Several Characterizations on Degree-Based Topological Indices for Star of David Network

Nadeem Salamat, ${ }^{1}$ Muhammad Kamran, ${ }^{1}$ Shahbaz Ali $\oplus^{(1)}{ }^{1}$ Md. Ashraful Alam ${ }^{(1)}{ }^{2}$ and Riaz Hussain Khan ${ }^{1}$
${ }^{1}$ Department of Mathematics, Khwaja Fareed University of Engineering \& Information Technology Rahim Yar Khan, Punjab 64200, Pakistan
${ }^{2}$ Department of Mathematics, Jahangirnagar University, Savar, Dhaka, Bangladesh
Correspondence should be addressed to Md. Ashraful Alam; ashraf_math20@juniv.edu

Received 28 August 2021; Revised 26 September 2021; Accepted 26 November 2021; Published 11 December 2021
Academic Editor: Fairouz Tchier
Copyright © 2021 Nadeem Salamat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In order to make quantitative structure-movement/property/danger relations, topological indices (TIs) are the numbers that are related to subatomic graphs. Some fundamental physicochemical properties of chemical compounds, such as breaking point, protection, and strain vitality, correspond to these TIs. In the compound graph hypothesis, the concept of TIs was developed in view of the degree of vertices. In investigating minimizing exercises of Star of David, these indices are useful. In this study, we explore the different types of Zagreb indices, Randić indices, atom-bond connectivity indices, redefined Zagreb indices, and geometric-arithmetic index for the Star of David. The edge partitions of this network are tabled based on the sum of degrees-ofend vertices and the sum of degree-based edges. To produce closed formulas for some degree-based network TIs, these edge partitions are employed.

1. Introduction

Graph theory is a branch of mathematics in which we use graph parameter methods to precisely expose the compound phenomenon. For example, the graph theory characterizes an area between different disciplines of science when applied to the investigation of molecular structures, which is known as molecular topology or the theory of chemical graphs. A significant part of the analysis was supported by chemical graph theory [1]. Chemist can be performed for the statistical demonstration of chemical marvel by means of graph theory. In quantitative structure activity, researchers tried to figure out what structural characteristics will be developed. Physicochemical features and topological measures are discussed by Wiener. Different types of graph descriptors, such as distance-based, degree-based, spectral, and poly-nomial-related descriptors, have been well defined and explored extensively in the literature. Vertex degree-based descriptors are the most important of these classes, and they
play a crucial role in chemical graph theory. These descriptors are combined to infer physicochemical, biological, and pharmacological qualities such stability, chirality, melting point, boiling point, similarity, connectedness, entropy, enthalpy of formation, surface tension, density, critical temperature, and others. Mathematicians and chemists use a variety of topological indices in these types of studies. The quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) research use the index, the Randic index, the Zagreb indices, and the ABC index to measure by Yang et al. [2] in the bioactivity of chemical compounds [3]. Topological indices provide numerical representations, molecular size, shape, branching, and other properties that are used to compare chemical compounds' topological similarities and in QSPR/QSAR research $[4,5]$. There are several properties related to new families of graphs that are discussed in [6-8] such as metric dimensions and indices. The spectral properties, metric dimensions, and indices of different families of
graphs are discussed in [9-14]. These include distance-based and degree-based TIs, as well as related polynomials [15] and classified graph indices, among other forms of topological indices. In 2017, Maji and Ghorai introduced new distance-degree-based topological indices, see [16]. In chemical graph theory and notably in chemistry, degree-based TIs are extremely important and serve a critical function. Furthermore, algebraic graph theory results are discussed in [17-21] by using the notion of totient number which was introduced by Shahbaz and Khalid in 2017.

In this paper, we study some degree-based analysis of TIs of the Star of David network. In Hebrew, the Star of David, or "Magen David" ("Shield of David"), consists of two overlaid equilateral triangles that form a six-pointed star. It cannot be traced back to the Bible or the Talmud, but it is said that it comes from the (presumed) similarity to the shape of the shield of King David. It was neither used as a sign of Jewish identity, although it originated in Antiquity, nor was even restricted to Judaism. The seven-branched candelabrum, still one of Israel's emblems today, was the most famous symbol of Judaism at that time.

We arranged our paper as follows. In Section 2, we give some preliminary concepts related to topological indices of different kinds. In Section 3, we construct the Star of David network and proposed their algorithm. In Section 4, we compute several results on topological indices for the proposed network. In Section 5, we give a comparison of topological indices for proposed networks. In Section 6, we give the concluding remarks about our proposed work. In future work, one can compute more indices on proposed Star of David networks.

2. Preliminaries

According to this study, a simple connected graph G is made up of vertices $V(G)$ and edges $E(G)$, with $\aleph(\mu)$ being the degree of each vertex and the number of edges intersecting μ."

Definition 1. Topological index (TI) is derived by Wiener, which was created in 1945 after investigating alkane's boiling point [22]. According to Randić [23] characterization, the earliest degree-based index is the Randić index, which is defined as

$$
\begin{equation*}
R(G)=\sum_{\mu \nu \in E(G)} \frac{1}{(\sqrt{\aleph(\mu) \aleph(\nu)})} \tag{1}
\end{equation*}
$$

As a traditional graph-based molecular structure descriptor, the Randić index has been widely used in chemical and pharmaceutical research. Even the mathematical sense of this index is clear for detail of its QSPR/QSAR application, see [24, 25]. Bollobác and Paul [26] presented the general Randić index, which is defined as

$$
\begin{equation*}
R_{\alpha}(G)=\sum_{\mu \nu \in E(G)}(\aleph(\mu) \aleph(\nu))^{\alpha} \text { for } \alpha=1, \frac{1}{2},-\frac{1}{2},-1 \tag{2}
\end{equation*}
$$

Definition 2. Gutman and Trinajstić [27] defined the first and second Zagreb indices as follows; also, see [28-30]:

$$
\begin{align*}
& M_{1}(G)=\sum_{\mu \nu \in E(G)}(\aleph(\mu)+\aleph(\nu)), \\
& M_{2}(G)=\sum_{\mu \nu \in E(G)}(\aleph(\mu) \aleph(\mu)) . \tag{3}
\end{align*}
$$

Definition 3. Ranjini et al. [31] proposed the redefined version of Zagreb indices

The redefined first Zagreb index of graph G is defined as

$$
\begin{equation*}
R_{e} Z G_{1}(\mathrm{G})=\sum_{\mu \nu \in E(G)} \frac{(\aleph(\mu)+\aleph(\nu))}{(\aleph(\mu) \cdot \aleph(\nu))} \tag{4}
\end{equation*}
$$

The redefined second Zagreb index of graph G is defined as

$$
\begin{equation*}
R_{e} Z G_{2}(G)=\sum_{\mu \nu \in E(G)} \frac{(\aleph(\mu) \cdot \aleph(\nu))}{(\aleph(\mu)+\aleph(\nu))} \tag{5}
\end{equation*}
$$

The redefined third Zagreb index of graph G is defined as

$$
\begin{equation*}
R_{e} Z G_{3}(G)=\sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu)) \tag{6}
\end{equation*}
$$

Definition 4. Estrada et al., in [32], proposed degree-based TI $A B C$ and defined it as

$$
\begin{equation*}
A B C(G)=\sum_{\mu \nu \in E(G)} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}} \tag{7}
\end{equation*}
$$

The atom-bond connectivity index $(A B C)$ is a molecular structural descriptor that has lately found surprising applicability in explaining linear and branched alkane stability, as well as cycloalkane strain energy. It is used for modeling the thermodynamic characteristics in organic chemical molecules.

Definition 5. The GA index is proposed by Vukicevic and Furtula in [33] and defined as

$$
\begin{equation*}
G A(G)=\sum_{\mu \nu \in E(G)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)} \tag{8}
\end{equation*}
$$

The prediction value of the GA index is slightly greater than the Randic connection index for physicochemical characteristics such as entropy and acentric factor, according to [33].

Definition 6. Furtula and Gutman, in [34], proposed the forgotten TI and stated it as

$$
\begin{equation*}
F(G)=\sum_{\mu \nu \in E(G)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2} \tag{9}
\end{equation*}
$$

For further study, see [35]. The Star of David networks are shown in Figures 1 and 2.

3．Higher Dimension $S D_{(n)}$ Drawing Algorithm for Star of David Network

Step 1 ：the Star of David，consists of two equilateral overlapping triangles forming a six－pointed star． Draw David＇s Star graph G，which is one and two dimensional，as seen in figure ？？．Algorithm for Star of David is as given below：
（i）\neq inclu de〈iostream \rangle
using namespace std；，\neq define $n \backslash^{\prime} n^{\prime}$ int i, j ，int main（） \｛
for（ $i=0 ; i \leq 1 ; i++$ ）
\｛
for $(j=1 ; j \leq 5-i ; j++)$
cout 〈＜＂＂；
〈＜＂＊${ }^{\prime \prime}$ ；
if（ $i==1$ ）
cout 〈〈＂＊＂；
cout $\langle\langle n$ ；
\}
for $(i=1 ; i \leq ; i++)$
\｛
for $(j=1 ; j \leq 11 ; j++)$
\｛
if $(i==2 \| i==3)$
if $(j==2\|j==3\| j==9 \| j==10)$
\｛
cout 〈〈＂＊＂；
\}
else
cout 〈〈＂＂；

$$
\begin{align*}
A B C(G)= & \sum_{\mu \nu \in E(G)} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}} \\
= & \sum_{\mu \nu \in E\{2,2\}} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}}+\sum_{\mu \nu \in E\{2,4\}} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}}+\sum_{\mu \nu \in E\{2,6\}} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}} \\
& +\sum_{\mu \nu \in E\{4,4\}} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}}+\sum_{\mu \nu \in E\{4,6\}} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}}+\sum_{\mu \nu \in E\{6,6\}} \sqrt{\frac{\aleph(\mu)+\aleph(\nu)-2}{\aleph(\mu) \cdot \aleph(\nu)}} \tag{11}\\
= & 4 \sqrt{\frac{2+2-2}{2 \cdot 2}}+8 \sqrt{\frac{2+4-2}{2 \cdot 4}}+(12 n-16) \sqrt{\frac{2+6-2}{2 \cdot 6}} \\
& +(6 n-6) \sqrt{\frac{4+4-2}{4 \cdot 4}}+(12 n-20) \sqrt{\frac{4+6-2}{4 \cdot 6}+6(n-2)^{2}} \sqrt{\frac{6+6-2}{6 \cdot 6}} .
\end{align*}
$$

Figure 1: Star of David.

Figure 2: Star of David network.

Table 1: Star of David network edge partition.

| Types of edges | $E_{\{2,2\}}$ | $E_{\{2,4\}}$ | $E_{\{2,6\}}$ | $E_{\{4,4\}}$ | $E_{\{4,6\}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of edges | $(2,2)$ | $(2,4)$ | $(2,6)$ | $(4,4)$ | $(4,6)$ |
| Frequency | 4 | 8 | $12 n-16$ | $6 n-6$ | $12 n-20$ |

We get the outcomes after estimates:

$$
\begin{equation*}
A B C(G)=3.2 n^{2}-10.6 n-10.2 \tag{12}
\end{equation*}
$$

Theorem 2. The geometric-arithmetic index of Star of David network is

$$
\begin{equation*}
G A(G)=6 n^{2}+4.2 n-6.46 \tag{13}
\end{equation*}
$$

Proof. Let G be the graph of Star of David network. By using Table 1, we apply the formula of geometric-arithmetic index for G :

$$
\begin{aligned}
G A(G) & =\sum_{\mu \nu \in E(G)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)} \\
& =\sum_{\mu \nu \in E(2,2)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(2,4)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(2,6)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)}
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{\mu \nu \in E(4,4)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(4,6)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(6,6)} 2 \frac{\sqrt{\aleph(\mu) \cdot \aleph(\nu)}}{\aleph(\mu)+\aleph(\nu)} \\
= & 4 \cdot 2 \frac{\sqrt{2 \cdot 2}}{2+2}+8 \cdot 2 \frac{\sqrt{2 \cdot 4}}{2+4}+(12 n-16) \cdot 2 \frac{\sqrt{2 \cdot 6}}{2+6} \tag{14}\\
& +(6 n-6) \cdot 2 \frac{\sqrt{4 \cdot 4}}{4+4}+(12 n-20) \cdot 2 \frac{\sqrt{4 \cdot 6}}{4+6}+6(n-2)^{2} \cdot 2 \frac{\sqrt{6 \cdot 6}}{6+6} \\
= & 6 n^{2}+4.2 n-6.46 .
\end{align*}
$$

Theorem 3. The first Zagreb index of Star of David network is

$$
\begin{equation*}
M_{1}(G)=72 n^{2}-24 n-24 \tag{15}
\end{equation*}
$$

Proof. Let G be the graph of Star of David network. By using Table 1, we apply the formula of the first Zagreb index for G :

$$
\begin{align*}
M_{1}(G)= & \sum_{\mu \nu \in E(G)}(\aleph(\mu)+\aleph(\nu)) \\
= & \sum_{\mu \nu \in E(2,2)}(\aleph(\mu)+\aleph(\nu))+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu)+\aleph(\nu))+\sum_{\mu \nu \in E(2,6)}(\aleph(\mu)+\aleph(\nu)) \\
& +\sum_{\mu \nu \in E(4,4)}(\aleph(\mu)+\aleph(\nu))+\sum_{\mu \nu \in E(4,6)}(\aleph(\mu)+\aleph(\nu))+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu)+\aleph(\nu)) \tag{16}\\
= & 4(2+2)+8(2+4)+(12 n-16)(2+6)+(6 n-6)(4+4) \\
& +(12 n-20)(4+6)+6(n-2)^{2}(6+6) .
\end{align*}
$$

We get the outcomes after estimates:

$$
\begin{equation*}
M_{1}(G)=72 n^{2}-24 n-24 \tag{17}
\end{equation*}
$$

Theorem 4. The second Zagreb index of Star of David

$$
\begin{equation*}
M_{2}(G)=216 n^{2}-336 n+176 \tag{18}
\end{equation*}
$$ network is

$$
\begin{align*}
M_{2}(G)= & \sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu)) \\
= & \sum_{\mu \nu \in E(2,2)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(2,6)}(\aleph(\mu) \cdot \aleph(\nu)) \\
& +\sum_{\mu \nu \in E(4,4)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(4,6)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu) \cdot \aleph(\nu)) \tag{19}\\
= & 4(2 \cdot 2)+8(2 \cdot 4)+(12 n-16)(2 \cdot 6)+(6 n-6)(4 \cdot 4)+(12 n-20)(4 \cdot 6) \\
& +6(n-2)^{2}(6 \cdot 6) \\
= & 216 n^{2}-336 n+176 .
\end{align*}
$$

Theorem 5. The redefined first Zagreb index of Star of David network is

$$
\begin{equation*}
R_{e} Z G_{1}(G)=2 n^{2}+8 n-3.97 \tag{20}
\end{equation*}
$$

Proof. Let G be the graph of Star of David network. By using Table 1, we apply the formula of the redefined first Zagreb index for G :

$$
\begin{align*}
R_{e} Z G_{1}(G)= & \sum_{\mu \nu \in E(G)} \frac{\aleph(\mu)+\aleph(\nu)}{\aleph(\mu) \cdot \aleph(\nu)} \\
= & \sum_{\mu \nu \in E(2,2)} \frac{\aleph(\mu)+\aleph(\nu)}{\aleph(\mu) \cdot \aleph(\nu)}+\sum_{\mu \nu \in E(2,4)} \frac{\aleph(\mu)+\aleph(\nu)}{\aleph(\mu) \cdot \aleph(\nu)}+\sum_{\mu \nu \in E(2,6)} \frac{\aleph(\mu)+\aleph(\nu)}{\aleph(\mu) \cdot \aleph(\nu)} \\
& +\sum_{\mu \nu \in E(4,4)} \frac{\aleph(\mu)+\aleph(\nu)}{\aleph(\mu) \cdot \aleph(\nu)}+\sum_{\mu \nu \in E(4,6)} \frac{\aleph(\mu)+\aleph(\nu)}{\aleph(\mu) \cdot \aleph(\nu)}+\sum_{\mu \nu \in E(6,6)} \frac{\aleph(\mu)+\aleph(\nu)}{\aleph(\mu) \cdot \aleph(\nu)} \tag{21}\\
= & 4 \cdot \frac{2+2}{2 \cdot 2}+8 \cdot \frac{2+4}{2 \cdot 4}+(12 n-16) \cdot \frac{2+6}{2 \cdot 6}+(6 n-6) \frac{4+4}{4 \cdot 4} \\
& +(12 n-20) \frac{4+6}{4 \cdot 6}+6(n-2)^{2} \frac{6+6}{6 \cdot 6} .
\end{align*}
$$

We get the outcomes after estimates:

$$
\begin{equation*}
R_{e} Z G_{2}(G)=18 n^{2}-13.2 n+2.67 \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
R_{e} Z G_{1}(G)=2 n^{2}+8 n-3.97 \tag{22}
\end{equation*}
$$

Proof. Let G be the graph of Star of David network. By using Table 1, we apply the formula of the redefined second Zagreb index for G :
Theorem 6. The redefined second Zagreb index of Star of David network is

$$
\begin{align*}
R_{e} Z G_{2}(G)= & \sum_{\mu \nu \in E(G)} \frac{\aleph(\mu) \cdot \aleph(\nu)}{\aleph(\mu)+\aleph(\nu)} \\
= & \sum_{\mu \nu \in E(2,2)} \frac{\aleph(\mu) \cdot \aleph(\nu)}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(2,4)} \frac{\aleph(\mu) \cdot \aleph(\nu)}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(2,6)} \frac{\aleph(\mu) \cdot \aleph(\nu)}{\aleph(\mu)+\aleph(\nu)} \\
& +\sum_{\mu \nu \in E(4,4)} \frac{\aleph(\mu) \cdot \aleph(\nu)}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(4,6)} \frac{\aleph(\mu) \cdot \aleph(\nu)}{\aleph(\mu)+\aleph(\nu)}+\sum_{\mu \nu \in E(6,6)} \frac{\aleph(\mu) \cdot \aleph(\nu)}{\aleph(\mu)+\aleph(\nu)} \tag{24}\\
= & 4 \cdot \frac{2 \cdot 2}{2+2}+8 \cdot \frac{2 \cdot 4}{2+4}+(12 n-16) \cdot \frac{2 \cdot 6}{2+6}+(6 n-6) \frac{4 \cdot 4}{4+4} \\
& +(12 n-20) \frac{4 \cdot 6}{4+6}+6(n-2)^{2} \frac{6 \cdot 6}{6+6} .
\end{align*}
$$

$$
\begin{equation*}
R_{e} Z G_{3}(G)=2592 n^{2}-5568 n+3712 \tag{26}
\end{equation*}
$$

We get the outcomes after estimates:

$$
\begin{equation*}
R_{e} Z G_{2}(G)=18 n^{2}-13.2 n+2.67 \tag{25}
\end{equation*}
$$

Theorem 7. The redefined third Zagreb index of Star of

Proof. Let G be the graph of Star of David network. By using Table 1, we apply the formula of the redefined third Zagreb index for G : David network is

$$
\begin{aligned}
R_{e} Z G_{3}(G) & =\sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu)) \\
& =\sum_{\mu \nu \in E(2,2)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu))+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu))
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{\mu \nu \in E(2,6)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu))+\sum_{\mu \nu \in E(4,4)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu)) \\
& +\sum_{\mu \nu \in E(4,6)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu))+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu) \cdot \aleph(\nu))(\aleph(\mu)+\aleph(\nu)) \tag{27}\\
& =4(2 \cdot 2)(2+2)+8(2 \cdot 4)(2+4)+(12 n-16)(2 \cdot 6)(2+6) \\
& +(6 n-6)(4 \cdot 4)(4+4)+(12 n-20)(4 \cdot 6)(4+6)+6(n-2)^{2}(6 \cdot 6)(6+6) .
\end{align*}
$$

We get the outcomes after estimates:

$$
\begin{equation*}
R_{e} Z G_{3}(G)=2592 n^{2}-5568 n+3712 \tag{28}
\end{equation*}
$$

Theorem 8. The forgotten TI of Star of David network is

$$
\begin{equation*}
F(G)=432 n^{2}-432 n+48 \tag{29}
\end{equation*}
$$

Proof. Let G be the graph of Star of David network. By using Table 1, we apply the formula of forgotten TI for G :

$$
\begin{align*}
F(G)= & \sum_{\mu \nu \in E(G)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2} \\
= & \sum_{\mu \nu \in E(2,2)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2}+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2}+\sum_{\mu \nu \in E(2,6)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2} \\
& +\sum_{\mu \nu \in E(4,4)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2}+\sum_{\mu \nu \in E(4,6)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2}+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu))^{2}+(\aleph(\nu))^{2} \tag{30}\\
= & 4\left(2^{2}+2^{2}\right)+8\left(2^{2}+4^{2}\right)+(12 n-16)\left(2^{2}+6^{2}\right)+(6 n-6)\left(4^{2}+4^{2}\right) \\
& +(12 n-20)\left(4^{2}+6^{2}\right)+6(n-2)^{2}\left(6^{2}+6^{2}\right) .
\end{align*}
$$

We get the outcomes after estimates:

$$
\begin{equation*}
F(G)=432 n^{2}-432 n+48 \tag{31}
\end{equation*}
$$

Theorem 9. The Randić indices of Star of David network are

$$
\begin{aligned}
R_{1}(G) & =216 n^{2}-336 n+176 \\
R_{1 / 2}(G) & =36 n^{2}+220.4 n+85.4 \\
R_{-1 / 2}(G) & =n^{2}+3.4 n-1.4 \\
R_{-1}(G) & =0.17 n^{2}+1.2 n-0.54
\end{aligned}
$$

Proof. Let G be the graph of Star of David network. By using Table 1, we apply the formula of the general Randić index for G:

$$
\begin{equation*}
R_{\alpha}(G)=\sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu))^{\alpha} \tag{33}
\end{equation*}
$$

For $\alpha=1$,

$$
\begin{align*}
R_{1}(G)= & \sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu)) \\
= & \sum_{\mu \nu \in E(2,2)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(2,6)}(\aleph(\mu) \cdot \aleph(\nu)) \\
& +\sum_{\mu v \in E(4,4)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(4,6)}(\aleph(\mu) \cdot \aleph(\nu))+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu) \cdot \aleph(\nu)) \tag{34}\\
= & 4(2 \cdot 2)+8(2 \cdot 4)+(12 n-16)(2 \cdot 6)+(6 n-6)(4 \cdot 4) \\
& +(12 n-20)(4 \cdot 6)+6(n-2)^{2}(6 \cdot 6) .
\end{align*}
$$

We get the outcomes after estimates:

$$
\begin{equation*}
R_{1}(G)=216 n^{2}-336 n+176 \tag{35}
\end{equation*}
$$

$$
\begin{align*}
R_{1 / 2}(G)= & \sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu))^{1 / 2} \\
= & \sum_{\mu \nu \in E(2,2)}(\aleph(\mu) \cdot \aleph(\nu))^{1 / 2}+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu) \cdot \aleph(\nu))^{1 / 2}+\sum_{\mu \nu \in E(2,6)}(\aleph(\mu) \cdot \aleph(\nu))^{1 / 2} \\
& \sum_{\mu \nu \in E(4,4)}(\aleph(\mu) \cdot \aleph(\nu))^{1 / 2}+\sum_{\mu \nu \in E(4,6)}(\aleph(\mu) \cdot \aleph(\nu))^{1 / 2}+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu) \cdot \aleph(\nu))^{1 / 2} \tag{36}\\
= & 4(2 \cdot 2)^{1 / 2}+8(2 \cdot 4)^{1 / 2}+(12 n-16)(2 \cdot 6)^{1 / 2}+(6 n-6)(4 \cdot 4)^{1 / 2} \\
& +(12 n-20)(4 \cdot 6)^{1 / 2}+6(n-2)^{2}(6 \cdot 6)^{1 / 2} .
\end{align*}
$$

We get the outcomes after estimates:
For $\alpha=-1 / 2$,

$$
\begin{equation*}
R_{1 / 2}(G)=36 n^{2}+220.4 n+85.4 \tag{37}
\end{equation*}
$$

$$
\begin{align*}
R_{-1 / 2}(G)= & \sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu))^{-1 / 2} \\
= & \sum_{\mu \nu \in E(2,2)}(\aleph(\mu) \cdot \aleph(\nu))^{-1 / 2}+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu) \cdot \aleph(\nu))^{-1 / 2}+\sum_{\mu \nu \in E(2,6)}(\aleph(\mu) \cdot \aleph(\nu))^{-1 / 2} \\
& \sum_{\mu \nu \in E(4,4)}(\aleph(\mu) \cdot \aleph(\nu))^{-1 / 2}+\sum_{\mu \nu \in E(4,6)}(\aleph(\mu) \cdot \aleph(\nu))^{-1 / 2}+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu) \cdot \aleph(\nu))^{-1 / 2} \tag{38}\\
= & 4(2 \cdot 2)^{-1 / 2}+8(2 \cdot 4)^{-1 / 2}+(12 n-16)(2 \cdot 6)^{-1 / 2}+(6 n-6)(4 \cdot 4)^{-1 / 2} \\
& +(12 n-20)(4 \cdot 6)^{-1 / 2}+6(n-2)^{2}(6 \cdot 6)^{-1 / 2} .
\end{align*}
$$

We get the outcomes after estimates:
For $\alpha=-1$,

$$
\begin{equation*}
R_{-1 / 2}(G)=n^{2}+3.4 n-1.4 \tag{39}
\end{equation*}
$$

$$
\begin{align*}
R_{-1}(G)= & \sum_{\mu \nu \in E(G)}(\aleph(\mu) \cdot \aleph(\nu))^{-1} \\
= & \sum_{\mu \nu \in E(2,2)}(\aleph(\mu) \cdot \aleph(\nu))^{-1}+\sum_{\mu \nu \in E(2,4)}(\aleph(\mu) \cdot \aleph(\nu))^{-1}+\sum_{\mu \nu \in E(2,6)}(\aleph(\mu) \cdot \aleph(\nu))^{-1} \\
& +\sum_{\mu \nu \in E(4,4)}(\aleph(\mu) \cdot \aleph(\nu))^{-1}+\sum_{\mu \nu \in E(4,6)}(\aleph(\mu) \cdot \aleph(\nu))^{-1}+\sum_{\mu \nu \in E(6,6)}(\aleph(\mu) \cdot \aleph(\nu))^{-1} \tag{40}\\
= & 4(2 \cdot 2)^{-1}+8(2 \cdot 4)^{-1}+(12 n-16)(2 \cdot 6)^{-1}+(6 n-6)(4 \cdot 4)^{-1} \\
& +(12 n-20)(4 \cdot 6)^{-1}+6(n-2)^{2}(6 \cdot 6)^{-1} .
\end{align*}
$$

We get the outcomes after estimates:

$$
\begin{equation*}
R_{-1}(G)=0.17 n^{2}+1.2 n-0.54 \tag{41}
\end{equation*}
$$

4.1.3D Graphical Representation of Topological Indicesfor Star of David Networks. The TIs of the Star of David Network are illustrated graphically in Figure 3. The evolution of TIs along various parameters is portrayed in graphs. Despite the fact

Figure 3: Three-dimensional graphical representation of degree-based topological indices.

Table 2: Numerical comparison of Star of David network.

n	$A B C(G)$	$G A(G)$	$M_{1}(G)$	$M_{2}(G)$	$\operatorname{ReZG}(G)$	$\operatorname{Re} Z G_{2}(G)$	$\operatorname{Re} Z G_{3}(G)$	$F(G)$
1	-17.6	-21.8	24	56	6.03	7.47	736	48
2	-18.6	-149.6	216	368	20.03	48.27	2944	912
3	-13.2	-553.4	552	1112	38.03	125.07	10336	2640
4	-1.4	-1377.2	1032	2288	60.03	237.87	22912	5232
5	16.8	-2765	1656	3896	86.03	386.67	40672	8688
6	41.4	-4860.8	2424	5936	116.03	571.47	63616	13008
7	72.4	-7808.6	3336	8408	150.03	792.27	91744	18192
8	109.8	-11752.4	4392	11312	188.03	1049.07	125056	24240
9	153.6	-16836.2	5592	14648	230.03	1341.87	163552	31152
10	203.8	-23204	6936	18416	276.03	1670.67	207232	38928

Table 3: Numerical comparison of Star of David networks.

n	1	2	3	4	5	6	7	8	10	
$R_{1}(G)$	56	368	1112	2288	3896	5936	8408	11312	14648	18416
$R_{1 / 2}(G)$	341.8	670.2	1070.6	1543	2087.4	2703.8	3392.2	4152.6	4985	5889.4
$R_{-1 / 2}(G)$	3	9.4	17.8	28.2	40.6	55	71.4	89.8	110.2	
$R_{-1}(G)$	0.83	2.54	4.59	6.98	9.71	12.78	16.19	19.94	24.03	28.46

Figure 4: Two-dimensional numerical comparison of Star of David network.

Figure 5: Two-dimensional numerical comparison of Star of David networks.
that the graphs appear to be similar, their gradients differ. In Figures 4 and 5, we give a two-dimensional numerical comparison of Star of David networks. We discuss the numerical comparison of Star of David networks with different degree-based topological indices in Tables 2 and 3.

5. Comparison of Results for Topological Indices of Star of David Networks

6. Conclusion

TIs for Star of David networks are computed in this paper; as well as, the analytic closed algorithms are reviewed and specified for these networks, namely, the general Randić index, the atomic-bond connectivity index, and the geo-metric-arithmetic index, as well as the first and second Zagreb index and closed formulas of this network were determined that will help network scientists in understanding and exploring the fundamental topologies of such networks. Computer scientists and chemists who work with Hex-derived networks may find these discoveries valuable.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors' Contributions

All authors contributed equally to this manuscript. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

The authors thank Jahangirnagar University, Savar, Dhaka for funding this reasearch.

References

[1] H. Ali, M. A. Binyamin, M. K. Shafiq, and W. Gao, "On the degree-based topological indices of some derived networks," Mathematics, vol. 7, no. 7, p. 612, 2019.
[2] H. Yang, M. Naeem, A. Q. Baig, H. Shaker, and M. K. Siddiqui, "Vertex szeged index of crystal cubic carbon structure," Journal of Discrete Mathematical Sciences and Cryptography, vol. 22, no. 7, pp. 1177-1187, 2019.
[3] Z. Raza and E. K. Sukaiti, "M-polynomial and degree based topological indices of some nanostructures," Symmetry, vol. 12, no. 5, p. 831, 2020.
[4] A. K. K. Syed, P. Ali, F. Azam, and P. Ahmad Alvi, "On vedegree and ev-degree topological properties of hyaluronic acid-anticancer drug conjugates with qspr," Journal of Chemistry, vol. 2021, Article ID 3860856, 23 pages, 2021.
[5] A. Rani and U. Ali, "Degree-based topological indices of polysaccharides: amylose and blue starch-iodine complex," Journal of Chemistry, vol. 2021, Article ID 6652014, 10 pages, 2021.
[6] S. Ali, M. Khalid Mahmmod, and M. K. Mahmmod, "A paradigmatic approach to investigate restricted hyper totient graphs," AIMS Mathematics, vol. 6, no. 4, pp. 3761-3771, 2021.
[7] S. Ali, M. K. Mahmood, F. Tchier, and F. M. O. Tawfiq, "Classification of upper bound sequences of local fractional metric dimension of rotationally symmetric hexagonal planar networks," Journal of Mathematics, vol. 2021, Article ID 6613033, 24 pages, 2021.
[8] S. Ali, M. K. Mahmood, and K. P. Shum, "Novel classes of integers and their applications in graph labeling," Hacettepe Journal of Mathematics and Statistics, vol. XX, pp. 1-17, 2021.
[9] J.-B. Liu and S. Nagy Daoud, "Number of spanning trees in the sequence of some graphs," Complexity, vol. 2019, Article ID 4271783, 22 pages, 2019.
[10] J.-B. Liu, X.-F. Pan, and J. Cao, "Some properties on estrada index of folded hypercubes networks," in Abstract and Applied Analysisvol. 2014, Hindawi, Article ID 167623, 6 pages, Hindawi, 2014.
[11] J.-B. Liu, Z.-Yu Shi, Y.-H. Pan, J. Cao, M. Abdel-Aty, and U. Al-Juboori, "Computing the laplacian spectrum of linear octagonal-quadrilateral networks and its applications," Polycyclic Aromatic Compounds, pp. 1-12, 2020.
[12] J.-B. Liu, C. Wang, S. Wang, and B. Wei, "Zagreb indices and multiplicative zagreb indices of Eulerian graphs," Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, no. 1, pp. 67-78, 2019.
[13] J.-B. Liu, J. Zhao, and Z.-Q. Cai, "On the generalized adjacency, laplacian and signless laplacian spectra of the weighted edge corona networks," Physica A: Statistical Mechanics and its Applications, vol. 540, Article ID 123073, 2020.
[14] J.-B. Liu, J. Zhao, J. Min, and J. Cao, "The hosoya index of graphs formed by a fractal graph," Fractals, vol. 27, no. 8, Article ID 1950135, 2019.
[15] D. Maji and G. Ghorai, "Computing f-index, coindex and zagreb polynomials of the kth generalized transformation graphs," Heliyon, vol. 6, 2020.
[16] D. Maji and G. Ghorai, "A novel graph invariant: the third leap zagreb index under several graph operations," Discrete Mathematics, Algorithms and Applications, vol. 11, 2019.
[17] S. Ali, R. M. Falcón, and M. K. Mahmood, "Local fractional metric dimension of rotationally symmetric planar graphs arisen from planar chorded cycles," arXiv preprint arXiv: 2105.07808, 2021.
[18] S. Ali and K. Mahmood, "New numbers on euler's totient function with applications," Journal of Mathematical Extension, vol. 14, pp. 61-83, 2019.
[19] S. Ali and M. K. Mahmood, "A paradigmatic approach to investigate restricted totient graphs and their indices," Computer Science, vol. 16, no. 2, pp. 793-801, 2021.
[20] M. K. Mahmood and S. Ali, "A novel labeling algorithm on several classes of graphs," Punjab University Journal of Mathematics, vol. 49, pp. 23-35, 2017.
[21] M. K. Mahmood and S. Ali, "On super totient numbers, with applications and algorithms to graph labeling," Ars Combinatoria, vol. 143, pp. 29-37, 2019.
[22] H. Wiener, "Structural determination of paraffin boiling points," Journal of the American Chemical Society, vol. 69, no. 1, pp. 17-20, 1947.
[23] M. Randic, "Characterization of molecular branching," Journal of the American Chemical Society, vol. 97, no. 23, pp. 6609-6615, 1975.
[24] L. B. Kier and L. H. Hall, "Molecular connectivity vii: specific treatment of heteroatoms," Journal of Pharmaceutical Sciences, vol. 65, no. 12, pp. 1806-1809, 1976.
[25] M. Randić, M. Novič, and D. Plavšić, Solved and Unsolved Problems of Structural Chemistry, CRC Press, Boca Raton, MA, USA, 2016.
[26] B. Bollobás and E. Paul, "Graph of extremal weights," Ars Combinatoria, vol. 50, pp. 225-233, 1998.
[27] I. Gutman and N. Trinajstić, "Graph theory and molecular orbitals. total -electron energy of alternant hydrocarbons," Chemical Physics Letters, vol. 17, no. 4, pp. 535-538, 1972.
[28] I. Gutman and K. C. Das, "The first zagreb index 30 years after," MATCH Communications in Mathematical and in Computer Chemistry, vol. 50, no. 1, pp. 83-92, 2004.
[29] N. Trinajstić, S. Nikolić, A. Miličević, and I. Gutman, "About the zagreb indices," Kemija U Industriji: Časopis kemičara i kemijskih inženjera Hrvatske, vol. 59, no. 12, pp. 577-589, 2010.
[30] D. Maji and G. Ghorai, "The first entire zagreb index of various corona products and their bounds," Journal of Mathematical and Computational Science, vol. 11, 2021.
[31] P. S. Ranjini, V. Lokesha, and A. Usha, "Relation between phenylene and hexagonal squeeze using harmonic index," International Journal of Graph Theory, vol. 1, no. 4, pp. 116-121, 2013.
[32] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, "An atombond connectivity index: modelling the enthalpy of formation of alkanes," Indian Journal of Chemistry, vol. 37A, 1998.
[33] D. Vukičević and B. Furtula, "Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges," Journal of Mathematical Chemistry, vol. 46, no. 4, pp. 1369-1376, 2009.
[34] B. Furtula and I. Gutman, "A forgotten topological index," Journal of Mathematical Chemistry, vol. 53, no. 4, pp. 1184-1190, 2015.
[35] W. Gao, M. K. Siddiqui, M. Imran, M. Kamran Jamil, and M. Reza Farahani, "Forgotten topological index of chemical structure in drugs," Saudi Pharmaceutical Journal, vol. 24, no. 3, pp. 258-264, 2016.

