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In this paper, the current variant technique of the stochastic gradient descent (SGD) approach, namely, the adaptive moment
estimation (Adam) approach, is improved by adding the standard error in the updating rule. ,e aim is to fasten the convergence
rate of the Adam algorithm. ,is improvement is termed as Adam with standard error (AdamSE) algorithm. On the other hand,
the mean-variance portfolio optimization model is formulated from the historical data of the rate of return of the S&P 500 stock,
10-year Treasury bond, and money market. ,e application of SGD, Adam, adaptive moment estimation with maximum
(AdaMax), Nesterov-accelerated adaptive moment estimation (Nadam), AMSGrad, and AdamSE algorithms to solve the mean-
variance portfolio optimization problem is further investigated. During the calculation procedure, the iterative solution converges
to the optimal portfolio solution. It is noticed that the AdamSE algorithm has the smallest iteration number. ,e results show that
the rate of convergence of the Adam algorithm is significantly enhanced by using the AdamSE algorithm. In conclusion, the
efficiency of the improved Adam algorithm using the standard error has been expressed. Furthermore, the applicability of SGD,
Adam, AdaMax, Nadam, AMSGrad, and AdamSE algorithms in solving the mean-variance portfolio optimization problem
is validated.

1. Introduction

Recently, the application of the stochastic gradient descent
(SGD) approach to machine learning and deep learning is
actively explored. Moreover, due to the ability of the SGD
approach in handling the stochastic optimization problems
[1] and for solving optimization problems under the un-
certainty environment [2, 3], the SGD approach and its
variants have been developed rapidly. By virtue of this, the
mean-variance portfolio optimization problem [4], which
deals with risk and return, has attracted the attention of the
investment community. ,e optimal decision on the port-
folio selection is necessarily needed, where the scientific
approach is employed in maximizing the return with the
minimum risk [5]. However, this optimal decision is difficult
to be made in advance.

In this paper, the disadvantage of the SGD approach,
which is the slow convergence [6, 7], is noticed. To improve

this weakness, the standard error from the sampling theory
is added to the updating rule of the adaptive moment es-
timation (Adam) algorithm [8], which is the current variant
of the SGD approach. On this basis, the convergence rate of
the Adam algorithm is improved significantly. ,is im-
proved version is then known as Adam with standard error
(AdamSE) algorithm. On the other hand, the application of
SGD methods, including Adam, adaptive moment estima-
tion with maximum (AdaMax), Nesterov-accelerated
adaptive moment estimation (Nadam), AMSGrad, and
AdamSE approaches, for solving the mean-variance port-
folio optimization problem is further studied. For this
purpose, the historical data of the rate of return for the S&P
500 stock, 10-year Treasury bond, and money market are
employed. ,en, the mean-variance portfolio optimization
model is formulated. During the calculation procedure, the
iterative solution converges to the optimal portfolio solu-
tion, and the performance of these algorithms is presented.
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,e rest of the paper is organized as follows. In Section 2,
the mean-variance portfolio optimization problem is de-
scribed, where the expected return and the covariance
matrix are expressed. In Section 3, the enhancement of the
convergence rate of the Adam algorithm by using the
standard error from the sampling theory is further discussed.
,e calculation procedure for the SGD, Adam, AdaMax,
Nadam, AMSGrad, and AdamSE algorithms is summarized.
In Section 4, a mean-variance portfolio optimization model
is formulated using the historical data of S&P 500 stock, 10-
year Treasury bond, and money market. ,en, the model is
solved by using the algorithms discussed, and the results are
presented. Finally, some concluding remarks are made.

2. Problem Description

Consider a general mean-variance portfolio optimization
problem for n risky assets given by

minimizef(w) �
1
2
wTΣw,

subject to wTμ � R,

wT1 � 1,

w ≥ 0,

(1)

wherew � (w1, . . . , wn)T is the vector of portfolio weights of
the assets and Σ represents the covariance for the assets.
Here, wTΣw gives the variance of the portfolio,
μ � (μ1, . . . , μn)T is the vector of portfolio return mean,
and 1 � (1, . . . , 1)T is the vector with 1s elements. Note that
the targeted expected return R depends on the risk tolerance
of investors.

Furthermore, by using the geometric mean, the portfolio
return mean is computed from

μi � 􏽙
T

t�1
1 + ri,t􏼐 􏼑⎛⎝ ⎞⎠

1/T

− 1, (2)

where ri,t is the rate of return of asset i at time t � 1, . . . , T

and μi is the mean of the rate of return for the asset i, whereas
the covariance matrix of assets is defined as

Σ �
1
T

􏽘

T

i�1
ri,t − μi􏼐 􏼑 rj,t − μj􏼐 􏼑, (3)

for i, j � 1, . . . , n. ,e assumption of the mean-variance
portfolio optimization defined in (1) is to minimize the risk
of an investment that is represented by the variance, at the
same time, to satisfy the targeted return of the portfolio [9].
Since the risk is always related to randomness and uncer-
tainty [10], the stochastic optimization approach will be used
in solving the optimization problem defined in (1).

3. Stochastic Optimization Method

Now, let us define the Lagrange function as follows:

L(w, λ) �
1
2
wTΣw + λ1 R − wTμ􏼐 􏼑 + λ2 1 − wT1􏼐 􏼑 + λT

3w,

(4)

where λ � (λ1, λ2, λ3)
T is the vector of the Lagrange mul-

tiplier. ,en, the following first-order necessary conditions
are derived:

zL

zw
� Σw − λ1μ − λ21 + λ3 � 0, (5)

zL

zλ1
� R − wTμ � 0, (6)

zL

zλ2
� 1 − wT1 � 0, (7)

λT3w � 0, λ3 ≥ 0. (8)

3.1. Analytical Optimal Solution. From (5), the optimal
weighted value of the portfolio is calculated from

w∗ � λ1Σ
− 1μ + λ2Σ

− 11. (9)

Refer to (6), the targeted expected return is provided by

R � μTΣ− 1Σw∗. (10)

,en, substitute (9) into (10) to have the targeted ex-
pected return in terms of the Lagrange multipliers, that is,

R � λ1μ
TΣ− 1μ + λ2μ

TΣ− 11. (11)

Rewrite (7) to be

1 � 1TΣ− 1Σw∗ (12)

and substitute (9) into (12):

1 � λ11
TΣ− 1μ + λ21

TΣ− 11. (13)

From (11) and (13), after doing some algebraic ma-
nipulations, the Lagrange multipliers are computed from

λ1 �
μTΣ− 11􏼐 􏼑 − R 1TΣ− 11􏼐 􏼑

1TΣ−1μ􏼐 􏼑 μTΣ−11􏼐 􏼑 − μTΣ−1μ􏼐 􏼑 1TΣ−11􏼐 􏼑
, (14)

λ2 �
R 1TΣ− 1μ􏼐 􏼑 − μTΣ− 1μ􏼐 􏼑

μTΣ−11􏼐 􏼑 1TΣ−1μ􏼐 􏼑 − 1TΣ−11􏼐 􏼑 μTΣ−1μ􏼐 􏼑
, (15)

and λ3 � 0. ,erefore, from the discussion above, the ana-
lytical solution of the mean-variance portfolio optimization
problem defined in (1), which is given by (9), (14), and (15),
is resulted. However, this analytical solution is assumed to be
not available due to the uncertainty and randomness of the
variables.
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3.2. Stochastic Gradient Descent Algorithm. Referring to the
mean-variance portfolio optimization problem defined in (1),
let us introduce an augmented objective function fa(w) as

fa(w) �
1
2
wTΣw + λ1 R − wTμ􏼐 􏼑 + λ2 1 − wT1􏼐 􏼑 + λT3w,

(16)

with w � (w1, . . . , wn)T. Since the existence of the uncer-
tainty, the augmented objective function fa(w) defined in
(16) can be rewritten as the expected objective function,
given by

E fa(w)􏼂 􏼃 �
1
n

􏽘

n

i�1
fa,i(w), (17)

where fa,i(w), i � 1, . . . , n, is the element of the augmented
objective function fa(w) that is uniformly sampled at
random and E[·] is the expectation operator. By virtue of
this, the sampled gradient ∇fa,i(w) is denoted as an un-
biased estimator to be

E ∇fa(w)􏼂 􏼃 �
1
n

􏽘

n

i�1
∇fa,i(w). (18)

Notice that the first-order necessary condition for (16) is
equivalent to the first-order necessary condition (5). ,at is,

zfa(w)

zw
�

zL(w, λ)

zw
. (19)

For convenience, define the stochastic gradient

g(w) �
zL

zw
, (20)

which can be calculated from (5). ,e updating rule of the
SGD approach is given by

w(k+1)
� w(k)

− α · gj w(k)
􏼐 􏼑, (21)

with the step size α, which is also known as the learning rate,
k is the number of iterations, and the random index j is the
gradient referred.

Hence, the calculation procedure of the SGD algorithm
is summarized as in Algorithm 1.

3.3. Adaptive Moment Estimation Algorithm. In the Adam
approach [11], the exponential decaying averages of past
gradients mk and past squared gradients vk are considered as
follows:

mk � β1mk−1 + 1 − β1( 􏼁gk, (22)

vk � β2vk−1 + 1 − β2( 􏼁g
2
k, (23)

where gk is the gradient, β1 and β2 are the decay rates, which
are close to 1. Notice that mk and vk are estimates of the first
moment (the mean) and the second moment (the uncen-
tered variance) of the gradients, respectively.,ese biases are
counteracted by using the bias-corrected first- and second-
moment estimates, given by

􏽢mk �
mk

1 − βk
1

, (24)

􏽢vk �
vk

1 − βk
2

. (25)

,us, Adam updating rule has been presented as follows:

w(k+1)
� w(k)

− α ·
􏽢mk��

􏽢vk

􏽰
+ δ

, (26)

where δ is the smoothing term used to avoid division by
zero.

,e calculation procedure of the Adam algorithm is
summarized as in Algorithm 2.

3.4. Adaptive Moment Estimation with Maximum.
AdaMax, which is the adaptive moment estimation with
maximum [11], is a variant of the Adam optimizer that uses
the infinity (ℓ∞) norm, while the Adam optimizer itself uses
the ℓ2-norm for optimization. When generalizing the Adam
algorithm to the ℓ∞-norm, and hence in AdaMax, the
gradient update is the maximum between the past gradients
and current gradient, which is shown as

vk � β∞2 vk−1 + 1 − β∞2( 􏼁 gk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
∞

� max β2 · vk−1, gk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑.

(27)

,en, the updating rule of AdaMax is

w(k+1)
� w(k)

−
α
vk

· 􏽢mk. (28)

,e calculation procedure of the AdaMax algorithm is
summarized as in Algorithm 3.

3.5. Nesterov-Accelerated Adaptive Moment Estimation.
Nadam, which is the Nesterov-accelerated adaptive moment
estimation, combines Adam and NAG, which is the Nesterov
acceleration gradient [12]. ,e Nadam algorithm is employed
for noisy gradients or gradients with high curvatures. ,e
NAG algorithm allows performing amore accurate step in the
gradient direction by updating the parameters with the
momentum step before computing the gradient. ,e learning
process is accelerated by summing up the exponential decay
of themoving averages for the previous and current gradients.
It is resulting in a little faster training time than the Adam
algorithm. Its updating rule is shown by

w(k+1)
� w(k)

−
α

��
􏽢vk

􏽰
+ δ

β1 􏽢mk−1 +
1 − β1
1 − βk

1

.gk
⎛⎝ ⎞⎠. (29)

,e calculation procedure of the Nadam algorithm is
summarized as in Algorithm 4.

3.6. AMSGrad. In setting, where the Adam algorithm
converges to a suboptimal solution, it has been observed that
some minibatches provide large and informative gradients,
but as these minibatches only occur rarely, exponential
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averaging diminishes their influence, which leads to poor
convergence. To fix this behaviour, a new algorithm, which is
known as the AMSGrad algorithm [13], that uses the
maximum of past squared gradients rather than the expo-
nential average to update the parameters is created:

􏽢vk � max 􏽢vk−1, vk( 􏼁. (30)

,erefore, the updating rule of AMSGrad is

w(k+1)
� w(k)

−
α

��
􏽢vk

􏽰
+ δ

· mk. (31)

,e calculation procedure of the AMSGrad algorithm is
summarized as Algorithm 5.

3.7. Improved Adaptive Moment Estimation Algorithm.
Consider the standard error (SE) from the sampling theory
[14],

SE �
σ
�
n

√ , (32)

where σ is the population standard deviation and n is the
sample size for the sampling. ,us, for improving the
updating rule of the Adam algorithm, assume that the
standard error of the bias-corrected first-moment estimate
􏽢mk is defined by

􏽢sk �

��
􏽢vk

􏽰
+ δ
�
k

√ , (33)

where
��
􏽢vk

􏽰
represents the sample standard deviation of the

gradient gk and k is the number of iterations. From (26), the
updating rule of the Adam algorithm is modified to be

w(k+1)
� w(k)

− α ·
􏽢mk

􏽢sk

. (34)

Data: given the initial value w(0) � w0, the number of samples n, the step size α, and the tolerance ε. Set k � 0.
Step 1: evaluate the augmented objective function from (16).
Step 2: compute the stochastic gradient from (20).
Step 3: set the random index j.
Step 4: update the vectorw(k) from (21). If ‖w(k+1) − w(k)‖< ε, then stop the iteration. Otherwise, set k � k + 1, and repeat from Step 1.
Remark:
,e tolerance is ε � 10− 6, and the learning rate is α� 0.001.

ALGORITHM 1: SGD algorithm.

Data: given the initial value w(0) � w0, the number of samples n, the step size α, and the tolerance ε. Set k � 0.
Step 1: evaluate the augmented objective function from (16).
Step 2: compute the stochastic gradient from (20).
Step 3: set the random index j.
Step 4: compute the decaying averages of past and past squared gradients from (22) and (23).
Step 5: calculate the bias-corrected first- and second-moment estimates from (24) and (25).
Step 6: update the vectorw(k) from (26). If ‖w(k+1) − w(k)‖< ε, then stop the iteration. Otherwise, set k � k + 1, and repeat from Step 1.
Remark:
,e default values for the decay rates are β1 � 0.9 and β2 � 0.999, and the smoothing term is δ � 10− 8, while the tolerance is ε � 10− 6,
and the learning rate is α� 0.001.

ALGORITHM 2: Adam algorithm.

Data: given the initial value w(0) � w0, the number of samples n, the step size α, and the tolerance ε. Set k � 0.
Step 1: evaluate the augmented objective function from (16).
Step 2: compute the stochastic gradient from (20).
Step 3: set the random index j.
Step 4: compute the decaying averages of past and past squared gradients from (22) and (27).
Step 5: calculate the bias-corrected first-moment estimate from (24).
Step 6: update the vectorw(k) from (28). If ‖w(k+1) − w(k)‖< ε, then stop the iteration. Otherwise, set k � k + 1, and repeat from Step 1.
Remark:
,e default values for the decay rates are β1 � 0.9 and β2 � 0.999, the tolerance is ε � 10− 6, and the learning rate is α� 0.001.

ALGORITHM 3: AdaMax algorithm.

4 Journal of Mathematics



For the modification made, this improved Adam algo-
rithm is also known as Adam with standard error (AdamSE)
algorithm [11, 14].

,e calculation procedure for the AdamSE algorithm is
summarized as Algorithm 6.

4. Illustrative Example

Consider a portfolio optimization problem [15], where the
portfolio selection is based on three securities, namely, S&P
500 stock, 10-year Treasury bond, and money market (MM).
,e corresponding historical data of the annual rate of
return for these securities, which are dated from 1961 to
2003, are shown in Table 1.

By using (2) and (3), the mean of the return and the
related covariance of this portfolio selection are calculated,
and their values are, respectively, given by

μ �

0.1073

0.0737

0.0627

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ andΣ �

0.02778 0.00387 0.00021

0.00387 0.01112 −0.00020

0.00021 −0.00020 0.00115

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(35)

Consequently, the mean-variance portfolio optimization
model is formulated as follows:

minimizef w1, w2, w3( 􏼁 �
1
2

0.02778w
2
1 + 2(0.00387)w1w2 + 2(0.00021)w1w3 + 0.01112w

2
2􏼐

+ 2(−0.00020)w2w3 + 0.00115w
2
3􏼑,

subject to 0.1073w1 + 0.0737w2 + 0.0627w3 � R,

w1 + w2 + w3 � 1,

w1, w2, w3 ≥ 0.

(36)

with the initial weight w1 � 0.3, w2 � 0.3, and w3 � 0.4 and
the targeted expected return. R � 0.065.

As a result, the optimal portfolio in percentage is shown
in Table 2, where the final iterative solutions obtained from

Data: given the initial value w(0) � w0, the number of samples n, the step size α, and the tolerance ε. Set k � 0.
Step 1: evaluate the augmented objective function from (16).
Step 2: compute the stochastic gradient from (20).
Step 3: set the random index j.
Step 4: compute the decaying averages of past and past squared gradients from (22) and (23).
Step 5: calculate the bias-corrected first- and second-moment estimates from (24) and (25).
Step 6: update the vectorw(k) from (29). If ‖w(k+1) − w(k)‖< ε, then stop the iteration. Otherwise, set k � k + 1, and repeat from Step 1.
Remark:
,e default values for the decay rates are β1 � 0.9 and β2 � 0.999, and the smoothing term is δ � 10− 8, while the tolerance is ε � 10− 6,
and the learning rate is α� 0.001.

ALGORITHM 4: Nadam algorithm.

Data: given the initial value w(0) � w0, the number of samples n, the step size α, and the tolerance ε. Set k � 0.
Step 1: evaluate the augmented objective function from (16).
Step 2: compute the stochastic gradient from (20).
Step 3: set the random index j.
Step 4: compute the decaying averages of past and past squared gradients from (22) and (23).
Step 5: calculate the bias-corrected moment estimate based on (30).
Step 6: update the vectorw(k) from (31). If ‖w(k+1) − w(k)‖< ε, then stop the iteration. Otherwise, set k � k + 1, and repeat from Step 1.
Remark:
,e default values for the decay rates are β1 � 0.9 and β2 � 0.999, and the smoothing term is δ � 10− 8, while the tolerance is ε � 10− 6,
and the learning rate is α� 0.001.

ALGORITHM 5: AMSGrad algorithm.
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Data: given the initial value w(0) � w0, the number of samples n, the step size α, and the tolerance ε. Set k � 0.
Step 1: evaluate the augmented objective function from (16).
Step 2: compute the stochastic gradient from (20).
Step 3: set the random index j.
Step 4: compute the decaying averages of past and past squared gradients from (22) and (23).
Step 5: calculate the bias-corrected first- and second-moment estimates from (24) and (25).
Step 6: calculate the standard error of the bias-corrected first-moment estimate from (33).
Step 7: update the vectorw(k) from (34). If ‖w(k+1) − w(k)‖< ε, then stop the iteration. Otherwise, set k � k + 1, and repeat from Step 1.
Remark:
,e default values for the decay rates are β1 � 0.9 and β2 � 0.999, and the smoothing term is δ � 10− 8, while the tolerance is ε � 10− 6,
and the learning rate is α� 0.001 as the same as in the Adam algorithm.

ALGORITHM 6: AdamSE algorithm.

Table 1: Annual rate of return for the portfolio.
Year Stock Bond MM
1961 26.81 2.20 2.33
1962 −8.78 5.72 2.93
1963 22.69 1.79 3.38
1964 16.36 3.71 3.85
1965 12.36 0.93 4.32
1966 −10.10 5.12 5.40
1967 23.94 −2.86 4.50
1968 11.00 2.25 6.03
1969 −8.47 −5.63 8.96
1970 3.94 18.92 4.90
1971 14.30 11.24 4.14
1972 18.99 2.39 5.33
1973 −14.69 3.30 9.95
1974 −26.47 4.00 8.53
1975 37.23 5.52 5.20
1976 23.93 15.56 4.65
1977 −7.16 0.38 6.56
1978 6.57 −1.26 10.03
1979 18.61 1.26 13.78
1980 32.50 −2.48 18.90
1981 −4.92 4.04 12.37
1982 21.55 44.28 8.95
1983 22.56 1.29 9.47
1984 6.27 15.29 8.38
1985 31.73 32.27 8.27
1986 18.67 22.39 6.91
1987 5.25 −3.03 6.77
1988 16.61 6.84 8.76
1989 31.69 18.54 8.45
1990 −3.10 7.74 7.31
1991 30.46 19.36 4.43
1992 7.62 7.34 2.92
1993 10.08 13.06 2.96
1994 1.32 −7.32 5.45
1995 37.58 25.94 5.60
1996 22.96 0.13 5.29
1997 33.36 12.02 5.50
1998 28.58 14.45 4.68
1999 21.04 −7.51 5.30
2000 −9.10 17.22 6.40
2001 −11.89 5.51 1.82
2002 −22.10 15.15 1.24
2003 28.68 0.54 0.98

Table 2: Optimal portfolio percentage.
Solution Stock Bond MM
Benchmark 2.637097 10.226016 87.136887
SGD 2.630398 10.244025 87.125477
Adam 2.630400 10.244023 87.125478
AdaMax 2.630646 10.243939 87.125515
Nadam 2.630399 10.244023 87.125479
AMSGrad 2.630400 10.244022 87.125479
AdamSE 2.630361 10.244024 87.125707
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Table 3: Performance of algorithms.
Algorithm SGD Adam AdaMax Nadam AMSGrad AdamSE
Number of iterations 2265 2242 7208 2243 2273 303

Number of iterations
0 500 1000 1500 2000 2500
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Figure 2: Convergence behavior of Adam algorithm.
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Figure 1: Convergence behavior of SGD algorithm for the first 300 of 2265 iteration numbers.
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Figure 3: Convergence behavior of AdaMax algorithm for the first 300 of 7208 iteration numbers.

Journal of Mathematics 7



||g
||

×10–3

0

0.5

1

1.5

2

2.5

3

3.5

500 1000 1500 2000 25000
Number of iterations

Figure 4: Convergence behavior of Nadam algorithm.
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Figure 5: Convergence behavior of AMSGrad algorithm.
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Figure 6: Convergence behavior of AdamSE algorithm.
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Figure 7: Changes in the variance of SGD algorithm.
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Figure 8: Changes in the variance of Adam algorithm.
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Figure 9: Changes in the variance of AdaMax algorithm.
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the SGD, Adam, AdaMax, Nadam, AMSGrad, and AdamSE
algorithms are compared. ,e optimal solution from [15] is
enclosed as the benchmark solution. It could be noticed that
these algorithms are able to provide the optimal weight for
the portfolio selection, which is given by (2.63, 10.24, 87.13).
,e Lagrange multipliers are λ1 � 7.2 × 10− 3 and
λ2 � 5.3268 × 10− 4.

,e performance of the respective methods in solving
the mean-variance portfolio optimization problem is shown
in Table 3, where the numbers of iterations are presented.

Apparently, the AdamSE algorithm has the smallest
number of iterations, which is an 86 percent reduction
from the iteration numbers of the Adam algorithm, while
the Adam algorithm leads the iterative solution to the
convergence with 1 percent faster than the SGD algorithm.
At the same time, some variants of Adam algorithm,
namely, AdaMax, Nadam, and AMSGrad, show more it-
eration numbers than the Adam algorithm. Also, the
convergence behaviour for each algorithm, which is

represented by the norm of the stochastic gradient, is
shown in Figures 1–6, respectively. For better visualization,
the iterative results for the first 300 iteration numbers of the
SGD and AdaMax algorithms are presented as shown in
Figures 1 and 3, respectively. ,erefore, the modification of
the Adam algorithm by equipping the standard error
significantly enhances the rate of the convergence of the
Adam algorithm and the efficiency of the AdamSE algo-
rithm is definitely proven.

In addition to this, the objective function has a mini-
mum risk of 5.0182 × 10− 4, where the changes in the
variance presented by each algorithm during the iteration
procedure are shown in Figures 7–12, respectively. From
these figures, it is noticed that the variance is dramatically
increasing before meeting a peak point for the different
algorithms, and then the variance is gradually decreasing
and heading to the minimum variance of 5.0182 ×10−4.,is
behaviour indicates that the divergence issue has been
counted when reaching a peak point, and after satisfying
the constraints, the optimal solution is successfully de-
termined to give the optimal weight of the portfolio
selection.

5. Concluding remarks

,e enhancement of the convergence rate of the Adam
algorithm, which is addressed by using the standard error,
was discussed in this paper. ,is improved version of the
algorithm is known as the AdamSE algorithm. In addition,
the application of the algorithms of SGD, Adam, AdaMax,
Nadam, AMSGrad, and AdamSE in solving the mean-var-
iance portfolio optimization problem was also studied. ,e
result obtained showed that the AdamSE algorithm is an
efficient approach, especially for solving the mean-variance
portfolio optimization problem. In conclusion, the practi-
cality of the SGD algorithm and its current variants, which
are the Adam, AdaMax, Nadam, AMSGrad, and AdamSE
algorithms, is particularly validated for the mean-variance
portfolio optimization problem.
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Figure 10: Changes in the variance of Nadam algorithm.
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Figure 11: Changes in the variance of AMSGrad algorithm.
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Figure 12: Changes in the variance of AdamSE algorithm.
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