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-is article firstly defines hierarchical data missing pattern, which is a generalization of monotone data missing pattern. -en
multivariate Behrens–Fisher problem with hierarchical missing data is considered to illustrate that how ideas in dealing with
monotone missing data can be extended to deal with hierarchical missing pattern. A pivotal quantity similar to the Hotelling T2 is
presented, and the moment matching method is used to derive its approximate distribution which is for testing and interval
estimation. -e precision of the approximation is illustrated through Monte Carlo data simulation. -e results indicate that the
approximate method is very satisfactory even for moderately small samples.

1. Introduction

Inferences with incomplete data have aroused lots of interest
among statisticians in the past as well as present. -e causes
for missing data could be various which will not be discussed
in this article. However, to ignore the process that causes
missing data, it is usually assumed that the data are missing
at random (MAR). For an exposition of such issues, we refer
to Little and Rubin [1] or Little [2]. Lu and Copas [3] pointed
out that inference from the likelihood method ignoring the
missing data mechanism is valid if and only if the missing
data mechanism is MAR.

-ere are a few missing patterns considered in the lit-
eratures, but the incomplete data with monotone pattern
(see display (1) and (2)) not only occur frequently in practice
but also it allows the exact calculation of the maximum
likelihood estimators (MLEs) and the likelihood ratio sta-
tistics and relevant distributions if multivariate normality is
assumed. Anderson [4], one of the earliest authors in this
area, gave a simple approach to derive the MLEs and present
them for a special case of monotone pattern. Krishna-
moorthy and Pannala [5, 6] provided an accurate, simple
approach to construct a confidence region for a normal
mean vector. Hao and Krishnamoorthy [7] developed an
inferential procedure on a normal covariance matrix. Yu

et al. [8] considered the problem of testing equality of two
normal mean vectors with the assumption that the two
covariance matrices are equal, while Krishnamoorthy and
Yu [9] considered the Behrens–Fisher problem. Yu et al. [10]
considered the problem of testing equality of two normal
covariance matrices with monotone missing data.

Besides, Batsidis [11–13] extends the inferences on
monotone missing data to the assumption of elliptically
contoured distributions of which the multivariate normal is
a special case. For theory and methods of multivariate
analysis based on the elliptically contoured distributions, we
refer to Fang and Zhang [14].

Most of the papers mentioned above use a similar
strategy in dealing with the monotone missing data. To il-
lustrate this, consider the data matrices with 2-block
monotone pattern as shown below:

x1, . . . , xn xn+1 . . . , xn+m

y1, . . . , yn

. (1)

-e strategy is as follows: if we do not have the extradata
on y, i.e., we have only the first n samples on (x, y), usually
we already have a statistics, say Q, out of the complete data.
Similarly, if we have only (n + m) sample on x, we also have a
similar statistics, say Q1, for the lower-dimensional problem.
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We then decompose Q into two parts Q1′ + Q2, which
correspond to the sample data on x and y, respectively.
However, since we have extradata on y, Q1′ should be
replaced with Q1. Hence, we get the final statistics for in-
ference Q1 + Q2.

In this article, we will define a new data missing pattern,
the hierarchical data missing pattern, which is a general-
ization of monotone missing pattern. Moreover, the strategy
just mentioned can also be used. To see this, we consider the
multivariate Behrens–Fisher problem with hierarchical
missing data. -e approach that we will employ is based on
the one due to Krishnamoorthy and Yu [9] for the monotone
missing data.

-e article is organized as follows: in the following
section, we define the hierarchical data missing pattern. In
Section 3, an approximate method for the multivariate
Behrens–Fisher problem with hierarchical missing data is
outlined. -e accuracy of the approximation is investigated
using the Monte Carlo simulation in Section 4. -e methods
are illustrated using an example in Section 5, and some
concluding remarks are given in Section 6.

2. Hierarchical Data Missing Pattern

Suppose (x1i, x2i, . . . , xki )′ is the i-th observation of the
random vector (x1, x2, . . . , xk)′, i � 1, 2, . . . , N1. -e
monotone pattern of missing data is like following data:

x11, . . . , x1Nk
, . . . , x1N2

, . . . , x1N1
,

x21, . . . , x2Nk
, . . . , x2N2

,

. . . . . . ,

xk1, . . . , xkNk
,

(2)

where xij is a pi × 1 vector, N1 ≥N2 ≥ · · · ≥Nk, i � 1, . . . , k.
In other words, there are N1 observations available on the
first p1 components, N2 observations available on the first
p1 + p2 components, and so on. Notice that
N1 ≥N2 ≥ · · · ≥Nk and p1 + · · · + pk � p.

We define the hierarchical data missing pattern of as the
following pattern:
x1, . . . , xn xn+1, . . . , xn+m xn+m+1, . . . , xn+m+l xn+m+1+1, . . . , xN

y1, . . . , yn yn+1, . . . , yn+m

zn+m+1, . . . , zn+m+l

un+m+1+1, . . . ,uN

v1, . . . , vn

wn+1, . . . ,wn+m

,

(3)

where the index sets satisfy following conditions:

(1) -e index set of the first row, i.e
(1, . . . , n, n + 1, . . . , n + m, n + m + 1, . . . ,

n + m + 1, n + m + 1 + 1 . . . , N), is the union of the
index sets of all the other rows.

(2) -e index sets of two different rows are either dis-
joint, or inclusive. It is easy to see that the monotone
pattern is a special case of the hierarchical pattern.

Now we consider the Behrens–Fisher problem with
hierarchical missing data.

To formulate the problem, let x follows a p-variate
normal distribution with mean vector μ and covariance
matrix Σ, and we write this as x ∼ Np(μ,Σ). Meanwhile, let
y ∼ Np(β,Δ), and y is independent of x. It is assumed that Σ
and Δ are unknown and arbitrary positive definite matrices.
Let us consider the problem of testing:

H0: μ � β vs. Ha: μ≠ β. (4)

Suppose that we have a sample of N1 observations
available on x and a sample of M1 observations available on
y. We consider a simple 3-block hierarchical data as shown
below (it is easy to extend the ideas and procedures for 3-
block data to general case as in (3), but the notation will
become very complicated):

x11, . . . , x1N2
, x1,N2+1, . . . , x1N1

y11, . . . , y1M2
, y1,M2+1, . . . , y1M1

x21, . . . , x2N2
, y21, . . . , y2M2

,

x3,N2+1, . . . , x3N1
y3,M2+1, . . . , y3M1

, (5)

where xij is a pi × 1 vector, j � 1, . . . , Ni, while yij is a qi × 1
vector, j � 1, . . . , Mi, i � 1, 2, 3. In other words, in the x
sample, there are N1 observations available on the first p1
components, N2 observations available on the first p1 + p2
components, and N1 − N2 observations available on the first
p1 and the last p3 components. Notice that N1 ≥N2,
M1 ≥M2, and p1 + p2 + p3 � q1 + q2 + q3 � p.

As pointed in Yu et al. [8], we do not need to consider the
case of unequal pattern, i.e, pi ≠ qi, for some i � 1, 2, 3, since
any type of unequal patterns data can be rearranged to form
an equal monotone pattern. For example, assume that

p1 > q1, p2 > q2, p3 < q3, and p1<q1 + q2. Let r1 � q1, r2 � p1−

q1, r3 � q1 + q2 − p1, r4 � p1 + p2 − q1 − q2, r5 � p3, then it is
obvious that we have a 5-block equal pattern.

Hence, without loss of generality, we assume that
pi � qi, i � 1, 2, 3.

3. Inference on μ− β

3.1. Preliminaries. Consider the data matrices in (5) and
partition the data matrices as follows:
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X1 � x11, . . . , x1N2
, . . . , x1N1

 
p1×N1

,

X2 �
x11, . . . , x1N2

x21, . . . , x2N2

⎛⎝ ⎞⎠

p1+p2( )×N2

,

X3 �
x1,N2+1, . . . , x1N1

x3,N2+1, . . . , x3N1

⎛⎝ ⎞⎠

p1+p3( )×N3

,

(6)

where N3 � N1 − N2.
Partition the matrix Y similarly. -at is,

Y1 � y11, . . . , y1M2
, . . . , y1M1

 
p1×M1

,

Y2 �
y11, . . . , y1M2

y21, . . . , y2M2

 
p1+p2( )×M2

,

Y3 �
y1,M2+1, . . . , y1M1

y3,M2+1, . . . , y3M1

 
p1+p3( )×M3

,

(7)

where M3 � M1 − M2.
Let xl and Sl denote, respectively, the sample mean

vector and the sum of squares and sum of products matrix
based on Xl, l � 1, 2, 3. Similarly, let yl and Vl denote, re-
spectively, the sample mean vector and the sums of squares
and products matrix based on Yl, l � 1, 2, 3. We partition
these means and matrices accordingly as follows:

x1 � x(1)
1 ,

x2 �
x(1)
2

x(2)
2

⎛⎝ ⎞⎠,

x3 �
x(1)
3

x(3)
3

⎛⎝ ⎞⎠,

S1 � S(1,1)
1 ,

S2 �
S(1,1)
2 S(1,2)

2

S(2,1)
2 S(2,2)

2

⎛⎝ ⎞⎠,

S3 �
S(1,1)
3 S(1,3)

3

S(3,1)
3 S(3,3)

3

⎛⎝ ⎞⎠.

(8)

-e statistics yl and Vl based on the data matrix Y in (7)
are also partitioned like xl and Sl:

y1 � y(1)
1 ,

y2 �
y(1)
2

y(2)
2

⎛⎝ ⎞⎠,

y3 �
y(1)
3

y(3)
3

⎛⎝ ⎞⎠,

V1 � V(1,1)
1 ,

V2 �
V(1,1)

2 V(1,2)
2

V(2,1)
2 V(2,2)

2

⎛⎝ ⎞⎠,

V3 �
V(1,1)

3 V(1,3)
3

V(3,1)
3 V(3,3)

3

⎛⎝ ⎞⎠.

(9)

Finally, we partition the parameters as follows:

μ �

μ1
μ2
μ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Σ �

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

β �

β1
β2
β3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Δ �

Δ11 Δ12 Δ13

Δ21 Δ22 Δ23

Δ31 Δ32 Δ33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(10)

where μi is pi dimensional, i � 1, 2, 3.
Furthermore, define δ � μ − β so that

δ1 � μ1 − β1,

δ2 � μ2 − β2,

δ3 � μ3 − β3.

(11)

Let ni � Ni − 1 and mi � Mi − 1, i � 1, 2, 3.
-e following summary statistics are needed to define

the pivotal quantity that we will use for hypothesis testing
about δ. Let

C1 �
S(1,1)
1

n1N1
+
V(1,1)

1
m1M1

,

C2 �
S2

n2N2
+

V2

m2M2
,

C3 �
S3

n3N3
+

V3

m3M3
,

B2.1 �
S(2,1)
2

n2N2
+
V(2,1)

2
m2M2

 
S(1,1)
2

n2N2
+
V(1,1)

2
m2M2

 

− 1

,

B3.1 �
S(3,1)
3

n3N3
+
V(3,1)

3
m3M3

 
S(1,1)
3

n3N3
+
V(1,1)

3
m3M3

 

− 1

,

C2.1 �
S(2,2)
2

n2N2
+
V(2,2)

2
m2M2

  − B2.1
S(1,2)
2

n2N2
+
V(1,2)

2
m2M2

 ,

C3.1 �
S(3,3)
3

n3N3
+
V(3,3)

3
m3M3

  − B3.1
S(1,3)
3

n3N3
+
V(1,3)

3
m3M3

 .

(12)

Furthermore, let
δ1 � x(1)

1 − y(1)
1 , δ2 � x(2)

2 − y(2)
2 , δ3 � x(3)

3 − y(3)
3 , δ � (δ1′, δ2′, δ3′)′.

(13)

-e pivotal quantity that we propose for hypothesis
testing and confidence estimation of δ which is given by
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Q � (δ1 − δ1)′C
− 1
1 (δ1 − δ1)

+((δ2 − δ2) − B2.1(x
(1)
2 − y(1)

2 − δ1))′ C2.1( 
− 1

((δ2 − δ2) − B2.1(x
(1)
2 − y(1)

2 − δ1))

+((δ3 − δ3) − B3.1(x
(1)
3 − y(1)

3 − δ1))′ C3.1( 
− 1

((δ3 − δ3) − B3.1(x
(1)
3 − y(1)

3 − δ1))

� Q1 + Q2 + Q3, say.

(14)

-e idea behind Q is as follows: if there are only N2(M2)

observations on the first p1 components of X(Y), the ap-
propriate statistic for hypothesis testing and confidence
estimation of ( δ1′, δ2′ )′ � ( ( μ1 − β1 )′, ( μ1 − β2 )′ )′ can be
decomposed as the sum of two parts after some algebra:

x(1)

2 − y(1)

2  − δ1 ′
S(1,1)
2

n2N2
+
V(1,1)

2
m2M2

 

− 1

· x(1)

2 − y(1)

2  − δ1  + Q2.

(15)

Since there are additional observations on the first p1
components, the first part above should be replaced by Q1.

Similarly, If there are only the last N3(M3) observations
on the first p1 components of X(Y), the appropriate statistic
for hypothesis testing and confidence estimation of ( δ1′, δ3′ )′
can be decomposed as the sum of two parts after some
algebra:

x(1)
3 − y(1)

3  − δ1 ′
S(1,1)
3

n3N3
+
V(1,1)

3
m3M3

 

− 1

· x(1)
3 − y(1)

3  − δ1  + Q3.

(16)

Again, the first part should also be replaced by Q1.

3.2. Hypothesis Test and Confidence Region for μ − β.
Because Q is resembling the Hotelling-T2 statistic, and its
distribution is free of any parameters, it is reasonable to
approximate its distribution by the distribution of dFp,],
where d is a positive constant and F(a, b) denotes the F

random variable with numerator degrees of freedom a and
the denominator degrees of freedom b.

To find an approximation to the distribution of Q, we
evaluated its first two approximate moments in the Ap-
pendix. -en, using the “moment matching” method, the
distribution of Q is approximated by dFp,], where d is a
positive constant, and Fa,b denotes the F random variable
with numerator degrees of freedom a and the denominator
degrees of freedom b. -e unknown constants d and v can be
determined so that the first two moments of Q are equal to
those of dFp,]. Using the modified Wishart approximation
(see Lemma A.1 in Appendix) and following the lines of
Krishnamoorthy and Pannala [6], we evaluated an ap-
proximation G1 for E(Q) and an approximation G2 for
E(Q2) in Appendix. To express G1 and G2, we need the
following terms.

Let S1 � (S(1,1)
1 /(n1N1)),

V1 � (V(1,1)
1 /(m1M1)),C1 �

S1 + V1, and

f1 �
p1 + p

2
1

1/n1(  tr S1C
− 1
1 

2
  + tr S1C

− 1
1  

2
  + 1/m1(  tr V1C

− 1
1 

2
  + tr V1C

− 1
1  

2
 

. (17)

Let S2 � (S2/(n2N2)), V2 � (V2/(m2M2)),
C2 � S2 + V2, and

f2 �
p1 + p2(  + p1 + p2( 

2

1/n2(  tr S2C
− 1
2 

2
  + tr S2C

− 1
2  

2
  + 1/m2(  tr V2C

− 1
2 

2
  + tr V2C

− 1
2  

2
 

. (18)

Let S3 � (S3/(n3N3)), V3 � (V3/m3M3), C3 � S3 + V3,
and

f3 �
p1 + p3(  + p1 + p3( 

2

1/n3(  tr S3C
− 1
3 

2
  + tr S3C

− 1
3  

2
  + 1/m3(  tr V3C

− 1
3 

2
  + tr V3C

− 1
3  

2
 

. (19)
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In terms of the above quantities, we have

G1 �
f1p1

f1 − p1 − 1
+

p2f2 f2 − 1( 

f2 − p1 − p2 − 1(  f2 − p1 − 1( 
+

p3f3 f3 − 1( 

f3 − p1 − p3 − 1(  f3 − p1 − 1( 

G2 �
p1 p1 + 2( f

2
1

f1 − p1 − 1(  f1 − p1 − 3( 
+ 2

f1p1

f1 − p1 − 1
 

p2f2 f2 − 1( 

f2 − p1 − p2 − 1(  f2 − p1 − 1( 
 

+ 2
f1p1

f1 − p1 − 1
 

p3f3 f3 − 1( 

f3 − p1 − p3 − 1(  f3 − p1 − 1( 
 

+ 2
p2f2 f2 − 1( 

f2 − p1 − p2 − 1(  f2 − p1 − 1( 
 

p3f3 f3 − 1( 

f3 − p1 − p3 − 1(  f3 − p1 − 1( 
 

+
p2 p2 + 2( f

2
2 f2 − 1(  f2 − 3( 

f2 − p1 − p2 − 1(  f2 − p1 − p2 − 3(  f2 − p1 − 1(  f2 − p1 − 3( 

+
p3 p3 + 2( f

2
3 f3 − 1(  f3 − 3( 

f3 − p1 − p3 − 1(  f3 − p1 − p3 − 3(  f3 − p1 − 1(  f3 − p1 − 3( 
,

(20)

and an approximation to the distribution of the pivotal
quantity Q in (10) is given by Q ∼ dFp,] approximately,
where

] �
4pG2 − 2(p + 2)G

2
1

pG2 − (p + 2)G
2
1

,

d � G1
] − 2
]

.

(21)

-us, for a given level α and an observed value Q0 of Q,
the null hypothesis that δ � μ − β � 0 will be rejected
whenever the p value

P Q0 > dFp,]|H0 < α. (22)

Furthermore, an approximate 1 − α confidence set for
μ − β is the set of values of δ that satisfy

Q≤ dFp,](1 − α), (23)

where Q is given in (9) and Fp,](1 − α) is the (1 − α)th
quantile of the Fp,] distribution.

4. Accuracy of the Approximations

We have used two approximations, one for approximating
the sum of two Wishart matrices with different scale ma-
trices and another for approximating the moments of Q to
derive the distribution of Q. So, to understand the accuracy
of the approximation, we estimated the sizes of the test for
hypotheses in (4) when the nominal level is 0.05 using the
Monte Carlo simulation.

To select the parameter configurations for Monte Carlo
simulation, we note that the distribution of Q is location
invariant, and so without loss of generality, we can assume
that μ � β � 0 to estimate the sizes. As pointed out in the

study of Krishnamoorthy and Yu [9], we can also take Σ as a
diagonal matrix with positive elements andΔ as a correlation
matrix.

-e estimated sizes are presented in Table 1 for the case
of p1 � 2, p2 � 1, p3 � 1, and a few selected sample sizes.-e
sample sizes are chosen so that the number of data missing is
relatively small in some cases and large in other cases. It is
clear from Table 1 that the coverage probabilities are very
close to 0.95 for all the cases considered. In the worst sit-
uations, the coverage probabilities are around 0.93.

5. An Illustrative Example

We shall now illustrate the methods using “Fisher’s Iris
Data” which represent measurements of the sepal length
and width and pedal length and width in centimeters of
fifty plants for each of three types of iris: Iris setosa, Iris
versicolor, and Iris virginica. -e data sets are posted in
many websites, and we downloaded them from http://
javeeh.net/sasintro/intro151.html. For illustration pur-
pose, we use the data on virginica (x) and setosa (y). Since
the sample size is large enough, we simply assume that the
data are following approximately a multivariate normal
distribution.

We created hierarchical patterns by discarding the last 15
measurements on x3 (pedal length of virginica) and the first
35 measurements on x4 (pedal width of virginica), the last 30
measurements on y3 (pedal length of setosa) and the first 20
measurements on y4 (pedal width of setosa).-at is, we have
p1 � 2, p2 � 1, p3 � 1, and (N1, N2, N3) � (50, 15, 35),

(M1, M2, M3) � (50, 20, 30). Let μ′ � (μ1, μ2, μ3) � (average
of the sepal length and width, pedal length, and pedal width)
of virginica and β′ � (β1, β2, β3) � (average of the sepal
length and width, pedal length, and pedal width) of setosa.
We want to test
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H0: μ − β � 0 vs. H0: μ − β≠ 0. (24)

After careful calculation, we get Q1 � 536.925,

Q2 � 1299.851, andQ3 � 1121.327, so Q � 2958.103. -e
required values to compute the critical value are
G1 � E(Q) � 4.307, G2 � E(Q2) � 31.341, d � 4.250, and
v � 150.759. -e critical value dFp,](0.95) � 11.325.

Since Q is much larger than the critical value, we have
sufficient evidence to reject H0 at 95% confidence level.

6. Concluding Remarks

In this article, we define hierarchical data missing pattern
and point out that the strategy in many papers dealing with
monotone missing data can be extended to deal with hi-
erarchical missing data. To illustrate this, the multivariate
Behrens–Fisher problem is considered. Based on the pro-
cedures due to Krishnamoorthy and Yu [9] dealing with the
monotone missing data, we proposed a Hotelling T2 type
test for Behrens–Fisher problem. -e test is simple to use,
and the hierarchical patterns of the two samples are not
necessarily the same.

As pointed out by two reviewers, this paper is based on
multivariate normal population. Like what did in Batsidis
[11–13] for monotone missing data, an extension of the
results given in this paper for hierarchical missing data from
elliptic distribution is an interesting open problem. More-
over, the proposed study can be extended for the

neutrosophic statistics as future research. For details of
neutrosophic statistics, see Aslam [15, 16] and Kashif et al.
[17].

Appendix

-e following two lemmas are needed to find approximate
moments of Q in (14). In Lemma A.1, we propose the
modified version of the Nel and van der Merwe [18] Wishart
approximation given in Krishnamoorthy and Yu [19]. For a
proof of Lemma A.2, see Seber [20]; p. 52.

Lemma A.1. Let A1 ∼ Wp(m1 − 1,Δ1) independently of
A2 ∼ Wp(m2 − 1,Δ2). Define

Ai �
Ai

mi mi − 1( 
,

Δi �
Δi

mi

, i � 1, 2.

(A.1)

-en

A � A1 + A2 ∼ Wp f,
1
f

Δ1 + Δ2   approximately,

(A.2)

where

f �
p + p

2

1/ m1 − 1( (  tr A1
A− 1

 
2

  + tr A1
A− 1

  
2

  + 1/ m2 − 1( (  tr A2
A− 1

 
2

  + tr A2
A− 1

  
2

 

.
(A.3)

Table 1: Monte Carlo estimates of the coverage probabilities of the confidence region; Σ � diag(λ1, λ2, λ3), Δ �

1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎛⎜⎝ ⎞⎟⎠(p1, p2, p3) � (1, 1, 1); α � 0.05.

(N1, N2, N3, M1, M2, M3)

(λ1, λ2, λ3, ρ12, ρ13, ρ23) (13, 6, 14, 7) (14, 6, 20, 12) (18, 10, 20, 10) (25, 13, 15, 8)

(1, 2, 3, 0.3, 0.2, − 0.4) 0.954 0.949 0.952 0.956
(8, 2, 6, − 0.4, − 0.5, 0.3) 0.948 0.967 0.954 0.953
(0.4, 3, 9, 0.9, 0.3, − 0.1) 0.948 0.941 0.947 0.962
(1, 1, 1, 0.2, 0.2, 0.2) 0.957 0.952 0.954 0.953
(3, 3, 3, 0.9, 0.9, 0.9) 0.946 0.942 0.949 0.951
(0.4, 0.3, 0.1, − 0.4, − 0.2, − 0.1) 0.955 0.951 0.950 0.954
(2, 0.1, 12, 0.1, − 0.9, − 0.5) 0.952 0.954 0.949 0.944
(0.5, 0.9, 0.1, 0.9, 0.4, 0.5) 0.952 0.944 0.950 0.955
(0.6, 0.5, 0.1, − 0.7, 0.5, 0.2) 0.954 0.950 0.952 0.954
(1, 25, 50, − 0.5, 0.5, 0.1) 0.944 0.939 0.946 0.956
(23, 33, 55, 0.1, − 0.1, 0.2) 0.943 0.936 0.954 0.951
(1, 1, 40, − 0.4, 0.4, 0.2) 0.954 0.949 0.948 0.955
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Lemma A.2. Let A ∼ Wp(m,Σ) independently of
X ∼ Np(μ,Σ). Write

X �
X1
X2

 ,

μ �
μ1
μ2

 ,

Σ �
Σ11 Σ21
Σ12 Σ22

 ,

(A.4)

so that X1 and μ1 are of order p1 × 1 and Σ11 is of order
p1 × p1. Define X2.1 � X2 − A21A− 1

11X1, μ2.1 � μ2 − Σ21Σ− 111μ1,
A2.1 � A22 − A21A− 1

11A12, and Σ2.1 � Σ22 − Σ21Σ− 111Σ12. 0en,

mX′A− 1X � mX1′A
− 1
11X1 + mX2.1A

− 1
2.1X2.1, (A.5)

and when μ2.1 � 0,

X2.1′A
− 1
2.1X2.1

1 + X1′A
− 1
11X1

∼
p2

m − p + 1
Fp2 ,m− p+1. (A.6)

-e above statistic is independent of X1′A− 1
11X1 whether

μ2.1 � 0 or not.
Let

S1 �
S(1,1)
1

n1N1
,

V1 �
V(1,1)

1
m1M1

.

(A.7)

Note that S1 and V1 are independent with

S1 ∼ Wp1
n1,

Σ11

n1N1
 ,

V1 ∼ Wp1
m1,

Δ11

m1M1
 ,

(A.8)

and so using Lemma A.1, we have

C1 ∼ Wp1
f1,

1
f1

Σ11

N1
+
Δ11

M1
   approximately, (A.9)

where f1 is given in (17).
Since C1 and δ1 are independent, using (A.1), we have

Q1 ∼
p1f1

f1 − p1 + 1
Fp1 ,f1− p1+1 approximately. (A.10)

Define

Q2d �
1

f2
x(1)
2 − y(1)

2  − δ1 ′
S(1,1)
2

n2N2
+
V(1,1)

2
m2M2

 

− 1

· x(1)
2 − y(1)

2  − δ1 ,

(A.11)

where f2 is given in (18),

Q3 d �
1

f3
x(1)
3 − y(1)

3  − δ1 ′
S(1,1)
3

n3N3
+
V(1,1)

3
m3M3

 

− 1

· x(1)
3 − y(1)

3  − δ1 ,

(A.12)

where f3 is given in (19), and

R2 �
Q2

1 + Q2d( 
,

R3 �
Q3

1 + Q3d( 
.

(A.13)

Using Lemma A.1, we have

S(1,1)
2

n2N2
+
V(1,1)

2
m2M2

  ∼ Wp1
f2,

1
f2

Σ11

N2
+
Δ11

M2
   approximately,

(A.14)

and independently of ( x(1)
2 − y(1)

2 ) ∼ Np(δ1, ((Σ11/N2)+

(Δ11/M2))),

S(1,1)
3

n3N3
+
V(1,1)

3
m3M3

  ∼ Wp1
f3,

1
f3

Σ11

N3
+
Δ11

M3
   approximately,

(A.15)

and independently of ( x(1)
3 − y(1)

3 ) ∼ Np(δ1, ((Σ11/
N3) + (Δ11/M3))).

Hence,

Q2 d ∼
p1

f2 − p1 + 1
Fp1 ,f2− p1+1,

Q3 d ∼
p1

f3 − p1 + 1
Fp1 ,f3− p1+1 approximately.

(A.16)

Using Lemma A.2, we have

R2 ∼
f2p2

f2 − p1 − p2 + 1
Fp2 ,f2− p1− p2+1 approximately,

(A.17)

And it is independent of Q2 and Q2d.

R3 ∼
f3p3

f3 − p1 − p3 + 1
Fp3 ,f2− p1− p3+1 approximately,

(A.18)

and it is independent of Q2 and Q2d.
Using the above approximate distributional results and

treating fi’s as constants, we evaluate the following
moments:
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E Q1( ≃
f1p1

f1 − p1 − 1
,

E Q2(  � E R2 1 + Q2d( (  � E R2( E 1 + Q2 d( ≃
p2f2 f2 − 1( 

f2 − p1 − p2 − 1(  f2 − p1 − 1( 
,

E Q3(  � E R3 1 + Q3d( (  � E R3( E 1 + Q3 d( ≃
p3f3 f3 − 1( 

f3 − p1 − p3 − 1(  f3 − p1 − 1( 

E Q
2
1 ≃

p1 p1 + 2( f
2
1

f1 − p1 − 1(  f1 − p1 − 3( 
,

E Q
2
2 ≃

p2 p2 + 2( f
2
2 f2 − 1(  f2 − 3( 

f2 − p1 − p2 − 1(  f2 − p1 − p2 − 3(  f2 − p1 − 1(  f2 − p1 − 3( 
,

E Q
2
3 ≃

p3 p3 + 2( f
2
3 f3 − 1(  f3 − 3( 

f3 − p1 − p3 − 1(  f3 − p1 − p3 − 3(  f3 − p1 − 1(  f3 − p1 − 3( 
.

(A.19)

Using the arguments of Krishnamoorthy and Pannala [6],
it can be shown that E(Q1Q2)≃E(Q1)E(Q2), E(Q1Q3)≃
E(Q1)E(Q3), E(Q3Q2)≃ E(Q3)E(Q2). -us, we have

E(Q) � E Q1(  + E Q2(  + E Q3(  � G1,

E Q
2

 ≃E Q
2
1  + E Q

2
2  + E Q

2
3  + 2E Q1( E Q2(  + 2E Q1( E Q3(  + 2E Q3( E Q2(  � G2.

(A.20)

Data Availability

-e data sets can be downloaded freely from http://javeeh.
net/sasintro/intro151.html.
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