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Labeling of graphs has defined many variations in the literature, e.g., graceful, harmonious, and radio labeling. Secrecy of data in
data sciences and in information technology is very necessary as well as the accuracy of data transmission and different channel
assignments is maintained. It enhances the graph terminologies for the computer programs. In this paper, we will discuss
multidistance radio labeling used for channel assignment problems over wireless communication. A radio labeling is a one-to-one
mapping ℘: V(G)⟶ Z+ satisfying the condition |℘(μ) − ℘(μ′)|≥ diam(G) + 1 − d(μ, μ′): μ, μ′ ∈ V(G) for any pair of vertices
μ, μ′ in G. &e span of labeling ℘ is the largest number that ℘ assigns to a vertex of a graph. Radio number of G, denoted by rn(G),
is the minimum span taken over all radio labelings of G. In this article, we will find relations for radio number and radio mean
number of a lexicographic product for certain families of graphs.

1. Introduction

&e notion of graph labeling was first introduced in 1966 by
Rosa in [1], and since then, many different graph labelings
have been defined and studied. In the 19th century, for
studying the channel assignment problem, the term graph
labeling was used where the transmitters are used as the
vertices of the graph. Two vertices (transmitters) are said to
be adjacent if they are sufficiently close to each other. A
model of the channel assignment problem was provided by
Hale [2] in 1980. Basic notions and definitions can be found
in [3].

Let G � (V(G), E(G)) be a connected graph with vertex
set V(G) and edge set E(G). For any μ, μ′ ∈ V(G), let
d(μ, μ′) be the shortest length of the path between the
vertices μ and μ′. A distance-two labeling is a function
℘: V(G)⟶ 1, 2, 3, . . . , k{ } with span k having the maxi-
mum value k such that for any μ, μ′ ∈ V(G), μ≠ μ′, the
following relations are satisfied:

|℘(μ) − ℘ μ′( 􏼁|≥
2, if d μ, μ′( 􏼁 � 1

1, if d μ, μ′( 􏼁 � 2
.

⎧⎨

⎩ (1)

In 1992, Griggs and Yeh [4] extensively studied about
distance-two labeling.

An assignment of positive integers to the vertices of G by
℘ of G is said to be a radio k-labeling if
|℘(μ) − ℘(μ′)|≥ k + 1 − d(μ, μ′), where k is an integer, k≥ 1.
&e span of labeling ℘, denoted by sp(℘), is the max
|℘(μ) − ℘(μ′)|: μ, μ′ ∈ V(G)􏼈 􏼉. Radio number of G, denoted
by rn(G), is the minimum span taken over all radio labelings
of G. &e radio k-labeling number of G is the minimum span
among all radio k-labelings of G.

&e study of radio k-labelings was motivated by Char-
trand et al. [5] where they found the radio k-labeling number
for paths. In [5], the lower and upper bounds were given for
the radio k-labeling number for paths which have been
improved lately by Kchikech et al. [6]. &e radio k-labeling
becomes a radio labeling, when k � diam(G). A radio la-
beling is a mapping from the vertices of the graph to some
subsets of positive integers. &e task of radio labeling is to
assign to each station a positive smallest integer such that the
interference in the nearest channel should be minimized. In
2001, multilevel distance labeling problem was introduced
by Chartrand et al. [7].
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A radio labeling is a one-to-one mapping
℘: V(G)⟶ Z+ satisfying the condition

℘(μ) − ℘ μ′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ diam(G) + 1 − d μ, μ′( 􏼁: μ, μ′ ∈ V(G)􏽮 􏽯.

(2)

In [8], multilevel distance (or radio) labeling for paths
and cycles are determined by Liu and Zhu. Rahim et al. in [9]
discussed and determined the radio number of Helm graphs.
In [8], Liu et al. calculated the radio number of path graph.
&e radio numbers of hypercube graphs and square cycles
have been computed by Khennoufa [10] and Liu et al. [11],
respectively. In [12], Naseem et al. gave a lower bound for the
radio number of edge-joint graphs. Adefokun and Ajayi [13]
proved that for p≥ 4 and q even rn(Sp × Pq) � pq2/2 + q − 1
and that for q even rn(S3 × Pq) � 3q2/2 + q. Kim et al. [14]
determined the radio numbers of Pq with q≥ 4 and Kp with
p≥ 3. Lower bound has been improved by Bantva [15] for
the radio number of graphs which was earlier given by Das
et al. in [16]. For more results, we have [17–21].

In [22], Ali et al. proposed a formula for finding a lower
bound for rn(G), for graphs with small diameter. It is
sometimes very useful to determine how many pairs
(μs, μ(s+1)) with ℘(μ(s+1)) − ℘(μs) � 1 we can have. If there
can be atmost ‘y’ such pairs in a graph G, then

rn(G)≥y + 2(q − 1 − y) + 1. (3)

In this paper, firstly, we determine the radio number and
then radio mean number for the lexicographic product of
path with path, path with cycle, and cycle with cycle. Finally,
we present computer programs for finding such radio la-
belings of these families of graphs.

2. Applications

Labeling of graphs is one of themost popular parameters due
to its diverse applications in real life. Radio labeling process
proved as an efficient way of determining the time of
communication for sensor networks. For giving valuable
mathematical models, it has a wide scope of applications
such as coding theory, electrical switchboards, circuit design,
communication network addressing, channel assignment
process, social networks, astronomy, demand and supply
scenario, radar, database management, X-ray crystallogra-
phy, and data security.

3. Lexicographic Product of Graphs

&e lexicographic product was first studied by Hausdorff in
1914 [23]. &e lexicographic product of two graphs G1 and
G2 is denoted by G1[G2] which is a graph with (Figure 1)

(1) &e vertex set of the Cartesian product
V(G1) × V(G2), and

(2) Distinct vertices (μ, μ′) and (μ0, μ0′) are adjacent in
G1[G2] iff

(a) μμ0 ∈ E(G1), or
(b) μ � μ0 and μ′μ0′ ∈ E(G2).

4. Main Results

In this section, we discuss the radio labelings and compute
the radio number for the lexicographic product of path with
path Pp[Pq] and path with cycle Pp[Cq] for p � 2, 3.
Moreover, we also presented a computer program for
computing the radio number of these families of graphs.

4.1. Results of Radio Labeling. Let Pq be the path with q

vertices. &e lexicographic product of P1 with Pq is iso-
morphic to graph Pq. &e radio number of paths is inves-
tigated by Liu et al. in [8] as stated in the following result.

Theorem 4.1 (see [8]). For any q≥ 3,

rn P1 Pq􏽨 􏽩􏼐 􏼑 � rn Pq􏼐 􏼑 �
2k(k − 1) + 1, if q � 2k,

2k
2

+ 2, if q � 2k + 1,
􏼨 (4)

rn P2 Pq􏽨 􏽩􏼐 􏼑 �

2q, if q � 1, 2,

2q + 2, if q � 3,

2q + 1, if q≥ 4,

⎧⎪⎪⎨

⎪⎪⎩

rn P2 Cq􏽨 􏽩􏼐 􏼑 �

2q, if q � 3,

2q + 3, if q � 4,

2q + 1, if q≥ 5.

⎧⎪⎪⎨

⎪⎪⎩

(5)

We have a result for lower bound of rn(Pp[Pq]) for p �

2, 3 and q≥ 4.

Theorem 4.2. For all q≥ 4, rn(Pp[Pq])≥pq + 1.

Proof. In order to prove that the value stated above is a lower
bound for the radio number, we will use the idea of distance-
two labeling, i.e., expression 1.

&e order of the graph Pp[Pq] is pq for p � 2, 3 and there
exists pq − 2, such pairs with labeling difference equals to 1.
So, 3 implies that

rn Pp Pq􏽨 􏽩􏼐 􏼑≥ (pq − 2) + 2[(pq) − 1 − (pq − 2)]

� pq − 2 + 2[pq − 1 − pq + 2] + 1

� pq − 2 + 2pq − 2 − 2pq + 4 + 1

� pq + 1,

rn Pp Pq􏽨 􏽩􏼐 􏼑≥pq + 1.

(6)

□

Theorem 4.3. For all q≥ 4, rn(P2[Pq])≤ 2q + 1.

Proof. &e vertex set is partitioned in two disjoint sets Vl

and Vr. Each partition is given asVl � V1
l ∪V2

l and

Vr � V1
r ∪V2

r . For t � l, r, V1
t � v1t , v2t , v3t , . . . , v

q/2⌈ ⌉
t􏼚 􏼛 and

V2
t � v

q/2⌈ ⌉+1
t , v

q/2⌈ ⌉+2
t , v

q/2⌈ ⌉+3
t , . . . , v

q
t􏼚 􏼛. Define a mapping

℘: V(P2[Pq])⟶ N as follows:
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℘ v

q

2
􏼘 􏼙− s+1

l

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ � q + 2s for s � 1, 2, 3, . . . ,

q
2

􏼘 􏼙

℘ v
q− s+1
l􏼐 􏼑 � q + 1 + 2s for s � 1, 2, 3, . . . , q −

q
2

􏼘 􏼙 .

℘ v

q

2
􏼘 􏼙− s+1

c
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ � 2s − 1 for s � 1, 2, 3, . . . ,
q
2

􏼘 􏼙

℘ v
q− s+1
c􏼐 􏼑 � 2s for s � 1, 2, 3, . . . , q −

q
2

􏼘 􏼙 .

℘ v

q

2
􏼘 􏼙− s+1

r
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ � 2(q + s) for s � 1, 2, 3, . . . ,
q
2

􏼘 􏼙

℘ v
q− s+1
r􏼐 􏼑 � 2(q + s) + 1 for s � 1, 2, 3, . . . , q −

q
2

􏼘 􏼙 .

(7)

Claim: the mapping ℘ is a valid radio labeling.Wemust
show that condition 2 for radio labeling holds for all
pair of vertices μ, η ∈ V(P2[Pq]).
Case 1: suppose μ and η are any two vertices in Vl, then
two subcases can be obtained.
Case 1.1: let μ and η be any two distinct vertices in V1

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2􏼆 􏼇; therefore,
℘(μ) � q + 2k and. ℘(η) � q + 2l. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 1.2: let μ and η be any two distinct vertices in V2

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2􏼆 􏼇; therefore,
℘(μ) � q + 1 + 2k and ℘(η) � q + 1 + 2l. Also, we note
that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 �

3 d(μ, η) + |2(k − l)|≥ 3.
Case 2: suppose μ and η are any two vertices in Vc, then
two subcases can be obtained.
Case 2.1: let μ and η be any two distinct vertices in V1

c ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2􏼆 􏼇; therefore,
℘(μ) � 2k − 1 and ℘(η) � 2l − 1. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.

Case 2.2: let μ and η be any two distinct vertices in V2
c ,

then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2􏼆 􏼇; therefore,
℘(μ) � 2k and ℘(η) � 2l. Also, we note that d(μ, η)≥ 1;
hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3 d(μ, η) + |

2(k − l)|≥ 3.
Case 3: suppose μ and η are any two vertices in Vr, then
two subcases can be obtained.
Case 3.1: let μ and η be any two distinct vertices in V1

r ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2􏼆 􏼇. therefore,
℘(μ) � 2(q + k) and ℘(η) � 2(q + l). Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 3.2: let μ and η be any two distinct vertices in V2

r ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2􏼆 􏼇; therefore,
℘(μ) � 2(q + k) + 1 and ℘(η) � 2(q + l) + 1. Also, we
note that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ)

− ℘(η)|≥ 1 + 2 � 3 d(μ, η) + |2(k − l)|≥ 3. □

Theorem 4.4

rn P3 Pq􏽨 􏽩􏼐 􏼑 �

4, if q � 1,

3q + 2, if q � 2, 3,

3q + 1, if q≥ 4,

⎧⎪⎪⎨

⎪⎪⎩
(8)

rn P3 Cq􏽨 􏽩􏼐 􏼑 �

3(q + 1), if q � 3,

3q + 2, if q � 4,

3q + 1, if q≥ 5,

⎧⎪⎪⎨

⎪⎪⎩
(9)

Theorem 4.5. For all q≥ 4, rn(P3[Pq])≤ 3q + 1.

Proof. &e vertex set is partitioned in three disjoint sets
Vl, Vc, and Vr. Each partition is further partitioned in two
disjoint sets, i.e., Vl � V1

l ∪V2
l , Vc � V1

c ∪V2
c and

Vr � V1
r ∪V2

r . For t � l, c, r, V1
t � v1t , v2t , v3t , . . . , v

q/2⌈ ⌉
t􏼚 􏼛 and

V2
t � v

q/2⌈ ⌉+1
t , v

q/2⌈ ⌉+2
t , v

q/2⌈ ⌉+3
t , . . . , v

q
t􏼚 􏼛. Define a mapping

℘: V(P3[Pq])⟶ N as follows:

℘ v
q/2⌈ ⌉− s+1

l􏼒 􏼓 � q + 2s for s � 1, 2, 3, . . . , q/2􏼆 􏼇

℘ v
q− s+1
l􏼐 􏼑 � q + 1 + 2s for s � 1, 2, 3, . . . , q −

q

2
􏼘 􏼙 .

℘ v

q

2
􏼘 􏼙− s+1

c
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠ � 2s − 1 for s � 1, 2, 3, . . . ,
q

2
􏼘 􏼙

℘ v
q− s+1
c􏼐 􏼑 � 2s for s � 1, 2, 3, . . . , q −

q

2
􏼘 􏼙 .

℘ v
q/2⌈ ⌉− s+1

r􏼒 􏼓 � 2(q + s) for s � 1, 2, 3, . . . ,
q

2
􏼘 􏼙

℘ v
q− s+1
r􏼐 􏼑 � 2(q + s) + 1 for s � 1, 2, 3, . . . , q −

q

2
􏼘 􏼙 .

(10)

Figure 1: P4[P3].
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Claim: the mapping ℘ is a valid radio labeling.Wemust
show that condition 2 for radio labeling holds for all
pair of vertices μ, η ∈ V(P3[Pq]).
Case 1: suppose μ and η are any two vertices in Vl, then
two subcases can be obtained.
Case 1.1: let μ and η be any two distinct vertices in V1

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2􏼆 􏼇; therefore,
℘(μ) � q + 2k and ℘(η) � q + 2l. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 1.2: let μ and η be any two distinct vertices in V2

l ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2􏼆 􏼇; therefore,
℘(μ) � q + 1 + 2k and ℘(η) � q + 1 + 2l. Also, we note
that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥
1 + 2 � 3 d(μ, η) + |2(k − l)|≥ 3.
Case 2: suppose μ and η are any two vertices in Vc, then
two subcases can be obtained.
Case 2.1: let μ and η be any two distinct vertices in V1

c ,
then μ � vk and η � vl, 1≤ k≠ l≤ q/2􏼆 􏼇; therefore,
℘(μ) � 2k − 1 and ℘(η) � 2l − 1. Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 2.2: let μ and η be any two distinct vertices in V2

c ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2􏼆 􏼇; therefore,
℘(μ) � 2k and ℘(η) � 2l. Also, we note that d(μ, η)≥ 1;
hence, d(μ, η) +|℘(μ) − ℘(η)|≥ 1 + 2 � 3d(μ, η) + |2
(k − l)|≥ 3.
Case 3: suppose μ and η are any two vertices in Vr, then
two subcases can be obtained.
Case 3.1: let μ and η be any two distinct vertices in V1

r ,
then μ � vk and η �� vl, 1≤ k≠ l≤ q/2􏼆 􏼇; therefore,
℘(μ) � 2(q + k) and ℘(η) � 2(q + l). Also, we note that
d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ) − ℘(η)|≥ 1 + 2 � 3
d(μ, η) + |2(k − l)|≥ 3.
Case 3.2: let μ and η be any two distinct vertices in V2

r ,
then μ � vk and η � vl, 1≤ k≠ l≤ q − q/2􏼆 􏼇; therefore,
℘(μ) � 2(q + k) + 1 and ℘(η) � 2(q + l) + 1. Also, we
note that d(μ, η)≥ 1; hence, d(μ, η) + |℘(μ)

− ℘(η)|≥ 1 + 2 � 3 d(μ, η) + |2(k − l)|≥ 3. □

4.2. Computing Radio Number of Lexicographic Product of
Graphs by Using Computer Language. &is computer code
has been composed by using Python language.

import numpy as np
import math as mt
def main():
m� int(input(‘m�Enter the number of vertices (either
2 or 3)� ‘))
n� int(input(‘n�Enter the number of vertices (n> �

5) � ‘))
name3� input(‘Type rnPP for lexico of two path
graphs, Type rnPC for radio number of path and cycles,
Type exist to quit the program: ‘)

while name3 !� ‘exit’:
if name3� � ‘rnPP’:
print(‘Executing rnPP’)
rnpp(n, m)
elif name3� � ‘rnPC’:
print(‘Executing rnPC’)
rnpc(n, m)
else:
print(‘Input error: Enter the correct input value.‘)
name3� input(‘Enter rnPP for lexico of two path
graphs, rnPC for radio number of path and cycles, or
exist to quit the program: ‘)
def rnpc(n, m):
if m� � 2:
q1�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
r� np.zeros(n, dtype� int)
for i in range(0, q1, 1):
l[q1-1-i]� 2∗i
r[q1-1-i] � (n+1) + 2∗i
for j in range(1, n-q1+1, 1):
l[n-j]� 2∗j-1
r[n-j]� n+2∗j
for lc, rc in zip(l, r):
print(lc, rc)
elif m� � 3:
q2�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
r� np.zeros(n, dtype� int)
c� np.zeros(n, dtype� int)
for i in range(0, q2, 1):
l[q2-1-i] � (n+1) + 2∗i
r[q2-1-i]� 2∗(n + i) + 1
c[q2-1-i]� 2∗i
for j in range(1, n-q2+1, 1):
l[n-j]� n + 2∗j
r[n-j]� 2 ∗ (n + j)
c[n-j]� 2 ∗ j-1
for lc, cc, rc in zip(l, c, r):
print(lc, cc, rc)
else:
print(‘Try again! Enter either 2 or 3 for the value of m.‘)
exit()
def rnpp(n, m):
if m� � 2:
q1�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
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r� np.zeros(n, dtype� int)
for i in range(0, q1, 1):
l[q1-1-i]� 2∗i + 1
r[q1-1-i] � (n+2) + 2∗i
for j in range(1, n-q1+1, 1):
l[n-j]� 2∗j
r[n-j] � (n+1) + 2∗j
for lc, rc in zip(l, r):
print(lc, rc)
elif m� � 3:
q2�mt.ceil(n/2)
l� np.zeros(n, dtype� int)
r� np.zeros(n, dtype� int)
c� np.zeros(n, dtype� int)
for i in range(0, q2, 1):
l[q2-1-i] � (n+2) + 2∗i
r[q2-1-i]� 2∗(n + i+1)
c[q2-1-i]� 2∗i+1
for j in range(1, n-q2+1, 1):
l[n-j]� n + 2∗j+1
r[n-j]� 2 ∗ (n + j) + 1
c[n-j]� 2 ∗ j
for lc, cc, rc in zip(l, c, r):
print(lc, cc, rc)
else:
print(‘Try again! Enter either 2 or 3 for the value of m.‘)
exit()
main()

5. Results of Radio Mean Labeling

Ponraj et al. [24] discussed the radio mean labeling. In this
section, we discuss the radio mean labeling and compute
the radio mean number for the lexicographic product of
path with path Pp[Pq] and path with cycle Pp[Cq] for
p � 2, 3. Moreover, we also presented a computer program
for computing the radio number of these families of
graphs.

Definition 5.1. Radio mean labeling of a connected graph G

is a one-to-one map ℘ from the vertex set V(G) to the set of
natural numbers N such that for two distinct vertices μ and
μ′ of G,

d μ, μ′( 􏼁 +
℘(μ) + ℘ μ′( 􏼁

2
􏼦 􏼧≥ 1 + diam(G). (11)

&e radio mean number of ℘, denoted by rmn(℘), is the
maximum number assigned to any vertex of G. &e radio
mean number of G, rmn(G) is the minimum value of
rmn(℘) taken over all radio mean labeling ℘ of G.

Theorem 5.2. For p � 2, 3 and q≥ 1, rmn(Pp[Pq]) � pq.

Proof. Let V(Pp[Pq]) � ∪ p
t�1V

s
t for p � 2, 3 and 1≤ s≤ q

and E(Pp[Pq]) � vi
tv

s+1
t : 1≤ t≤p; 1≤ s≤ q􏼈 􏼉 ∪ vs

tv
s′
t+1: 1≤ s,􏽮

s′ ≤ q}. It is clear that diam(Pp[Pq]) � 2. We define a vertex
labeling ℘: V(Pp[Pq])⟶ N as follows: ℘(vs

t) � ps − p + t

for 1≤ t≤p and 1≤ s≤ q. Now, we check the radio mean
condition.

d μ, μ′( 􏼁 +
℘(μ) + ℘ μ′( 􏼁

2
􏼦 􏼧≥ 1 + diam Pp Pq􏽨 􏽩􏼐 􏼑, (12)

for all μ, μ′ ∈ V(Pp[Pq]).

Case 1: the vertex labeling for the pair (vs
t, vs+1

t ) for a
fixed t, 1≤ t≤p and 1≤ s≤ q − 1, is given as ℘(vs

t) �

ps − p + t and ℘(vs+1
t ) � p(s + 1) − p + t � ps + t.

Here, d(vs
t, vs+1

t ) � 1. So, d(vs
t, vs+1

t )

+ ps − p + t + ps + t/2􏼆 􏼇

� 1 + 2ps − p + 2j/2􏼆 􏼇≥ 1 + 2≥ 3.
Case 2: check the pair (vs

t, vs′
t+1) for a fixed t, 1≤ t≤p − 1

and 1≤ s, s′ ≤ q. ℘(vs
t) � ps − p + t, ℘(vs′

t+1) � ps′ − p +

t + 1, and d(vs
t, vs′

t+1) � 1. So, d(vs
t, vs′

t+1)

+ (ps − p + t) + (ps′ − p + t + 1)/2􏼆 􏼇 � 1 + p(s+􏼆 s′ −
2) + 2t +1/2⌉ ≥ 1 + 2≥ 3.
Case 3: check the pair (vs

t, vs′
t ) for a fixed t, 1≤ t≤p and

s′ � s + 2, for 1≤ s≤ q − 2. ℘(vs
t) � ps − p + t,

℘(vs′
t ) � ps′ − p + t, and d(vs

t, vs′
t ) � 2. So, d(vs

t, vs′
t ) +

(ps − p + t) + (ps′ − p + t)/2􏼆 􏼇

� 1 + p(s + s′) − 2(p − t)/2􏼆 􏼇≥ 1 + 2≥ 3. □

5.1. ComputingRadioMeanNumber of Lexicographic Product
of Graphs byUsing Computer Language. &is computer code
has been composed by using Python language.

import numpy as np
print(‘Program to calculate the Radio Mean Labelling’)
m� int(input(‘m�Enter the number of vertices (either
2 or 3)� ‘))
n� int(input(‘n�Enter the number of vertices
(n> � 1)�′))
if m� � 2:
lt� np.zeros(n, dtype� int)
rt� np.zeros(n, dtype� int)
for j in range(1, m+1, 1):
if j� � 1:
for i in range(1, n+1, 1):
lt[i-1]�m∗i - m+ j.
else:
for i in range(1, n+1, 1):
rt[i-1]�m∗i - m+ j.
for lc, rc in zip(lt, rt):
print(lc, rc)
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elif m� � 3:
lt� np.zeros(n, dtype� int)
rt� np.zeros(n, dtype� int)
ct� np.zeros(n, dtype� int)
for j in range(1, m+1, 1):
if j� � 1:
for i in range(1, n+1, 1):
lt[i-1]�m∗i - m+ j
elif j� � 2:
for i in range(1, n+1, 1):
ct[i-1]�m∗i - m+ j
else:
for i in range(1, n+1, 1):
rt[i-1]�m∗i - m+ j
for lc, cc, rc in zip(lt, ct, rt):
print(lc, cc, rc)
else:
print(‘Error! &e input value of m is either 2 or 3. Try
again.‘)

6. Conclusion

In this paper, we have discussed the radio number and radio
mean number of lexicographic product of graphs, namely,
P2[Pq], P3[Pq], P2[Cq], and P3[Cq] for q≥ 5. We also
computed the exact value of radio number and radio mean
number of these families. Moreover, in this paper, we have
presented their computer codes and also two open problems
for future work have been given.

7. Open Problems

(1) Determining the radio number of Pp[Pq] for p≥ 4.
(2) Determining the radio mean number of Pp[Pq] for

p≥ 4.
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