 50, —0.5, 0.5, 0.1) 0.944 0.939 0.946 0.956
(23, 33, 55, 0.1, -0.1, 0.2) 0.943 0.936 0.954 0.951
1, 1, 40, —0.4, 0.4, 0.2) 0.954 0.949 0.948 0.955

Hyp-B=0vs.Hy: p—p+0. (24)

After careful calculation, we get Q; =536.925,
Q, =1299.851, and Q; = 1121.327, so Q =2958.103. The
required values to compute the critical value are
G, = E(Q) = 4.307, G, = E(Q?) =31.341, d =4.250, and
y = 150.759. The critical value de,v(O-%) =11.325.

Since Q is much larger than the critical value, we have
sufficient evidence to reject H, at 95% confidence level.

6. Concluding Remarks

In this article, we define hierarchical data missing pattern
and point out that the strategy in many papers dealing with
monotone missing data can be extended to deal with hi-
erarchical missing data. To illustrate this, the multivariate
Behrens-Fisher problem is considered. Based on the pro-
cedures due to Krishnamoorthy and Yu [9] dealing with the
monotone missing data, we proposed a Hotelling T? type
test for Behrens-Fisher problem. The test is simple to use,
and the hierarchical patterns of the two samples are not
necessarily the same.

As pointed out by two reviewers, this paper is based on
multivariate normal population. Like what did in Batsidis
[11-13] for monotone missing data, an extension of the
results given in this paper for hierarchical missing data from
elliptic distribution is an interesting open problem. More-
over, the proposed study can be extended for the

f=

neutrosophic statistics as future research. For details of
neutrosophic statistics, see Aslam [15, 16] and Kashif et al.
[17].

Appendix

The following two lemmas are needed to find approximate
moments of Q in (14). In Lemma A.l, we propose the
modified version of the Nel and van der Merwe [18] Wishart
approximation given in Krishnamoorthy and Yu [19]. For a
proof of Lemma A.2, see Seber [20]; p. 52.

Lemma A.l. Let A; ~W,(m; - 1,A) independently of
A, ~ W, (my —1,4,). Define

p+p’

»—->l
>
>

(o - )

JIEEC

-

~ Ai
T m (mi - 1)’
(A.1)
— A
A =— i=1,2
m
Then
~ ~ ~ 1, ~ ~
A=A +A,~ Wp<f,?(A1 + Az)) approximately,
(A.2)
where
(A.3)

on- el (.5 [+ ) |
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Lemma A.2. Let
X~N, (4, X). Write

A~W,(m,X) independently of

(A.4)

so that X, and p, are of order p, x1 and %, is of order

P1 % py- Define Xz._11 =X, - Ay AL X,y = ‘“31_ DY IR
Ay =Ap - AyA A, and 3,y = 25, — 25,27, Ly, Then,
mX'A”'X = mX[A} X, +mX, A} X, (A.5)
and when y,, =0,
X, AL X
218021721 P2 Fyp it (A.6)
1+X/A[lX, m-p+1 P

The above statistic is independent of X;A X, whether
U1 =0 or not.

Let
_ 8(1»1)
S, =—"1—
n N,
(A.7)
oy
V,=——
mM,
Note that S, and V, are independent with
Zy
Sl P1(n1’n1N1)
(A.8)

and so using Lemma A.1, we have

X, A .
C, ~ Pl(fl’f <N Aj))apprommately, (A.9)

where f is given in (17).
Since C, and 6, are independent, using (A.1), we have

20

Q, ~ mel’f]_Pl"'l approximately. (A.10)
1~ P
Define
-1
Loew st gy
Qua =[x -4 +
2d f [( 2 ) 1] ”zNz m2M2 (All)

(=

-%,") -8,

where f, is given in (18),

S(l’l)

Quu= I3 [
{0-58)-s.]

where f; is given in (19), and

V3(1,1) :|
m3 M (A.12)

Q,
R = v
? (1+Q2d) (A.13)
R % .
’ (1+Qs,)

Using Lemma A.1, we have

S v oA

{m+szz Wp | f2 f F M, approximately,
(A.14)

Do)~ N, (8, (Z1/N)+

and independently of (%!

(A1 /M),
stV vty T, A
S 3 f3 ZiLy —1L) ) approximately,
Ny myM; Yn f N M3

(A.15)

and independently of (_(1 _(1 )~N (8, (Zy,/
N;) + (A, /M3))).

Hence,

P
de ~ f2 -p + lFprz_Pl*'l’

(A.16)
J4

Q3d ~ f3 - p + 1FZ71’f3*I’1+

| approximately.

Using Lemma A.2, we have

~ faps
pl p2+1 szz P1—p2t

2~ F +1 approximately,
(A.17)
And it is independent of Q, and Q,,.
f3ps
“Pi—Pst

P f

1F . fr—p,—p,+1 APProximately,

(A.18)

and it is independent of Q, and Q,,.

Using the above approximate distributional results and
treating f;s as constants, we evaluate the following
moments:



8 Journal of Mathematics

fip

E(Ql):m,

pafa(f2-1)
(fo-pi—p-1)(fo-p—1)

psf3(f3-1)
(fs=pri-ps-V)(f5-p1-1)

E(Q) = E(Ry(1+Qyy)) = E(R)E(1+Q, )=

E(Q;) = E(R;(1+Q3,)) = E(R)E(1 +Q; ) =

( )f2 (A.19)
PP +2)f1
E(Q7)= ,
( 1) (fi-p-D(f1-p1-3)
E(Qz): Pz(P2+2)f§(f2_1)(f2_3)
Yo (fampi-p D) (a2 -3) (oo - ) (fo - pi - 3)
E(Q2)= Ps(ps+2)f3(f3-1)(f5-3) ]
Vo fsmp-ps-D)(fs-pi-ps-3)(fs-p - D(f5-pi - 3)
Using the arguments of Krishnamoorthy and Pannala [6],
it can be shown that E(Q,Q,)=E(Q)E(Q,), E(Q,Q;)=
E(Q))E(Q;), E(Q;Q,) = E(Q3)E(Q,). Thus, we have
E(Q=E(Q)+E(Q)+E(Q)=G),
) ) 5 ) (A.20)
B(Q")=E(Q) + E(Q) + B(Q;) +2E(Q)E(Q,) +2E(Q)E(Q) + 2E(Q)E(Qy) = Go
Data Availability Canadian Journal of Statistics, vol. 27, no. 2, pp. 395-407,
1999.
The data sets can be downloaded freely from http://javeeh. [7] J. Hao and K. Krishnamoorthy, “Inferences on a normal
net/sasintro/intro151.html. covariance matrix and generalized variance with monotone

missing data,” Journal of Multivariate Analysis, vol. 78, no. 1,
. pp. 62-82, 2001.
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