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In this paper, we introduce the concept of complex neutrosophic soft matrices. We define some basic operations including
complement, union, and intersection on these matrices. We extend the concept of complex neutrosophic soft sets to complex
neutrosophic soft matrices and prove related properties. Moreover, we develop an algorithm using complex neutrosophic soft
matrices and apply it in signal processing.

1. Introduction

)e models of real-life problems in almost every field of
science like mathematics, physics, operations research,
medical sciences, engineering, computer science, artificial
intelligence, and management sciences are mostly full of
complexities. Many theories have been developed to over-
come these uncertainties; one among those theories is fuzzy
set theory. Zadeh was the first who gave the concept of a
fuzzy set in 1965 [1]. Fuzzy sets are the generalizations or
extensions of crisps sets.

In order to add the concept of nonmembership term to
the definition of fuzzy set, the concept of an intuitionistic
fuzzy set was introduced by Atanassov in 1986 [2], where he
added the concept of nonmembership term to the definition
of fuzzy set. )e intuitionistic fuzzy set is characterized by a
membership function μ and a nonmembership function υ
with ranges [0, 1]. )e intuitionistic fuzzy set is the gen-
eralization of a fuzzy set. An intuitionistic fuzzy set can be
applied in several fields including modeling, medical diag-
nosis, and decision-making. [3] Molodtsov introduced the
concept of a soft set in 1999 and developed the fundamental
results related to this theory. Basic operations including
complement, union, and intersection are also defined on this
set. Molodtsov used soft sets for applications in games,

probability, and operational theories [3–6]. In 2018,
Smarandache generalized the soft set to the hypersoft set by
transforming the classical uniargument function F into a
multiargument function [7]. Maji et al. [8] introduced the
concept of fuzzy soft sets by combining soft sets and fuzzy
sets and applied them in decision-making problems [9]. In
[10], Cagman and Enginolu used soft matrix theory for
applications in decision-making problems.

)e concept of neutrosophy was introduced by Smar-
andache [11] in 1998. A neutrosophic set is characterized by
a truth membership function T, an indeterminacy function
I, and a falsity membership function F. A neutrosophic set is
a mathematical framework which generalizes the concept of
a classical set, fuzzy set, intuitionistic fuzzy set, and interval
valued fuzzy set [12]. In [13], Nabeeh introduced a method
that can promote a personal selection process by integrating
the neutrosophic analytical hierarchy process to show the
proper solution among distinct options with order prefer-
ence technique similar to an ideal solution (TOPSIS). In [14],
Baset introduced a concept of a neutrosophy technique
called type 2 neutrosophic numbers. By combining type 2
neutrosophic numbers and TOPSIS, they suggested a novel
method T2NN-TOPSIS which has a lot of applications in
group decision-making. )ey worked on a multicriteria
group decision-making technique of the analytical network
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process method and Visekriterijusmska Optmzacija I
Kommpromisno Resenje method under neutrosophic en-
vironment that deals high-order imprecision and incom-
plete information [15].

)e largest number set is a complex set which is in-
troduced by Gauss in 1795 and is the extension of a real
number set. According to same fashion, a complex fuzzy set
is extension to a fuzzy set as here the range set is extended
from interval [0, 1] to a closed disc of radius one in complex
plane. )e degree of membership a complex fuzzy set is not
restricted to a value in [0, 1]; it is extended to a complex
value lies in a disc of radius one in the complex plane.

Complex fuzzy sets are not simply a linear extension of
conventional fuzzy sets; complex fuzzy sets allow a natural
extension of fuzzy set theory to problems that are either very
difficult or impossible to address with one-dimensional
grades of membership. It is an obvious fact that uncertainty,
indeterminacy, inconsistency, and incompleteness in data
are periodic in nature. In order to address this difficulty, in
2002, Daniel Ramot was the first who gave the concept of a
complex fuzzy set. )e concept of a complex neutrosophic
set was introduced in [16].

)e complex fuzzy set C is described as membership
function, with range in closed unit disc in the complex plane.
)e complex-valued membership function ϕs(x) is defined
as ϕs(x) � ts(x)ei.ηs(x) that assigns a complex value of
membership to any x in U (universal set) such that ts(x) and
ηs(x) both are real-valued with ts(x) is fuzzy set and
i �

���
−1

√
, where ts(x) is called amplitude term and ηs(x) is

called phase term.
Physically the complex fuzzy set is used for representing

the complex fuzzy solar activity (solar maximum and solar
minimum) through the measurement of sunspot number
and is also used in signal processing. )e complex neu-
trosophic set is the generalization of a complex fuzzy set and
a neutrosophic set. )e complex neutrosophic set is char-
acterized by complex-valued truth membership function,
complex-valued indeterminate function, and complex-val-
ued falsehood function. In short, a complex neutrosophic set
is more generalized because it is not only the generalization
of all the current frameworks but also describes the infor-
mation in a complete and comprehensive way.

A fuzzy set with its generalizations, like intuitionistic
fuzzy sets, interval valued fuzzy sets, and cubic sets, rep-
resents uncertainties in models of the one-dimensional
phenomenon while a complex fuzzy set is the only
generalization of a fuzzy set which deals with the models of
real-life problems with the two-dimensional and periodic
phenomenon. A complex fuzzy set is more applicable
because of its nature and can be used more widely in all
branches of sciences. Since it is similar to that of a Fourier
transform, more explicitly it is a particular sort of Fourier
transform with the only restriction on the range which is a
complex unit disc. A Fourier transform is used in signals and
systems; that is, a Fourier transform is the mathematical tool
for representing both continuous and discrete signals.
Taking advantage of a complex fuzzy set, being a specific
form of Fourier transform, it can be used to represent signals
in a particular region of consideration. A neutrosophic set is

the generalization of a fuzzy set which deals with the
problems containing uncertainties of truthfulness, false-
hood, and neutrality. )e complex neutrosophic set has
three major parts, that is, truth, intermediate, and falsehood
membership functions. )e truth membership function is
totally the same as that of a complex fuzzy set while in-
termediate and falsehood membership functions are the new
additions to it. )us, a complex neutrosophic set can be
applied more widely compared with other fuzzy sets.

In the vast area of science and technology, matrices play
an important role. Classical matrix theory cannot solve all
models of the daily life problems. In order to overcome these
difficulties, Yang and Ji in [17] initiated a matrix repre-
sentation of a fuzzy soft set and successfully applied the
proposed notion of a fuzzy soft matrix in certain decision-
making problems.

)is work is basically the extension of the work of Ramot
et al. [18], Alkouri and Saleh [19], Cai [20, 21], and Zhang
et al. [22] to neutrosophic sets. Here, in this paper, we extend
the concept by defining the complex neutrosophic fuzzy soft
set and then the complex neutrosophic fuzzy soft matrix
(CNFSM). Further, we discuss some basic operations on
CNFSM and finally we develop an algorithm using these
matrices and apply it in signal processing.

Soft matrices are widely used in signals and systems,
decision-making problems, and medical diagnosis. )is
article has two aims. In the first part, we present theoretical
foundations of the complex neutrosophic fuzzy soft ma-
trices. )ese theoretical foundations provide basic notions
and operations on complex neutrosophic soft matrices such
as complex neutrosophic fuzzy soft zero matrix, complex
neutrosophic fuzzy soft universal matrix, complex neu-
trosophic fuzzy soft submatrices, union of complex neu-
trosophic fuzzy soft matrices, intersection of complex
neutrosophic fuzzy soft matrices, and complement of
complex neutrosophic fuzzy soft matrices. )en, we intro-
duce some fundamental results and discuss main strategies
for applications of this concept in signals and systems, as
well as a coherent discussion of the theory of complex
neutrosophic fuzzy soft matrices. )e aim of these new
concepts is to provide a modern method with mathematical
procedure to identify a reference signal out of large number
of signals received by a digital receiver. )e complex neu-
trosophic fuzzy soft matrix is the generalization of the fuzzy
soft matrix, complex fuzzy soft matrix, and Pythagorean
fuzzy soft matrix. )e degree of membership function,
nonmembership function, and phase terms are all applied to
each entry of the matrix which give more fruitful results for a
better choice in signals and systems along with other fields
such as decision-making problems, medical diagnosis, and
pattern recognition. )ese applied contexts provide solid
evidence of the wide applications of the complex neu-
trosophic fuzzy soft matrices approach to signals and sys-
tems and decision-making problems.

2. Preliminaries

Here, we begin with a numerical example of a complex
neutrosophic set which is already defined above.

2 Journal of Mathematics



Example 1. Let X � x1, x2, x3  be a universe of discourse.
)en, the complex neutrosophic set S in X is given as

S �
0.6e

j0.3
, e

jπ/2
, 0.3e

j0.6
 

x1
+

0.4e
j0

, 0.9e
jπ/4

, 0.4e
jπ/4

 

x2
+

0.5e
j2π/3

, 0.2e
j0.2

, 0.7e
jπ/3

 

x3
. (1)

Definition 1 (fuzzy set (FS) [1]). Fuzzy set is defined by an
arbitrarymapping from a nonempty set X to the unit interval
[0, 1], i.e., f: X⟶ [0, 1]. )e set of all fuzzy subsets of X

is denoted by F(X), i.e., F(X) � f: f

is a function fromXinto [0, 1]}.
Soft set theory is a generalization of fuzzy set theory,

which was proposed by Molodtsov in 1999.

Definition 2 (soft set (SS) [3]). Let U be the universal set, E

be the set of parameters, and A⊆E and P(U) be the power
set of U, then a soft set FA is defined by a mapping.

fA: E⟶ P(U) such that fA(x) � ϕ if x ∉ A.
In other words, we can say that soft set FA over U is the

parameterized family of subsets of U, that is,
FA � (x, fA(x)): x ∈ E, fA(x) ∈ P(U) .

Definition 3 (fuzzy soft set (FSS) [8]). Let U be the universe
of discourse, E be the set of parameters, and A⊆E, then a
fuzzy soft set GA is defined by a mapping: gA: E⟶ P′(U)

where P′(U) is the collection of all fuzzy subsets of U, such
that gA(x) � ϕ if x ∉ A.

In other words, we can say that fuzzy soft set GA over U is
the parameterized family of fuzzy subsets of U, that is,
GA � (x, gA(x)): x ∈ E, gA(x) ∈ P′(U) .

Definition 4 (intuitionistic fuzzy set (IFS) [2]). An intui-
tionistic fuzzy set I on a nonempty set U (universal set) is
defined by the set of triplets given by

I � x, μI(x), cI(x)( : x ∈ U . (2)

Here, μI(x) and cI(x) both are functions from U to
[0, 1] as μI(x): U⟶ [0, 1] and cI(x): U⟶ [0, 1]. Here,
μI(x) represents the degree of membership and cI(x)

represents the degree of nonmembership of each element
x ∈ U to the set I, respectively, also 0≤ μI(x) + cI(x)≤ 2, for
all x ∈ U.

Definition 5 (complex fuzzy set (CFS) [18]). )e complex
fuzzy set S on universe of discourse X is described as
complex-valued membership function μS(x) that assigns
value of membership of the form rs(x)ejws(x) to any element
x ∈ X, where j �

���
−1

√
, μS(x) involves two real-valued rs(x)

and ws(x), with rs(x) ∈ [0, 1].

Mathematically, S � (x, μs(x)): x ∈ X .

Definition 6 (complex intuitionistic fuzzy set (CIFS) [19]).
)e complex intuitionistic fuzzy set CI on a nonempty set U

(universal set) is defined by the set of triplets given by
CI � (x, μCI(x), cCI(x)): x ∈ U . Here, μCI(x) �

rCI(x)ejwCI(x) and cCI(x) � lCI(x)ejmCI(x) both are functions
from U to closed unit disc in the complex plane and also
μCI(x) represents the degree of membership and cCI(x)

represents the degree of nonmembership of each element
x ∈ U to the set CI, respectively, and also
0≤ rCI(x) + lCI(x)≤ 2, for all x ∈ U.

Definition 7 (complex neutrosophic fuzzy set (CNFS) [16]).
)e complex neutrosophicfuzzy set N on a nonempty set U

(universal set) is defined by the set as N � (x,{

TN(x), IN(x), FN(x): x ∈ U)}. Here, TN(x) � rN(x)

ejwN(x), IN(x) � lN(x)ejmN(x), and FN(x) � pN(x)ejqN(x)

are the complex-valued functions from U to the closed unit
disc in the complex plane where TN(x) describes complex-
valued truth membership function, IN(x) describes com-
plex-valued indeterminate membership function, and
FN(x) describes complex-valued falsehood membership
function of each element x ∈ U to the set N, respectively,
and also 0≤ rN(x) + lN(x) + pN(x)≤ 3, for all x ∈ U.

3. Complex Neutrosophic Fuzzy Soft
Matrix Theory

In this section, we introduced a new concept of complex
neutrosophic fuzzy soft matrices. We defined the operations
of union, intersection, compliment, and submatrices. We
defined zero and universal matrices. Moreover, we proved
some related results.

Definition 8 (complex neutrosophic fuzzy soft matrix
(CNFSM)). Consider a universal set U � u1, u2, u3, . . . , um 

and set of parameters E � e1, e2, e3, . . . , en  such that A⊆E

and (cA, A) be a complex neutrosophic fuzzy soft set over
(U, E). )en, the CNFSS (cA, A) in matrix form is repre-
sented by Am×n � [aij]m×n or A. � [aij] where
i � 1, 2, 3, . . . , m and j � 1, 2, 3, . . . , n.

Here, aij �
μj ui( 



 � μT
j ui( 



, μ
I
j ui( 



, μ
F
j ui( 



 , if ej ∈ A,

(0, 0, 0) if ej ∉ A.

⎧⎪⎨

⎪⎩
(3)
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Now, (μT
j (ui), μI

j(ui), μF
j (ui)) represents degrees of

membership of truth, intermediate, and falsehood on ui.
)roughout this paper, we will use the abbreviation
CNFSMm×n for complex neutrosophic fuzzy soft matrix
over U. Following is the example of a complex neutrosophic
fuzzy soft matrix.

Example 2. Let U � u1, u2, u3  be a universal set repre-
senting the three firms, E � e1(costly), e2 (beautiful), e3
(luxurious)} be the parameters set, and A � e1, e2 ⊆E.
)en, CNFSS (cA, A) over the universal set U is given by

cA, A(  � cA e1(  � u1, 0.3e
jπ



, 0.6e
jπ/2



, e
jπ



    , u2, 0.7e
jπ/4



, 0.8e
jπ/4



, 0.5e
jπ/2



  , u3, 0.9e
jπ



, 0.1e
jπ/6



, 0.2e
jπ/2



  , cA e2( 

� u1, 0.1e
jπ/3



, 0.2e
jπ/6



, 0.1e
jπ



  , u2, 0.3e
jπ/2



, 0.9e
jπ/2



, 0.9e
jπ/4



  , u3, 0.5e
jπ/3



, 0.5e
jπ



, 0.6e
jπ/3



   .

(4)

Here,

0.3e
jπ

� 0.3(cos π + j sin π) � 0.3(−1 + 0) � −0.3

0.3e
jπ



 � |− 0.3| � 0.3 0.6

6e
jπ/2

� 0.6 cos
π
2

  + j sin
π
2

   � 0.6(0 + j) � 0.6j

0.6e
jπ/2



 � |0.6j| �
����
0.36

√
� 0.6

e
jπ

� cos π + j sin π � −1 + 0 � −1

e
jπ



 � |− 1| � 1, 0.7e
jπ/4

� 0.7 cos
π
4

  + j sin
π
4

   � 0.7
1
�
2

√ + j
1
�
2

√ 

� 0.7(0.707 + j0.707) � 0.494 + j0.494

0.7e
jπ/4



 � |0.494 + j0.494| �
�����������
0.244 + 0.244

√
� 0.69,

0.8e
jπ/4

� 0.8 cos
π
4

  + j sin
π
4

   � 0.8
1
�
2

√ + j
1
�
2

√ 

� 0.8(0.707 + j0.707) � 0.5656 + j0.5656,

|0.8e
jπ/4

| � |0.5656 + j0.5656| �
�����������
0.319 + 0.319

√
� 0.790.5

0.5e
jπ/2

� 0.5 cos
π
2

  + j sin
π
2

   � 0.5j

0.5e
jπ/2



 � |0.5j| �
����
0.25

√
� 0.5,

0.9e
jπ

� 0.9(cos π + j sin π) � 0.9(−1) � −0.9

0.9e
jπ



 � |− 0.9| � 0.9

0.1e
jπ/6

� 0.1 cos
π
6

  + j sin
π
6

   � 0.1(0.866 + j0.5) � 0.0866 + j0.05

0.1e
jπ/6



 � |0.0866 + j0.05| �
�������������
0.0074 + 0.0025

√
� 0.099,
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0.2e
jπ/2

� 0.2 cos
π
2

  + j sin
π
2

   � 0.2(0 + j) � 0.2j

0.2e
jπ/2



 � |0.2j| �
����
0.04

√
� 0.2,

0.1e
jπ/3

� 0.1 cos
π
3

  + j sin
π
3

   � 0.1(0.5 + j0.866) � 0.05 + j0.0866

0.1e
jπ/3



 � |0.05 + j0.0866| �
�������������
0.0025 + 0.0074

√
� 0.090.2e

jπ/6

� 0.2 cos
π
6

  + j sin
π
6

   � 0.2(0.866 + j0.5) � 0.1732 + j0.1

0.2e
jπ/6



 � |0.1732 + j0.1| �
����������
0.029 + 0.01

√
� 0.19,

0.1e
jπ

� 0.1(cos π + j sin π) � 0.1(−1 + 0) � −0.1

0.1e
jπ



 � |− 0.1| � 0.1,

0.3e
jπ/2

� 0.3 cos
π
2

  + j sin
π
2

   � 0.3j

0.3e
jπ/2



 � |0.3j| �
����
0.09

√
� 0.3

0.9e
jπ/2

� 0.9 cos π/2 + j sin
π
2

   � 0.9j

0.9e
jπ/2



 � |0.9j| �
����
0.81

√
� 0.9,

0.9e
jπ/4

� 0.9 cos
π
4

  + j sin
π
4

   � 0.9
1
�
2

√ + j
1
�
2

√ 

� 0.9(0.707 + j0.707) � 0.636 + j0.636

0.9e
jπ/4



 � |0.636 + j0.636| �
�����������
0.404 + 0.404

√
� 0.898,

0.5e
jπ/3

� 0.5 cos
π
3

  + j sin
π
3

   � 0.5(0.5 + j0.866) � 0.25 + j0.433

0.5e
jπ/3



 � |0.25 + j0.433| �
������������
0.0625 + 0.187

√
� 0.499

0.5e
jπ

� 0.5(cos π + j sin π) � 0.5(−1) � −0.5

0.5e
jπ



 � |− 0.5| � 0.5,

0.6e
jπ/3

� 0.6 cos
π
3

  + j sin
π
3

   � 0.6(0.5 + j0.866) � 0.3 + j0.519

0.6e
jπ/3



 � |0.3 + j0.519| �
����������
0.09 + 0.269

√
� 0.599.

(5)

Now, the abovementioned CNFSS (cA, A) in matrix
form is given by

A �

(0.3, 0.6, 1) (0.09, 0.19, 0.1) (0, 0, 0)

(0.69, 0.79, 0.5) (0.3, 0.9, 0.898) (0, 0, 0)

(0.9, 0.099, 0.2) (0.499, 0.5, 0.599) (0, 0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Definition 9 (complex neutrosophic fuzzy soft zero natrix).
Let [aij] ∈ CNFSMm×n, then [aij] is called complex neu-
trosophic fuzzy soft zero matrix if (aij, rij, lij) � (0, 0, 0), for
all i and j, and is denoted by [0].

Example 3

[0] �

(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Definition 10 (complex neutrosophic fuzzy soft universal
matrix). Let [aij] ∈ CNFSMm×n, then [aij] is called complex
neutrosophic fuzzy soft universal matrix if
(aij, rij, lij) � (1, 1, 1), for all i and j, and is represented by
[1].
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[1] �

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Definition 11 (complex neutrosophic fuzzy soft
submatrices). Let Am×n and Bm×n be two CNFSMs, then

(i) Am×n is a CNFS submatrix of Bm×n and is denoted by
Am×n ⊑Bm×n if aij � (aij, aij

′ , aij
″ )≼ bij � (bij,

bij
′ , bij
″ ), that is, (aij ≼ bij, aij

″ ≼ bij
′ , aij
″ ≼ bij
″), for all

aij ∈ Am×n, bij ∈ Bm×n

(ii) Am×n is a proper CNFS submatrix of Bm×n and is
denoted by Am×n ⊏Bm×n if aij � (aij, aij

′ , aij
″ )≺bij �

(bij, bij
′ , bij
″), that is, (aij≺bij, aij

′ ≺ bij
′ , aij
″≺bij
″), for all

aij ∈ Am×n, bij ∈ Bm×n and for at least one entry
aij≺bij, that is, (aij≺bij, aij

′ ≺ bij
′ , aij
″ ≺ bij
″ )

(iii) Two CNFSMs Am×n and Bm×mn are equal and are
denoted by Am×n � Bm×n, if aij � (aij, aij

′ , aij
″ ) �

bij � (bij, bij
′ , bij
″ ), that is. (aij � bij, aij

′ �

bij
′ , aij
″ � bij
″ ), for all aij ∈ Am×n, bij ∈ Bm×n

Example 4. Let

A2×2 �
(0.2, 0.4, 0.1) (0.1, 0.5, 0.2)

(0.3, 0.7, 0.3) (0.5, 0.4, 0.4)
 ,

B2×2 �
(0.2, 0.4, 0.1) (0.3, 0.7, 0.9)

(0.3, 0.7, 0.3) (0.7, 0.5, 0.7)
 .

(9)

So, we can write that A2×2 ⊏B2×2. Moreover, A⊏B.

Definition 12. (union/intersection and compliment of
complex neutrosophic fuzzy soft matrices).

Let Am×n and Bm×n be two CNFSM, then the
CNFSMCm×n is called

(i) Union of Am×n and Bm×n and is denoted by
Am×n ⊔Bm×n if Cm×n � max Am×n, Bm×n , for all i

and j, that is, cij � (max(aij, bij), min(aij
′ , bij
′ ),

min(aij
″, bij
″)) where cij � (cij, cij

′, cij
″)

(ii) Intersection of Am×n and Bm×n is denoted by
Am×n ⊓Bm×n if Cm×n � min Am×n, Bm×n , for all i

and j, that is, cij � (min(aij, bij), max (aij
′ , bij
′ ),

max(aij
″, bij
″)), where cij � (cij, cij

′ , cij
″ )

(iii) Complement of Am×n is denoted by Am×n
′ if

Cm×n � 1 − Am×n, for all i and j, that is,
cij � (1 − aij, 1 − aij

′ , 1 − aij
″ ), where cij � (cij,

cij
′, cij
″)

Example 5. Assume that

A2×2 �
(0.3, 0.6, 1) (0.65, 0, 0.6)

(0.3, 0.9, 0) (0.8, 0.7, 0.9)
 ,

B2×2 �
(0.49, 0.5, 0.4) (0.2, 0, 0.3)

(0.1, 0.9, 0.3) (0, 0, 0)
 ,

then,

A2×2⊔B2×2 �
(0.49, 0.5, 0.4) (0.65, 0, 0.3)

(0.3, 0.9, 0) (0.8, 0, 0)
 ,

A2×2⊓B2×2 �
(0.3, 0.6, 1) (0.2, 0, 0.6)

(0.1, 0.9, 0.3) (0, 0.7, 0.9)
 ,

A2×2′ �
(0.7, 0.4, 0) (0.35, 1, 0.4)

(0.7, 0.1, 1) (0.2, 0.3, 0.1)
 .

(10)

Proposition 1. Let Am×n be a CNFSM, then

(i) Am×n( ′( ′ � Am×n,

(ii) [0]′ � [1].
(11)

Proof. It follows from definition. □

Proposition 2. Let Am×n, Bm×n, and Cm×n be three CNFSMs,
then

(i) Am×n � Bm×n andBm×n � Cm×n⟹Am×n � Cm×n,

(ii) Am×n ⊑Bm×n andBm×n ⊑Am×n⟹Am×n � Bm×n.

(12)

Proof. It follows from definition. □

Proposition 3. Let Am×n and Bm×n be two CNFSMs, then

Am×n ⊑Bm×n andBm×n ⊑Cm×n⟹Am×n ⊑Cm×n. (13)

Proof. It follows from definition. □

Proposition 4. Let Am×n and Bm×n be two CNFSMs, then

(i) Am×n⊔Bm×n � Bm×n⊔Am×n,

(ii) Am×n⊓Bm×n � Bm×n⊓Am×n,

(iii) Am×n⊔Bm×n( ⊔Cm×n � Am×n⊔ Bm×n⊔Cm×n( ,

(iv) Am×n⊓Bm×n( ⊓Cm×n � Am×n⊓ Bm×n⊓Cm×n( ,

(v) Am×n⊔ Bm×n⊓Cm×n(  � Am×n⊔Bm×n( ⊓ Am×n⊔Cm×n( ,

(vi) A⊓ Bm×n⊔Cm×n(  � Am×n⊓Bm×n( ⊔ Am×n⊓Cm×n( .

(14)
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Proof

(i) Am×n ⊔Bm×n � max Am×n, Bm×n( 

� max Bm×n, Am×n( 

� Bm×n⊔Am×n,

(ii) Am×n⊓Bm×n � min Am×n, Bm×n( 

� min Bm×n, Am×n( 

� Bm×n⊓Am×n,

(iii) Am×n⊔Bm×n( ⊔Cm×n � max Am×n⊔Bm×n( , Cm×n( 

� max max Am×n, Bm×n( , Cm×n( 

� max Am×n, max Bm×n, Cm×n( ( 

� max Am×n, Bm×n⊔Cm×n( ( 

� Am×n⊔ Bm×n⊔Cm×n( ,

(iv) Am×n⊓Bm×n( ⊓Cm×n � min Am×n⊓Bm×n( , Cm×n( 

� min min Am×n, Bm×n( , Cm×n( 

� min Am×n, min Bm×n, Cm×n( ( 

� min Am×n, Bm×n⊓Cm×n( ( 

� Am×n⊓ Bm×n⊓Cm×n( .

(v) Am×n⊔ Bm×n⊓Cm×n(  � max Am×n, Bm×n⊓Cm×n( ( 

� max Am×n, min Bm×n, Cm×n( ( 

� min max Am×n, Bm×n( , max Am×n, Cm×n( ( 

� min Am×n⊔Bm×n( , Am×n⊔Cm×n( ( 

� Am×n⊔Bm×n( ⊓ Am×n⊔Cm×n( ,

(vi) Am×n⊓ Bm×n ⊔Cm×n(  � min Am×n, Bm×n⊔Cm×n( ( 

� min Am×n, max Bm×n, Cm×n( ( 

� max min Am×n, Bm×n( , min Am×n, Cm×n( ( 

� max Am×n⊓Bm×n( , Am×n⊓Cm×n( ( 

� Am×n⊓Bm×n( ⊔ Am×n ⊓Cm×n( .

(15)

□

Proposition 5. Let Am×n and Bm×n be two CNFSMs, then the
De-Morgan laws are valid:

(i) Am×n⊔Bm×n( ′ � Am×n( ′⊓ Bm×n( ′

(ii) Am×n⊓Bm×n( ′ � Am×n( ′⊔ Bm×n( ′.
(16)

Proof.

(i) Am×n⊔Bm×n( ′ � max Am×n, Bm×n(  ′

� 1 − max Am×n, Bm×n(  

� min 1 − Am×n, 1 − Bm×n(  

� Am×n ′⊓ Bm×n ′,

Am×n⊓Bm×n( ′ � min Am×n, Bm×n(  ′

� 1 − min Am×n, Bm×n(  

� max 1 − Am×n, 1 − Bm×n(  

� Am×n ′⊔ Bm×n ′.

(17)

□

4. Complex Neutrosophic Fuzzy Soft Decision-
Making Method

Now, we are going to discuss real-life applications of newly
defined CNFSMm×n. We will show how our theoretical
concepts and results can be applied to the real-life phe-
nomenon. Specifically, we will show that CNFSMm×n ex-
plains how to get a better and clear signal for identification
with a given reference signal. Before moving towards the
algorithm, we will define the fuzzy soft (FS) max-min de-
cision-making method (FSMmDM) by using FS max-min
decision function and also define here the optimum FS on
universal set U.

Definition 13 (fuzzy soft (FS) max-min decision-making
function [10]). Let [cip] ∈ SMm×n2 , Ik � p: thereexisti,

cip ≠ 0, (k − 1)n<p≤ kn}, for all k ∈ I � 1, 2, 3, . . . , n{ }.
)en, soft max-min decision function, denoted Mm, is
defined as follows:

Mm: SMm×n2⟶ SMmm×1, Mm cip  � maxk∈I tk  ,

(18)

where

tk �
min
p∈Ik

cip , if Ik ≠ { },

0, if Ik � { }.

⎛⎝ ⎞⎠ (19)

)e one column soft matrix Mm[cip] is called max-min
soft decision-making matrix.

Definition 14 (see [10]). Let U � u1, u2, . . . , um  be a uni-
versal set and Mm[cip] � [di1]. )en, a subset of U can be
obtained by using [di1] as in the following way
opt[di1](U) � ui: ui ∈ U, di1 � 1 , which is called an opti-
mum set on U.

4.1. Decision-Making Algorithm

step 1. Suppose that M different signals S1(t′),
S2(t′), . . . , SM(t′) are detected and sampled by a receiver
and let U � S1(t′), S2(t′), . . . , SM(t′) . Each of these signals
is sampled N times. Let Sm(r′) denote the r/th sample
(1≤ r′ ≤N) of the mth signal (1≤m≤M). Now, we know
that each signal has its Fourier transform. So, each received
signal can be expressed as summation of its Fourier com-
ponents as

Sm r′(  �
1
N

  

N

n�1
Cm,ne

i2π(n− 1) r′− 1( )/N, then

Sm r′( 


 �
1
N

  

N

n�1
Cm,n


 · e

i2π(n− 1) r′− 1( )/N


,

(20)

where Cm,n(1≤ n≤N) represents complex Fourier coeffi-
cients of Sm. )e above expression can also be rewritten as
follows:
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|Sm(r′)| � (1/N) 
N
n�1 |Bm,n| · |ei(2π(n− 1)(r′− 1)+Nβm,n)/N|,

where Cm,n � Bm,neiβm,n , with Bm,n, βm,n real-valued and
Bm,n ≥ 0, for all n, where 1≤ n≤N.

step 2. )e above given signals are expressed as in matrix
form as A � [|Sm(r′)|]N×M, that is, express N samples of
each signal (total M signals) in columns:

A �

S
T
1 (1), S

I
1(1), S

F
1(1)  S

T
2 (1), S

I
2(1), S

F
2(1)  . . . S

T
M(1), S

I
M(1), S

F
M(1) 

S
T
1 (2), S

I
1(2), S

F
1(2)  S

T
2 (2), S

I
2(2), S

F
2(2)  . . . S

T
M(2), S

I
M(2), S

F
M(2) 

. . . . . .

S
T
1 (N), S

I
1(N) · S

F
1(N)  S

T
2 (N), S

I
2(N), S

F
2(N)  . . . S

T
M(N), S

I
M(N), S

F
M(N) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

step 3. Similarly, we will construct another matrix by the
signals S∗m(r).

B �

S
∗T
1 (1), S

∗ I
1 (1), S

∗F
1 (1)  S

∗T
2 (1), S

∗ I
2 (1), S

∗F
2 (1)  . . . S

∗T
M (1), S

∗ I
M (1), S

∗F
M (1) 

S
∗T
1 (2), S

∗ I
1 (2), S

∗F
1 (2)  S

∗T
2 (2), S

∗ I
2 (2), S

∗F
2 (2)  . . . S

∗T
M (2), S

∗ I
M (2), S

∗F
M (2) 

. . . . . .

S
∗T
1 (N), S

∗ I
1 (N), S

∗F
1 (N)  S

∗T
2 (N), S

∗ I
2 (N), S

∗F
2 (N)  . . . S

∗T
M (N), S

∗ I
M (N), S

∗F
M (N) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

step 4. Multiply matrices A and B using usual multiplication
of matrices. In this multiplication, the truth value of the
entry of the first matrix will be multiplied by the truth value
of the entry of the second matrix. )e intermediate and false
values of the entries are multiplied similarly.

step 5. )e complex neutrosophic fuzzy soft max-min de-
cision-making matrix (CNFSMmDM) is found by taking
minimum of truth, intermediate memberships, and maxi-
mum of falsehood membership values of each column, and
we will get a column matrix [di1], where 1≤ i≤M.

step 6. An optimum set optMm[AB](U) on U is found, that is,

max |S
T
j (i)| , max S

I
j ui( 



 , min S
F
j ui( 



 , for 1≤ j≤M and 1≤ i≤N . (23)

5. Applications

Step 1. Assume that u1, u2, and u3 be any three signals
received by a digital receiver from any source. Each signal is
a triplet of numbers. )e first number of triplet represents
the truth value, second represents the intermediate value,
and the third represents the false value corresponding to
each signal. Now, each of these signals is sampled three
times. Let R be the given known reference signal. Each signal
is compared with the reference signal in order to get the high
degree of resemblance with the reference signal R. Now, we
obtain the matrix A by setting the signals along column and
their three times sampling along row. Similarly, we will
obtain the matrix B.

step 2. Matrices A and B are given by

A �

(0.7, 0.4, 0.5) (0.6, 0.7, 1) (0.8, 1, 0.7)

(0.8, 0.5, 0.3) (0.2, 0, 0.9) (0.5, 0.8, 0.4)

(0.4, 0, 0.8) (0.8, 0.4, 0.6) (0, 0.3, 0.9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (24)

step 3

B �

(0.4, 0.4, 0) (0.6, 0.7, 0.4) (0.1, 0.3, 0)

(0.3, 0.7, 0.7) (0.4, 0.9, 0.4) (0.1, 0.6, 0.4)

(0.2, 0.4, 0.5) (0.4, 0.5, 0.3) (0.8, 0.5, 0.8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)

step 4. Now, we will calculate the product of above defined
matrices by usual multiplication of matrices. In this mul-
tiplication, the truth value of the entry of the first matrix will
be multiplied by the truth value of the entry of the second
matrix. Similarly, the intermediate and false values of the
entries are multiplied.

AB �

(0.62, 0.69, 0.42) (0.98, 0.96, 0.45) (0.77, 0.59, 0.6)

(0.48, 0.52, 0.83) (0.76, 0.75, 0.6) (0.5, 0.55, 0.68)

(0.4, 0.4, 0.87) (0.56, 0.51, 0.83) (0.12, 0.39, 0.96)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(26)

step 5. We calculate CNFSMmDM[AB] � [di1], for all
i � 1, 2, 3, where di1 is defined as di1 � min tk1  � min t11,

t21, t31} for all k � 1, 2, 3.
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d11 � min tk1  � min t11, t21, t31 

� min (0.62, 0.69, 0.42), (0.48, 0.52, 0.83), (0.4, 0.4, 0.87){ } � (0.4, 0.4, 0.42),

d21 � min tk2  � min t12, t22, t32 

� min (0.98, 0.96, 0.45), (0.76, 0.75, 0.6), (0.56, 0.51, 0.83){ } � (0.56, 0.51, 0.45),

d31 � min tk3  � min t13, t23, t33 

� min (0.77, 0.59, 0.6), (0.5, 0.55, 0.68), (0.12, 0.39, 0.96){ } � (0.12, 0.39, 0.6).

(27)

We obtain CNFSMmDM as follows:

CNFSMmDM[AB] � di1  �

(0.4, 0.4, 0.42)

(0.56, 0.51, 0.45)

(0.12, 0.39, 0.6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (28)

Step 6. Finally, we find out an optimum set on U as follows:
optMm[AB](U) � u2. So, the signal which is identified as a
reference signal is the signal u2.

6. Conclusion

)is paper consists of CNFSM and different types of
complex neutrosophic soft matrices with examples. We
introduced some new operations on complex neutrosophic
fuzzy soft matrices and explore related properties. Further,
we constructed a complex neutrosophic soft decision-
making algorithm with the help of these matrices and used it
in signal processing. We hope that our finding will help in
enhancing the study on complex neutrosophic soft theory
and will open a new direction for applications especially in
decision sciences. In future, we will define some new op-
erations on complex neutrosophic fuzzy soft sets and will
introduce some new algorithms for signals and other related
decision-making in social sciences. Specifically, we will use
complex fuzzy sets and complex neutrosophic fuzzy sets in
signal processing for modeling of continuous signals.
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