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In this paper, we prove some inequalities satisfied by the modified degenerate gamma function which was recently introduced.&e
tools employed include Holder’s inequality, mean value theorem, Hermite–Hadamard’s inequality, and Young’s inequality. By
some parameter variations, the established results reduce to the corresponding results for the classical gamma function.

1. Introduction

In recent times, degenerate special functions and polyno-
mials have been a subject of intense discussion. See, for
example, [1–5] and the related references therein.

In 2017, Kim and Kim [6] introduced the degenerate
gamma function as

Γλ(x) � 
∞

0
t
x− 1

(1 + λt)
− 1/λdt, (1)

where λ ∈ (0,∞) and 0<R(x)< 1/λ. &is was motivated by
the degenerate exponential function which is defined as [6]

e
t
λ � (1 + λt)

1/λ
, (2)

where λ ∈ (0,∞). It is clear that limλ⟶0e
t
λ � et and

limλ⟶0Γλ(x) � Γ(x), where Γ(x) is the classical gamma
function.

In 2018, Kim et al. [7] introduced the modified de-
generate gamma function which is defined as

Γλ(x) � 
∞

0
t
x− 1

(1 + λ)
− 1/λdt, (3)

where λ ∈ (0, 1) and R(x)> 0. &is definition is equivalent
to

Γk(x) � 
∞

0
t
x− 1 1 +

1
k

 
− kt

dt, (4)

where 1< k<∞ andR(x)> 0. Here, limk⟶∞Γk(x) � Γ(x).
&e modified degenerate gamma function (3) satisfies the
following properties [7]:

Γλ(1) �
λ

ln(1 + λ)
, (5)

Γλ(x + 1) �
λx

ln(1 + λ)
Γλ(x), (6)

Γλ(m + 1) �
λm+1

m!

(ln(1 + λ))
m+1, m ∈ N. (7)

Derivatives of the modified degenerate gamma function
are given as

Γ(r)
λ (x) � 

∞

0
(lnt)

r
t
x− 1

(1 + λ)
− t/λdt, (8)

where r ∈ N0.
In a recent work, He et al. [8] introduced the modified

degenerate digamma function which is defined as

ψλ(x) �
d
dx

lnΓλ(x) �
Γλ′(x)

Γλ(x)
(9)

and has the following representations among others:
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ψλ(x) � − c + ln
λ

ln(1 + λ)
  + 

∞

k�0

x − 1
(k + 1)(k + x)

� − c + ln
λ

ln(1 + λ)
  −

1
x

+ 
∞

k�1

x

k(k + x)

� − c + ln
λ

ln(1 + λ)
  + 

1

0

1 − t
x− 1

1 − t
dt,

(10)

where c is the Euler–Mascheroni constant. It also satisfies
the following basic properties:

ψλ(1) � − c + ln
λ

ln(1 + λ)
 ,

ψλ(x + 1) � ψλ(x) +
1
x

,

(11)

and similarly, it is clear that limλ⟶0ψλ(x) � ψ(x), where
ψ(x) is the classical digamma function. For further prop-
erties of the function ψλ(x), one may refer to [8].

In this paper, we continue to investigate the modified
degenerate gamma function. Precisely, we prove some

inequalities satisfied by this generalized function. &e
techniques we employed are analytical in nature.

2. Results and Discussion

Theorem 1. For s ∈ ( 0, 1 ] and x> 0, the inequality holds:

λx

ln( 1 + λ )
 

1− s

≤
Γλ( x + 1 )

Γλ( x + s )
≤

λ( x + s )

ln( 1 + λ )
 

1− s

. (12)

Proof. &e case for s � 1 is obvious. So, let s ∈ (0, 1) and
x> 0. &en, by applying Holder’s inequality for integrals, we
have

Γλ(x + s) � 
∞

0
t
x+s− 1

(1 + λ)
− (t/λ)dt � 

∞

0
t
(1− s)(x− 1)

(1 + λ)
− (t(1− s)/λ)

t
sx

(1 + λ)
− (st/λ)dt

≤ 
∞

0
t
x− 1

(1 + λ)
− (t/λ)dt 

1− s


∞

0
t
x
(1 + λ)

− (t/λ)dt 
s

� Γλ(x) 
1− s Γλ(x + 1) 

s
,

(13)

and by using (6), we obtain

Γλ( x + s )≤
λx

ln( 1 + λ )
 

s

Γλ( x ). (14)

By replacing s with 1 − s in (14), followed by substituting
x by x + s, we obtain

Γλ( x + 1 )≤
λ( x + s )

ln( 1 + λ )
 

1− s

Γλ( x + s ). (15)

Now, combining (14) and (15), we obtain

ln( 1 + λ )

λ( x + s )
 

1− s

Γλ( x + 1 )≤ Γλ( x + s )≤
λx

ln( 1 + λ )
 

s

Γλ( x ),

(16)

and by using (6), we obtain the desired results (12). □

Remark 1. Inequality (16) can also be rearranged as

x

x + s
 

1− s

≤
Γλ(x + s)

( λx/ln(1 + λ) )
sΓλ(x)
≤ 1, (17)

which is the degenerate form of Wendel’s inequality (see (7)
of [9]). Furthermore, by Squeezes theorem, (17) implies that

lim
x⟶∞

Γλ(x + s)

( λx/ln(1 + λ) )
sΓλ(x)

� 1, (18)

which is the degenerate form of Wendel’s asymptotic re-
lation (see (1) of [9]). &e limit (18) also implies that

lim
x⟶∞

λx

ln( 1 + λ )
 

r− sΓλ( x + s )

Γλ( x + r )
� 1. (19)

Theorem 2. For 0< u≤ v, the inequality holds:

exp (v − u)ψλ(u) ≤
Γλ(v)

Γλ(u)
≤ exp (v − u)ψλ(v) . (20)

Proof. &e case for u � v is trivial. So, consider the function
lnΓλ(x) on the interval 0< u< v. &en, by the mean value
theorem, there exist a k ∈ (u, v) such that

lnΓλ(v) − lnΓλ(u)

v − u
� ψλ(k). (21)

Since ψλ(x) is increasing, then

ψλ(u)<ψλ(k)<ψλ(v), (22)

which yields

(v − u)ψλ(u)< ln
Γλ(v)

Γλ(u)
<(v − u)ψλ(v), (23)

and by exponentiation, we obtain the desired result (20). □

Corollary 1. For s ∈ ( 0, 1 ] and x> 0, the inequality holds:
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exp (1 − s)ψλ(x + s) ≤
Γλ(x + 1)

Γλ(x + s)
≤ exp (1 − s)ψλ(x + 1) .

(24)

Proof. Let v � x + 1 and u � x + s in &eorem 2. □

Corollary 2. For x≥ 0, the inequality holds:
λ

ln(1 + λ)
exp xψλ(x + 1) ≤ Γλ(x + 1)≤

λ
ln(1 + λ)

exp xψλ(1) .

(25)

Proof. Let v � x + 1 and u � 1 in &eorem 2. □

Remark 2. Inequality (24) is the degenerate form of in-
equality (3.4) of [10].

Theorem 3. For 0< u≤ v, the inequality holds:

exp (v − u)
ψλ(u) + ψλ(v)

2
 ≤

Γλ(v)

Γλ(u)
≤ exp (v − u)ψλ

u + v

2
  .

(26)

Proof. Let 0< u≤ v, and consider the function ψλ(x) on the
interval [u, v]. Since ψλ(x) is concave, then by the classical
Hermite–Hadamard inequality, we have

ψλ(u) + ψλ(v)

2
≤

1
v − u


v

u
ψλ(t)dt≤ψλ

u + v

2
 , (27)

which translates to

(v − u)
ψλ(u) + ψλ(v)

2
≤ ln
Γλ(v)

Γλ(u)
≤ (v − u)ψλ

u + v

2
 ,

(28)

and by exponentiation, we obtain the desired result (26). □

Corollary 3. For s ∈ ( 0, 1 ] and x> 0, the inequality holds:

exp (1 − s)
ψλ(x + 1) + ψλ(x + s)

2
 ≤

Γλ(x + 1)

Γλ(x + s)
≤ exp (1 − s)ψλ x +

s + 1
2

  . (29)

Proof. Let v � x + 1 and u � x + s in &eorem 3. □ Corollary 4. For x≥ 0, the inequality holds:

λ
ln(1 + λ)

exp
x

2
ψλ(x + 1) + ψλ(1)  ≤ Γλ(x + 1)≤

λ
ln(1 + λ)

exp xψλ
x

2
+ 1  . (30)

Proof. Let v � x + 1 and u � 1 in &eorem 3. □

Remark 3. Inequalities (26), (29), and (30) are, respectively,
better than (20), (24), and (25)

Remark 4. By letting λ⟶ 0, inequality (29) reduces to

exp (1 − s)
ψ(x + 1) + ψ(x + s)

2
 ≤

Γ(x + 1)

Γ(x + s)
≤ exp (1 − s)ψ x +

s + 1
2

  . (31)

&e upper bound of (31) coincides with the upper bound
of inequality (1.2) in the work [11] which was obtained by a
different procedure. However, the lower bound of (31) is
better than the lower bound of inequality (1.2) in [11] since
ψ(x + 1) + ψ(x + s)

2
≥

��������������

ψ(x + 1)ψ(x + s)



≥ψ(x + s)≥ψ(x +
�
s

√
).

(32)

&is is by virtue of the arithmetic-geometric mean in-
equality and the monotonicity property of ψ(x).

Theorem 4. For x> 0 and s ∈ ( 0, 1 ], the inequality holds:

ln( λ + 1 )

λ
 

1− s

(x + s)
s− 1 ≤
Γλ( x + s )

Γλ( x + 1 )
≤
ln( λ + 1 )

λ
s
1− sΓλ( s )(x + s)

s− 1
. (33)
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Proof. Let Δ(x) � (x + s)1− sΓλ(x + s)/Γλ(x + 1) for x> 0
and s ∈ ( 0, 1 ]. &en,

limx⟶0Δ(x) �
ln(λ + 1)

λ
s
1− sΓλ(s). (34)

Also, inequality (17) implies that

lim
x⟶∞
Δ( x ) �

ln( λ + 1 )

λ
 

1− s

. (35)

Furthermore,

Δ′(x)

Δ(x)
�
1 − s

x + s
+ ψλ(x + s) − ψλ(x + 1)≤ 0, (36)

which shows that Δ(x) is decreasing. Hence,
Δ(∞)≤Δ(x)≤Δ(0) which yields (33) □

Remark 5. As a particular case, by letting s � 1/2 and
λ⟶ 0, we obtain

��������
2
π

x +
1
2

 



<
Γ(x + 1)

Γ(x +(1/2))
<

�������

x +
1
2

 



. (37)

&e upper bound of (37) agrees with the upper bound of
(3) in [12]. Comparing the lower bounds of (37) and (3) in
[12] reveals that the lower bound of (37) is stronger if
0<x< 1/π − 2 and is weaker if x> 1/π − 2.

Theorem 5. Let u> 1 and (1/u) + (1/v) � 1. 5en,

Γλ(x + y)≤ Γλ(ux) 
1/u Γλ(vy) 

1/v
, (38)

holds for x> 0 and y> 0.

Proof. By Holder’s inequality for integrals, we have

Γλ(x + y) � 
∞

0
t
x+y− 1

(1 + λ)
− (t/λ)dt � 

∞

0
t
x− (1/u)

(1 + λ)
− (t/λu)

t
y− (1/v)

(1 + λ)
− (t/λv)dt

≤ 
∞

0
t
ux− 1

(1 + λ)
− (t/λ)dt 

1/u

∞

0
t
vy− 1

(1 + λ)
− (t/λ)dt 

1/v
� Γλ(ux) 

1/u Γλ(vy) 
1/u

,

(39)

which concludes the proof. □

Remark 6. Applying Young’s inequality on the right-hand
side of (38) reveals that

Γλ(x + y)≤
Γλ(ux)

u
+
Γλ(vy)

v
. (40)

Theorem 6. Let r1, r2 ∈ 2n: n ∈ N0 , k1 > 1,
(1/k1) + (1/k2) � 1, and (r1/k1) + (r2/k2) ∈ N0. 5en, in-
equality holds for x> 0 and y> 0:

Γ
( r1/k1)+ r2/k2) )

x

k1
+

y

k2
 ≤ Γ r1( )

λ (x) 
1/k1
Γ r2( )
λ (y) 

1/k2
,

λ

(41)

Proof. By using (8) and Holder’s inequality, we have

Γ( r1/k1( )+ r2/k2( ) )

λ
x

k1
+

y

k2
  � 

∞

0
(lnt)

( r1/k1( )+ r2/k2( ) )
t

x/k1( )+ y/k2( )− 1
(1 + λ)

− (t/λ)dt

� 
∞

0
(lnt)

r1/k1t
x− 1/k1(1 + λ)

− t/λk1( )(lnt)
r2/k2t

y− 1/k2(1 + λ)
− t/λk2dt

≤ 
∞

0
(lnt)

r1t
x− 1

(1 + λ)
− (t/λ)dt 

1/k1

∞

0
(lnt)

r2t
y− 1

(1 + λ)
− (t/λ)dt 

1/k2
� Γ r1( )

λ (x) 
1/k1
Γ r2( )
λ (y) 

1/k2
,

(42)

which concludes the proof. □

Remark 7. If r1 � r2 � r, then (41) reduces to

Γ(r)
λ

x

k1
+

y

k2
 ≤ Γ(r)

λ (x) 
1/k1 Γ(r)

λ (y) 
1/k2

, (43)

which implies that function (8) is log-convex for any even
order derivative. Moreover, if r � 0 in (43), we obtain

Γλ
x

k1
+

y

k2
 ≤ Γλ(x) 

1/k1 Γλ(y) 
1/k2 , (44)

which shows that the modified degenerate gamma function
is log-convex.

Remark 8. If r1 � r, r2 � r + 2, k1 � k2 � 2, and x � y, then
(41) reduces to the Turan-type inequality:

Γ(r+1)
λ ( x ) 

2
≤Γ(r)

λ ( x )Γ(r+2)
λ ( x ). (45)
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Remark 9. If r1 � s − 1, r2 � s + 1, k1 � k2 � 2, and x � y,
then (35) reduces to the Turan-type inequality:

Γ(s)
λ ( x ) 

2
≤ Γ(s− 1)

λ ( x )Γ(s+1)
λ ( x ), (46)

where s ∈ 2n + 1: n ∈ N0 . &is is the degenerate version of
main result of [13].

Theorem 7. For x≥ 1, the inequality holds:

Γλ(x)≥
λ

ln(1 + λ)
− 1 +

1
x

. (47)

Proof. Let ϕ(x) � Γλ(x) − (1/x). &en,

ϕ(x + 1) − ϕ(x) � Γλ(x + 1) − Γλ(x) +
1
x

−
1

x + 1
� Γλ(x)

λx

ln(1 + λ)
− 1  +

1
x

−
1

x + 1
> 0. (48)

&us, ϕ(x) is increasing, and for x≥ 1, we have
ϕ(x)≥ϕ(1) which completes the proof. □

Lemma 1. 5e function β(x) � xΓλ′(x) is increasing for all
x> 0.

Proof. By using (6) and (9) and the monotonicity property
of ψλ(x), we have

β(x) � xΓλ(x)ψλ(x) �
ln(λ + 1)

λ
Γλ(x + 1)ψλ(x), (49)

and consequently, we obtain

λ
ln(λ + 1)

β′(x)

Γλ(x + 1)
�ψλ(x + 1)ψλ(x) + ψλ′(x)>ψ2

λ(x)

+ ψλ′(x)> 0,

(50)

which completes the proof. □

Theorem 8. 5e inequalities hold for x> 0:

Γλ( x )Γλ(
1
x

)≥
λ

ln( λ + 1 )
 

2

, (51)

Γλ(x) + Γλ
1
x

 ≥
2λ

ln(λ + 1)
. (52)

Proof. By letting k1 � k2 � 2 and replacing x and y with 1 +

x and 1 + (1/x) in (44), we obtain

lnΓλ 1 +
x

2
+

1
2x

 ≤
lnΓλ(1 + x)

2
+
lnΓλ(1 +(1/x))

2
. (53)

Also, since x + (1/x)≥ 2 for x> 0, then
1 + (x/2) + (1/2x)≥ 2. Now, let ϕ( x ) � Γλ( x )Γλ( 1/x ) for
x> 0. &en, by using (6), we have

ϕ( x ) �
ln( λ + 1 )

λ
 

2

Γλ( 1 + x )Γλ( 1 +
1
x

). (54)

Next, by using (5), (53), and (54), we obtain

lnϕ( x )≥ 2ln
ln( λ + 1 )

λ
  + 2lnΓλ 1 +

x

2
+

1
2x

 ≥ 2ln
ln( λ + 1 )

λ
  + 2lnΓλ( 2 ) � ln

λ
ln( λ + 1 )

 

2

, (55)

which gives (51). Next, let θ( x ) � Γλ( x ) + Γλ( 1/x ) for
x> 0. &en,

xθ′(x) � xΓλ′(x) −
1
x
Γλ′

1
x

 . (56)

It follows from Lemma 1 that θ(x) is increasing if x> 1
and decreasing if 0<x< 1. For both cases, we have
θ(x) > θ(1) � 2λ/ln(λ + 1) which gives inequality (52). □

Remark 10. Inequality (52) can be obtained from inequality
(51) by applying the arithmetic-geometric mean inequality.

Theorem 9. Let r, s ∈ 2n: n ∈ N0  and r≥ s. 5en, in-
equality holds for x> 0:

expΓ(r)
λ ( x ) 

2
≤ expΓ(r− s)

λ ( x ) · expΓ(r+s)
λ ( x ). (57)
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Proof. We adopt the technique of Mortici [14] to estimate
the function

Γ(r− s)
λ (x) + Γ(r+s)

λ (x)

2
− Γ(r)

λ (x) �
1
2


∞

0
(lnt)

r− s
t
x− 1

(1 + λ)
− (t/λ)dt +

1
2


∞

0
(lnt)

r+s
t
x− 1

(1 + λ)
− (t/λ)dt

− 
∞

0
(lnt)

s
t
x− 1

(1 + λ)
− (t/λ)dt �

1
2


∞

0

1
(lnt)

s +(lnt)
s

− 2 (lnt)
r
t
x− 1

(1 + λ)
− (t/λ)dt

�
1
2


∞

0
1 − (lnt)

s
 

2
(lnt)

r− s
t
x− 1

(1 + λ)
− (t/λ)dt≥ 0.

(58)

&us,

2Γ(r)
λ (x)≤ Γ(r− s)

λ (x) + Γ(r+s)
λ (x), (59)

and by exponentiation, we arrive at (57). □

3. Concluding Remarks

In this work, we have proved several inequalities satisfied by
themodified degenerate gamma function which was recently
introduced. When λ⟶ 0, the established results reduce to
the corresponding results for the classical gamma function.
It is our fervent hope that the present results will inspire
further research on the modified degenerate gamma
function.

Data Availability

No data were used to support this study.

Conflicts of Interest

&e author declares that there are no conflicts of interest
regarding the publication of this paper.

References

[1] T. Kim, “Degenerate Euler zeta function,” Russian Journal of
Mathematical Physics, vol. 22, no. 4, pp. 469–472, 2015.

[2] T. Kim and D. S. Kim, “Identities involving degenerate Euler
numbers and polynomials arising from non-linear differential
equations,” Journal of Nonlinear Sciences and Applications,
vol. 09, no. 05, pp. 2086–2098, 2016.

[3] T. Kim and D. S. Kim, “Degenerate polyexponential functions
and degenerate Bell polynomials,” Journal of Mathematical
Analysis and Applications, vol. 487, no. 2, Article ID 124017,
2020.

[4] T. Kim, D. S. Kim, H. Y. Kim, and J. Kwon, “Some results on
degenerate Daehee and Bernoulli numbers and polynomials,”
Advances in Difference Equations, vol. 2020, 2020.

[5] H. K. Kim and L.-C. Jang, “A note on degenerate poly-
Genocchi numbers and polynomials,” Advances in Difference
Equations, vol. 2020, Article ID 392, 2020.

[6] T. Kim and D. S. Kim, “Degenerate Laplace transform and
degenerate Gamma function,” Russian Journal of Mathe-
matical Physics, vol. 24, no. 2, pp. 241–248, 2017.

[7] Y. Kim, B. M. Kim, L.-C. Jang, and J. Kwon, “A note on
modified degenerate gamma and laplace transformation,”
Symmetry, vol. 10, pp. 1–8, 2018.

[8] F. He, A. Bakhet, M. Akel, and M. Abdalla, “Degenerate
analogues of euler zeta, digamma, and polygamma functions,”
Mathematical Problems in Engineering, vol. 2020, Article ID
8614841, 9 pages, 2020.

[9] J. G. Wendel, “Note on the gamma function,” 5e American
Mathematical Monthly, vol. 55, no. 9, pp. 563-564, 1948.

[10] A. Laforgia and P. Natalini, “On some inequalities for the
gamma function,” Advances in Dynamical Systems and Ap-
plications, vol. 8, no. 2, pp. 261–267, 2013.

[11] D. Kershaw, “Some extensions of W. Gautschi’s inequalities
for the gamma function,” Mathematics of Computation,
vol. 41, no. 164, pp. 607–611, 1983.

[12] J. Sandor, “On certain inequalities for the Gamma function,”
RGMIA Res. Rep. Coll.vol. 9, no. 1, Article ID 11, 2006.

[13] H. Alzer and G. Felder, “A Turán-type inequality for the
gamma function,” Journal of Mathematical Analysis and
Applications, vol. 350, no. 1, pp. 276–282, 2009.

[14] C. Mortici, “Turan type inequalities for the Gamma and
Polygamma functions,” Acta Universitatis Apulensis, vol. 23,
pp. 117–121, 2010.

6 Journal of Mathematics


