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Our purpose is to introduce the notion of semi-I-expandable ideal topological spaces. Some properties of semi-I-locally finite
collections are investigated. In particular, several characterizations of semi-I-expandable ideal topological spaces are established.

1. Introduction

(e concept of expandable spaces was first introduced by
Krajewski [1]. Moreover, Krajewski investigated the property
of expanding locally finite collection to open finite collection
and obtained some results relating this property to certain
topological covering properties. Smith et al. [2] introduced
various generalizations of the concept of expandability and
investigated several characterizations of expandability prop-
erties in terms of open covers. Al-Zoubi [3] introduced the
concept of s-expandable spaces as a variation of expandable
spaces and showed that an extremally disconnected semi-
regular space is s-expandable if and only if it is expandable.
Jiang and Sun [4] proved that every T1wN-space is ex-
pandable and discussed a characterization of s-expandability
for extremally disconnected spaces. Al-Zoubi [5] introduced
the class of S-paracompact spaces as a generalization of
paracompact spaces and investigated the relationships be-
tween S-paracompact spaces and other well-known spaces. Li
and Song [6] introduced and studied S-expandable spaces
which are a weaker form than S-paracompact spaces and
showed that s-expandability is equivalent to S-expandability
for extremally disconnected semiregular spaces. Kuratowski
[7] and Vaidyanathaswamy [8] introduced and studied the
concept of ideal topological spaces. Janković and Hamlett [9]
developed the study in logical, systematic fashion and offered
some new results, improvements of known results, and some
applications. In 2002, Hatir and Noiri [10] introduced the
notions of semi-I-open sets, α-I-open sets, and β-I-open sets

via idealization and using these sets obtained new decom-
position of continuity. In 2005, Hatir and Noiri [11] inves-
tigated some properties of semi-I-open sets and semi-
I-continuous functions defined in [10] and introduced new
functions via ideals, namely, semi-I-open functions and semi-
I-closed functions. Açikgöz et al. [12] introduced the notion of
I-submaximal ideal topological spaces and proved that every
submaximal space is an I-submaximal ideal topological space.
In 2009, Ekici and Noiri [13] introduced the notion of
∗ -extremally disconnected ideal topological spaces and
showed that ∗ -extremally disconnectedness and extremally
disconnectedness are equivalent to a codense ideal. In 2010,
Ekici and Noiri [14] investigated several characterizations of
I-submaximal ideal topological spaces and proved that semi-
I-open sets and ABI-sets are equivalent to I-submaximality
and ∗ -extremally disconnectedness. In 2012, Ekici and Noiri
[15] introduced the notion of ∗ -hyperconnected ideal to-
pological spaces and investigated some properties of
∗ -hyperconnected ideal topological spaces by utilizing
semi∗-I-open sets and the semi∗-I-closure operator. In [16],
the author investigated further characterizations of
∗ -hyperconnected ideal topological spaces and studied the
concept of θ-I-irreducible ideal topological spaces.

(is paper is organized as follows: in Section 3, we introduce
the concept of semi-I-locally finite collections. Moreover, some
properties of semi-I-locally finite collections are discussed. In
Section 4, we introduce the concept of semi-I-expandable ideal
topological spaces. In particular, some characterizations of
semi-I-expandable ideal topological spaces are investigated.
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2. Preliminaries

We begin with some definitions and known results which will
be used throughout this paper. In the present paper, spaces
(X, τ) and (Y, σ) (or simply X and Y) always mean topo-
logical spaces on which no separation axioms are assumed
unless explicitly stated. In a topological space (X, τ), the
closure and the interior of any subset A of X will be denoted
by Cl(A) and Int(A), respectively. A nonempty collection I of
subsets of a set X is said to be an ideal on X if I satisfies the
following two properties: (i) A ∈ I and B⊆A⟹B ∈ I; (ii)
A ∈ I and B ∈ I⟹A∪B ∈ I. For a topological space (X, τ)

with an ideal I on X, a set operator (.)∗: P(X)⟶ P(X)

where P(X) is the set of all subsets ofX, called a local function
[7] of A with respect to I, and τ is defined as follows: for
A⊆X, A∗(I, τ) � x ∈ X|G∩{ A ∉ I for everyG ∈ τ(x)}

where

τ(x) � G ∈ τ | x ∈ G{ }. (1)

A Kuratowski closure operator Cl∗(.) for a topology
τ∗(I, τ), which is called the ∗ -topology and is finer than τ, is
defined by Cl∗(A) � A∪A∗ [9]. We shall simply write A∗

for A∗(I, τ) and τ∗ for τ∗(I, τ). A basis B(I, τ) for τ∗ can be
described as follows: B(I, τ) � V − I′|V ∈ τ and I′ ∈ I .
However, B(I, τ) is not always a topology [9]. A subset A of
an ideal topological space (X, τ, I) is called ∗ -closed
(τ∗-closed) [9] if A∗ ⊆A. (e interior of a subset A in
(X, τ∗(I, τ)) is denoted by Int∗(A).

A subset A of an ideal topological space (X, τ, I) is called
semi-I-open [10] (resp., semi∗-I-open [15]) if
A⊆Cl∗(Int(A)) (resp., A⊆Cl∗(Int(A))). By sIO(X, τ)

(resp., s∗IO(X, τ)), we denote the family of all semi-I-open
(resp., semi∗-I-open) sets of an ideal topological space
(X, τ, I). (e complement of a semi-I-open (resp.,
semi∗-I-open) set is called semi-I-closed [11] (resp.,
semi∗-I-closed [15]).

Lemma 1 (see [11]). Let (X, τ, I) be an ideal topological
space and A, B subsets of X.

(1) If Uα ∈ sIO(X, τ) for each α ∈ Δ, then ∪ Uα: α ∈

Δ} ∈ sIO(X, τ).
(2) If A ∈ sIO(X, τ) and B ∈ τ, then A∩B ∈ sIO(X, τ).

(e semi-I-closure (resp., semi∗-I-closure) of a subset A

of an ideal topological space (X, τ, I), denoted by sClI(A)

(resp., s∗ClI(A)), is defined by the intersection of all semi-
I-closed (resp., semi∗-I-closed) sets of X containing A [15].

Lemma 2 (see [15]). For a subset A of an ideal topological
space (X, τ, I), the following properties hold:

(1) sClI(A) � A∪ Int∗(Cl(A)).
(2) s∗ClI(A) � A∪ Int(Cl∗(A)).

3. Semi-I-Locally Finite Collections

Recall that a collection C � Cc|c ∈ Γ  of subsets of a to-
pological space (X, τ) is said to be locally finite [17] if, for

each x ∈ X, there exists an open set U of X containing x and
U intersects Cc at most for finitely many c.

Definition 1. A collection C � Cc|c ∈ Γ  of subsets of an
ideal topological space (X, τ, I) is said to be semi-I-locally
finite if, for each x ∈ X, there exists a semi-I-open set U of X

containing x and U intersects Cc at most for finitely many c.

Definition 2. An ideal topological space (X, τ, I) is said to be
semi-I-regular if, for each semi-I-closed set F and each point
x ∉ F, there exist disjoint semi-I-open setsU andV such that
x ∈ U and F⊆V.

Lemma 3. An ideal topological space (X, τ, I) is semi-
I-regular if and only if, for each semi-I-open set U and for each
x ∈ U, there exists a semi-I-open set V such that
x ∈ V⊆ sClI(V)⊆U.

Lemma 4 (see [11]). A subset A of an ideal topological space
(X, τ, I) is semi-I-open if and only if there exists U ∈ τ such
that U⊆A⊆Cl∗(U).

Definition 3 (see [13]). An ideal topological space (X, τ, I) is
said to be ∗ -extremally disconnected if the ∗ -closure of
every open subset U of X is open.

Lemma 5. For an ideal topological space (X, τ, I), the fol-
lowing properties are equivalent:

(1) (X, τ, I) is ∗ -extremally disconnected.
(2) s∗ClI(U) � Cl∗(U) for each U ∈ sIO(X, τ).
(3) s∗ClI(U) is ∗ -closed for each U ∈ sIO(X, τ).

Proof

(1)⟹ (2): Suppose that (X, τ, I) is a ∗ -extremally
disconnected space. Let U be a semi-I-open set. Since U

is semi-I-open, Cl∗(U) � Cl∗(Int(U)) and, by Lemma
2 (2),

s
∗ClI(U) � U∪ Int Cl∗(U)( 

� U∪ Int Cl∗(Int(U))( 

� U∪Cl∗(Int(U))

� Cl∗(Int(U)) � Cl∗(U).

(2)

(2)⟹ (3): (is is obvious.
(3)⟹ (1): Let U be an open set. (en, U is
semi-I-open. By (3) and Lemma 2 (2),

Int Cl∗(U)(  � U∪ Int Cl∗(U)( 

� s
∗ClI(U)

� Cl∗ s
∗ClI(U)( 

� Cl∗ U∪ Int Cl∗(U)( ( 

� Cl∗ Int Cl∗(U)( (  � Cl∗(U),

(3)

and hence Cl∗(U) is open. (us, (X, τ, I) is ∗ -extremally
disconnected. □
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Theorem 1. Let (X, τ, I) be a ∗ -extremally disconnected
semi-I-regular space.  en, the collection C � Cc|c ∈ Γ  of
subsets of X is semi-I-locally finite if and only if C is locally
finite.

Proof. We need to show only necessity. Suppose that C is
semi-I-locally finite. For each x ∈ X, there exists a semi-
I-open set U containing x, and U intersects at most finitely
many members of C. Since (X, τ, I) is semi-I-regular, there
exists a semi-I-open set V such that x ∈ V⊆ sClI(V)⊆U.
Since V is semi-I-open, by Lemma 4, there exists an open set
W such that W⊆V⊆Cl∗(W). Since (X, τ, I) is
∗ -extremally disconnected, by Lemma 5,
Cl∗(W) � Cl∗(V) � s∗ClI(V) is an open set containing x.
Since s∗ClI(V)⊆ sClI(V), Cl∗(W) intersects at most finitely
many members of C. (us, C is locally finite. □

Theorem 2. Let C � Cc|c ∈ Γ  be a collection of subsets of
an ideal topological space (X, τ, I).  en,

(1) C is semi-I-locally finite if and only if sClI(Cc)|

c ∈ Γ} is semi-I-locally finite.
(2) If C is semi-I-locally finite, then ∪ c∈ΓsClI(Cc) �

sClI(∪ c∈ΓCc).
(3) If C is semi-I-locally finite and Dc ⊆Cc for each c ∈ Γ,

then

D � Dc|c ∈ Γ , (4)

is also semi-I-locally finite.

Proof. (e proof is obvious. □

Definition 4 (see [18]). A subset D of an ideal topological
space (X, τ, I) is called ∗ -dense if Cl∗(D) � X.

Definition 5 (see [12]). An ideal topological space (X, τ, I) is
called I-submaximal if every ∗ -dense subset of X is open.

Theorem 3. Let (X, τ, I) be an I-submaximal ∗ -extremally
disconnected space.  en, every semi-I-locally finite collection
C � Cc|c ∈ Γ  of subsets of X is locally finite.

Proof. It follows from Corollary 17 of [14]. □

Definition 6 (see [11]). A function f: (X, τ, I)⟶ (Y, σ, J)
is said to be I-irresolute if f− 1(V) is semi-I-open in (X, τ, I)
for every semi-J-open set V of (Y, σ, J).

Theorem 4. Let f: (X, τ, I)⟶ (Y, σ, J) be an I-irresolute
function. If C � Cc|c ∈ Γ  is a semi-J-locally finite collection
in (Y, σ, J), then

f
−1

Cc |c ∈ Γ , (5)

is a semi-I-locally finite collection in (X, τ, I).

Proof. (e proof is obvious. □

Definition 7. An ideal topological space (X, τ, I) is said to be
semi-I-compact if every cover of X by semi-I-open sets has a
finite subcover.

Definition 8. A function f: (X, τ, I)⟶ (Y, σ, J) is said to
be semi-(I, J)-closed if f(F) is semi-J-closed in (Y, σ, J) for
every semi-I-closed set F of (X, τ, I).

Lemma 6. A function f: (X, τ, I)⟶ (Y, σ, J) is semi-
(I, J)-closed if and only if, for each y ∈ Y and every semi-
I-open set U in (X, τ, I) which contains f− 1(y), there exists a
semi-J-open subset V of (Y, σ, J) such that y ∈ V and
f− 1(V)⊆U.

Proof. Suppose that f is semi-(I, J)-closed. Let y ∈ Y and U

be any semi-I-open set in (X, τ, I) such that f− 1(y)⊆U. Put
V � Y − f(X − U). (en, V is semi-J-open in (Y, σ, J) such
that y ∈ V and f− 1(V)⊆U.

Conversely, let F be any semi-I-closed subset of X. For
each y ∈ Y − f(F), then f− 1(y)⊆X − F � U. (erefore,
there exists a semi-J-open subset Vy of (Y, σ, J) such that
y ∈ Vy and f− 1(Vy)⊆U. Put V � ∪ Vy|y ∈ Y − f(F) .
(en, V is semi-J-open in (Y, σ, J) such that y ∈ V and
f− 1(V)⊆U. (us, f(F) is semi-J-closed in (Y, σ, J). □

Theorem 5. Let f: (X, τ, I)⟶ (Y, σ, J) be a semi-
(I, J)-closed function such that f− 1(y) is semi-I-compact in
(X, τ, I). If C � Cc|c ∈ Γ  is a semi-I-locally finite collection
in (X, τ, I), then f(C) � f(Cc)|c ∈ Γ  is a semi-J-locally
finite collection in (Y, σ, J).

Proof. For each x ∈ f−1(y), there exists a semi-I-open set
Ux in (X, τ, I) containing x such that Ux intersects at most
finitely many members of C. (us, Ux|x ∈ f−1(y)  is a
semi-I-open cover of f−1(y) and so there exist a finite
number of points x1, x2, . . . , xn of f−1(y) such that
f− 1(y)⊆ ∪ n

i�1Uxi
� U. f is semi-(I, J)-closed, so by Lemma

6 there exists a semi-J-open set V of Y containing y such that
f− 1(V)⊆U. (us, V intersects at most finitely many
members of f(C) and hence f(C) is semi-J-locally finite in
(Y, σ, J). □

4. Semi-I-Expandable Ideal Topological Spaces

Recall that a topological space (X, τ) is said to be expandable
[1] if, for every locally finite collection C � Cc|c ∈ Γ  of
subsets of X, there exists a locally finite collection
G � Gc|c ∈ Γ  of open subsets of X such that Cc ⊆Gc for
each c ∈ Γ.

Definition 9. An ideal topological space (X, τ, I) is said to be
semi-I-expandable (resp., ω0-semi-I-expandable) if, for ev-
ery semi-I-locally finite collection C � Cc|c ∈ Γ  (resp.,
|Γ|≤ω0) of subsets of X, there exists a locally finite collection
G � Gc|c ∈ Γ  of open subsets of X such that Cc ⊆Gc for
each c ∈ Γ.
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Now, we have the following characterizations of semi-
I-expandable ideal topological spaces in terms of coverings.

Theorem 6. An ideal topological space (X, τ, I) is semi-
I-expandable if every semi-I-open cover of X has a locally
finite open refinement.

Proof. Let C � Cc|c ∈ Γ  be a semi-I-locally finite collec-
tion of semi-I-closed subsets of X. Let Γ0 be any finite subset
of Γ and let Vλ � X − ∪ Cc|c≠ λ , λ ∈ Γ0. (en, Vλ is semi-
I-open for each λ ∈ Γ0 and Vλ intersects at most finitely
many members of C for each λ ∈ Γ0. (e family
V � Vλ|λ ∈ Γ0  is a cover ofX. For each x ∈ X, there exists a
semi-I-open subset Vx of X such that Vx intersects at most
many members of C, say Cc(1), Cc(2), . . . , Cc(n). By as-
sumption V has a locally finite open refinement
W � Wβ|β ∈ Ω . Put Uc � ∪ W′ ∈W|W′ ∩Cc ≠∅  for
each c ∈ Γ. (en, Cc ⊆Uc and Uc is open for each c ∈ Γ.
Now, it suffices to show that U � Uc|c ∈ Γ  is locally finite.
Let x ∈ X.(en, there exists an open setGx which contains x

and intersects only finite many members of W. (us,
Gx ∩Uc ≠∅ if and only if Gx ∩Wβ ≠∅ and Wβ ∩Cc ≠∅ for
some β ∈ Ω. SinceW is a refinement of V, Wβ is contained in
some Vλ which intersects only finite many Cc. (us, U is
locally finite. (is shows that (X, τ, I) is semi-
I-expandable. □

Theorem 7. Let (X, τ, I) be a ∗ -extremally disconnected
space.  en, (X, τ, I) is semi-I-expandable if every semi-
I-open coverU ofX has a locally finite semi-I-open refinement
V.

Proof. Let C � Cc|c ∈ Γ  be a semi-I-locally finite collec-
tion of semi-I-closed subsets of X. As in the proof of
(eorem 6, we construct a locally finite semi-I-open col-
lection U � Uc|c ∈ Γ  of subsets of X such that Cc ⊆Uc for
each c ∈ Γ. Since Uc is semi-I-open in (X, τ, I) for each
c ∈ Γ, we choose Vc ∈ τ such that Vc ⊆Uc ⊆Cl

∗(Vc). Since
(X, τ, I) is ∗ -extremally disconnected, the collection V �

Cl∗(Vc)|c ∈ Γ  is open locally finite in (X, τ, I) and
Cc ⊆Uc ⊆Cl

∗(Vc) for each c ∈ Γ. (us, (X, τ, I) is semi-
I-expandable. □

Theorem 8. Let (X, τ, I) be a ∗ -extremally disconnected
space.  en, (X, τ, I) is ω0-semi-I-expandable if and only if
every countable semi-I-open cover U of X has a locally finite
semi-I-open refinement V.

Proof. It follows from (eorem 7.
Conversely, let (X, τ, I) be ω0-semi-I-expandable and let

U � Un|n ∈ N  be a countable semi-I-open cover of X. For
each n, put Wn � ∪ n0 ≤ nUn0

. (en,

W � Wn|n ∈ N  (6)
is an increasing semi-I-open cover of X, and hence the
collection

C � Cn � X − Wn|n ∈ N  (7)

is semi-I-locally finite in (X, τ, I). (erefore, there exists a
locally finite collection G � Gn|n ∈ N  of open subsets of
(X, τ, I) such that Cn ⊆Gn for each n. Now, for each n ∈ N,
put Vn � Un − ∪ n0 < n(X − Gn0

). (en, by Lemma 1, Vn is
semi-I-open in (X, τ, I) and Vn ⊆Un for each n. Finally, since
G is locally finite, it is easy to show that the collection V �

Vn|n ∈ N  is a locally finite refinement of U. □

Theorem 9. Let f: (X, τ, I)⟶ (Y, σ, J) be an I-irresolute
(I, J)-closed surjection andf− 1(y) be compact for each y ∈ Y.
If (X, τ, I) is semi-I-expandable, then (Y, σ, J) is semi-
J-expandable.

Proof. Let C � Cc|c ∈ Γ  be a semi-J-locally finite collec-
tion in (Y, σ, J). By (eorem 4, the collection f− 1(C) �

f− 1(Cc)|c ∈ Γ  is semi-I-locally finite in (X, τ, I), and so
there exists a locally finite collection G � Gc|c ∈ Γ  of open
subsets of X such that f− 1(Cc)⊆Gc for each c ∈ Γ. Put Vc �

Y − f(X − Gc) for each c ∈ Γ. It is easy to see that Vc is open
and Fc ⊆Vc for each c ∈ Γ. Finally, we show that the col-
lection V � Vc|c ∈ Γ  of subsets of Y is locally finite. Let
y ∈ Y. For each x ∈ f− 1(y), there exists an open set Ux

containing x such that Ux intersects at most finitely many
members of G. (erefore, the collection Ux|x ∈ f− 1(y)  is
an open cover of f− 1(y), and so there exist a finite number
of points x1, x2, . . . , xn of f− 1(y) such that
f− 1(y)⊆ ∪ n

i�1Uxi
� U. Since f is (I, J)-closed, there exists

an open set Vy containing y and f− 1(V)⊆U. Since
f− 1(Vc)⊆Gc for each c ∈ Γ and G is locally finite in
(X, τ, I), Vy intersects at most finitely many members of V
which means that V is locally finite in (Y, σ, J). (us, (Y, σ, J)
is semi-J-expandable. □

Theorem 10. Let f: (X, τ, I)⟶ (Y, σ, J) be a continuous
semi-(I, J)-closed surjection and let f− 1(y) be semi-I-com-
pact in (X, τ, I) for each y ∈ Y. If (Y, σ, J) is semi-J-ex-
pandable, then (X, τ, I) is semi-I-expandable.

Proof. Let C � Cc ∈ c  be a semi-I-locally finite collection
of subsets of (X, τ, I). By (eorem 5, f(Cc)|c ∈ Γ  is a
semi-J-locally finite collection in (Y, σ, J). (en, there exists
a locally finite collection G � Gc|c ∈ Γ  of open subsets of
(Y, σ, J) such that f(Cc)⊆Gc for each c ∈ Γ. (en,
Cc ⊆f− 1(f(Cc))⊆f− 1(Gc) and f− 1(Gc)|c ∈ Γ  is an
open locally finite collection in (X, τ, I). (us, (X, τ, I) is
semi-I-expandable. □

Theorem 11. For an ideal topological space (X, τ, I), the
following properties are equivalent:

(1) (X, τ, I) is semi-I-expandable.
(2) (X, τ, I) is expandable and every semi-I-locally finite

collection of X is locally finite.
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Proof

(1)⟹ (2): Let (X, τ, I) be semi-I-expandable and C �

Cc|c ∈ Γ  a semi-I-locally finite collection of subsets of
X. (en, there exists a locally finite collection
G � Gc|c ∈ Γ  of open subsets of X such that Cc ⊆Gc

for each c ∈ Γ. Observe that local finiteness of G implies
that the family C must have been locally finite.
(2)⟹ (1): It follows directly from the definition of
semi-I-expandability. □

Theorem 12. Let (X, τ, I) be an ideal topological space. If, for
every semi-I-locally finite collection C, there exists a locally
finite open cover U of X such that each element of U meets
only finitely many elements of C, then (X, τ, I) is semi-
I-expandable.

Proof. Let C � Cc|c ∈ Γ  be a semi-I-locally finite collec-
tion of subsets of X and U � Uδ|δ ∈∇  the locally finite
open cover of X such that each element of U intersects only
finitely many elements of C. Put Wc � ∪ Uδ ∈ U|Uδ ∩

Cc ≠∅}, c ∈ Γ. Clearly, Cc ⊆Wc and Wc is open for each
c ∈ Γ. We claim that

W � Wc|c ∈ Γ  (8)

is locally finite. For each x ∈ X, since U is locally finite, there
exists an open neighborhood Nx of x which meets only
finitely many members of U. (en,

Nx ∩Wc ≠∅ (9)

if and only if Nx ∩Uδ ≠∅ and Uδ ∩Cc ≠∅ for some δ ∈∇.
Since Uδ meets only finitely many members of C, Nx in-
tersects only finite many members of W. (us, W is locally
finite and hence (X, τ, I) is semi-I-expandable. □

Corollary 1. Let (X, τ, I) be a ∗ -extremally disconnected
space. If, for every semi-I-locally finite collectionC, there exists
a locally finite semi-I-open cover U of X such that each el-
ement of U meets only finitely many elements of C, then
(X, τ, I) is semi-I-expandable.

Definition 10. A collection C of subsets of an ideal topo-
logical space (X, τ, I) is said to be σ-semi-I-locally finite if
C � ∪∞n�1Cn, where each Cn is semi-I-locally finite.

Theorem 13. Let (X, τ, I) be a ∗ -extremally disconnected
space.  en, (X, τ, I) is semi-I-expandable if and only if every
semi-I-open cover of X with a σ-semi-I-locally finite refine-
ment has a locally finite semi-I-open refinement.

Proof. Suppose that every semi-I-open cover of X with a
σ-semi-I-locally finite refinement has a locally finite semi-
I-open refinement. Let C � Cc|c ∈ Γ  be a semi-I-locally
finite collection of semi-I-closed subsets of X. Define

Bn � Ω⊆Γ||Ω| � n{ }, (10)

for each n ∈ N, Un � X − ∪ c∉ΩCc|Ω ∈ Bn , U0 � X−{

∪ c∈ΓCc}. (en, U � ∪∞n�1Un is a semi-I-open cover of X. For
each U′ ∈ U, U′ intersects only finitely many members of C.
Now define Gn � x ∈ X| ord (x,C) � n{ }, for each n ∈ N and
V0 � U0. For each n, let Vn � (∩ c∈ΩCc)∩Gn|Ω ∈ Bn .
Since C is semi-I-locally finite, V � ∪∞i�0Vi is a σ-semi-
I-locally refinement of U. Hence, U has a locally finite semi-
I-open refinement W. (us, each element of W meets only
finitely many members of C; by Corollary 1, (X, τ, I) is semi-
I-expandable.

Conversely, let (X, τ, I) be a semi-I-expandable and
∗ -extremally disconnected space. Let U � Uλ|λ ∈ Ω  be a
semi-I-open cover of X with a σ-semi-I-locally finite re-
finement L � ∪∞n�1Ln, where Ln � L(c,n)|c ∈ Γn  is semi-
I-locally finite for each n. We will prove that U has a locally
finite semi-I-open refinement. Since (X, τ, I) is semi-I-ex-
pandable, for each n, there exists a locally finite open col-
lection G(c,n)|c ∈ Γn  such that L(c,n) ⊆G(c,n) for each
c ∈ Γn. Since L is a refinement of U, for any L(c,n) ∈ L, there
exists λ(c, n) ∈ Ω such that L(c,n) ⊆Uλ(c,n). For each n ∈ N
and c ∈ Γn, let W(c,n) � G(c,n) ∩Uλ(c,n),
Wn � W(c,n)|c ∈ Γn . It follows from Lemma 1 that W �

∪∞n�1Wn is a σ-locally finite semi-I-open refinement of U.
Put Sn � ∪ W(c,n)|c ∈ Γn  for each n ∈ N. By the definition
of semi-I-open sets, Sn is semi-I-open, and hence Sn|n ∈ N 

is a countable semi-I-open cover of X. Since (X, τ, I) is semi-
I-expandable, (X, τ, I) is ω0-semi-I-expandable. By(eorem
8, there exists a locally finite semi-I-open refinement
Vn|n ∈ N , and we may assume that Vn ⊆ Sn. Since Vn is
semi-I-open for each n, there exists an open set Gn such that
Gn ⊆Vn ⊆Cl

∗(Gn). Since (X, τ, I) is ∗ -extremally discon-
nected, Cl∗(Gn)|n ∈ N  is a locally finite collection of open
subsets of X. Let G � Cl∗(Gn)∩W(c,n)|c ∈ Γn, n ∈ N . It is
easy to check that G is a locally finite semi-I-open refinement
of U. □

Lemma 7 (see [19]). Let (X, τ, I) be an ideal topological
space, A⊆U⊆X and U ∈ τ. If A is semi-I|U-open in
(U, τ|U, I|U), then A is semi-I-open in (X, τ, I).

Theorem 14. Let (X, τ, I) be a semi-I-expandable ideal to-
pological space. If U is clopen subset of (X, τ, I), then
(U, τ|U, I|U) is semi-I|U-expandable.

Proof. Let U be a clopen subset of a semi-I-expandable space
(X, τ, I). Let C � Cc|c ∈ Γ  be a semi-I-locally finite col-
lection of subsets of (U, τ|U, I|U). Since U is clopen in
(X, τ, I), C is semi-I-locally finite in (X, τ, I) for each x ∈ X.
(en, either x ∈ U or x ∉ U. If x ∈ U, then there exists
V ∈ sI|UO(U, τ|U) containing x such that V intersects at
most finitely many members of C. Since U is open,
V ∈ sIO(X, τ), by Lemma 7, and hence C is a semi-I-locally
finite collection in (X, τ, I). If x ∉ U, then X − U is semi-
I-open in (X, τ, I) containing x which intersects no member
of C. (us, C is a semi-I-locally finite collection of the semi-
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I-expandable ideal topological space (X, τ, I), so there exists
a locally finite collection of open subsets of (X, τ, I), say G �

Gc|c ∈ Γ  such that Cc ⊆Gc for each c ∈ Γ. Now, consider
G0 � Gc ∩U|c ∈ Γ . (en, G0 is a locally finite collection of
open subsets of U such that Cc ⊆U∩Gc for each c ∈ Γ. (us,
(U, τ|U, I|U) is semi-I|U-expandable. □

Recall that a topological space (X, τ) is said to be par-
acompact [20] if every open cover of X has a locally finite
open refinement.

Definition 11. An ideal topological space (X, τ, I) is called
semi-I-paracompact if every open cover of X has a locally
finite semi-I-open refinement.

Theorem 15. Let (X, τ, I) be a ω0-semi-I-expandable
∗ -extremally disconnected space.  en, (X, τ, I) is semi-
I-paracompact if every open cover of X has a σ-locally finite
semi-I-open refinement.

Proof. Let U � Uc|c ∈ Γ  be an open cover and
V � V(c,n)|c ∈ Γn  be a locally finite collection of semi-
I-open subsets of X. Let Wn � ∪ c∈ΓnV(c,n) for each n ∈ N.
(en, Wn is semi-I-open by the definition of semi-I-open
sets. Wn|n ∈ N  is a countable semi-I-open cover of X and,
hence, by (eorem 8 Wn|n ∈ N  has a locally finite semi-
I-open refinement H � Hn|n ∈ N , and we may assume that
Hn ⊆Wn for each n ∈ N. Since Hn is semi-I-open for each n,
there exists an open set Gn such that Gn ⊆Hn ⊆Cl

∗(Gn).
(us, Cl∗(Gn)|n ∈ N  is a locally finite collection of open
subsets since (X, τ, I) is a ∗ -extremally disconnected space.
(erefore, G � Cl∗(Gn)∩V(c,n)|c ∈ Γn, n ∈ N  is a locally
finite semi-I-open refinement of U by Lemma 1 (2). (us,
(X, τ, I) is semi-I-paracompact. □

Definition 12. A function f: (X, τ, I)⟶ (Y, σ, J) is said to
be semi-(I, J)-open if f(G) is semi-J-open in (Y, σ, J) for
every semi-I-open set G of (X, τ, I).

Theorem 16. Let f: (X, τ, I)⟶ (Y, σ, J) be a continuous,
semi-(I, J)-open, and closed surjection such that f− 1(y) is
compact for each y ∈ Y. If (X, τ, I) is semi-I-paracompact,
then (Y, σ, J) is semi-J-paracompact.

Proof. Let U � Uc|c ∈ Γ  be an open cover of (Y, σ, J).
(en,

f
−1

(U) � f
−1

Uc |c ∈ Γ  (11)

is an open cover of the semi-I-paracompact space (X, τ, I)
and so f− 1(U) has a locally finite semi-I-open refinement,
say V � Vα|α ∈∇ . Since f is semi-(I, J)-open, the collec-
tion f(V) � f(Vα)|α ∈∇  is a semi-J-open refinement of U.
Finally, we shall show that the collection f(V) is locally
finite in (Y, σ, J). Let y ∈ Y. For each x ∈ f− 1(y), there
exists an open set Gx containing x such that Gx intersects at
most finitely many members of V. (e collection

Gx|x ∈ f
−1

(y)  (12)

is an open cover of f− 1(y), and therefore there exists a finite
subset K0 of f− 1(y) such that f− 1(y)⊆ ∪ x∈K0

Gx. Since f is
closed, there exists an open set Wy containing y such that
f− 1(Wy)⊆ ∪ x∈K0

Gx. (en, f− 1(Wy) intersects at most
finitely many members of V. (erefore, Wy intersects at
most finitely many members of f(V). (us, f(V) is locally
finite in (Y, σ, J). □

5. Semi-I(∗ )-Paracompact Subsets

We begin this section by introducing the concept of semi-
I(∗ )-paracompact subsets. In particular, some properties of
semi-I(∗ )-paracompact subsets are discussed.

Definition 13. A subset A of an ideal topological space
(X, τ, I) is said to be semi-I(∗ )-paracompact set if every
cover A by open subsets of (X, τ, I) has a locally finite semi-
I-open refinement in (X, τ, I).

Recall that a subset A of an ideal topological space
(X, τ, I) is called Ig-closed [21] if A∗ ⊆U, whenever U is open
and A⊆U.

Lemma 8 (see [22]). For a subset A of an ideal topological
space (X, τ, I), the following properties are equivalent:

(a) A is Ig-closed.
(b) Cl∗(A)⊆U whenever A⊆U and U is open in X.
(c) For all x ∈ Cl∗(A), Cl( x{ })∩A≠∅.
(d) Cl∗(A) − A contains no nonempty closed set.
(e) A∗ − A contains no nonempty closed set.

Theorem 17. Every Ig-closed subset of a semi-I-paracompact
space is semi-I(∗ )-paracompact.

Proof. Let (X, τ, I) be a semi-I-paracompact space and let A

be a Ig-closed subset of X. Let U � Uc|c ∈ Γ  be any cover
of A by open subsets of X. Since A⊆ ∪ c∈ΓUc and A is
Ig-closed, by Lemma 8, Cl∗(A)⊆ ∪ c∈ΓUc. For each
x ∉ Cl∗(A), there exists an open set Gx of X containing x

such that Gx ∩A � ∅. Now, put U0 � Uc|c ∈ Γ ∪
Gx|x ∉ Cl∗(A) . (en, U0 is an open cover of the semi-
I-paracompact space (X, τ, I). Let V � Vλ|λ ∈∇  be a locally
finite semi-I-open refinement of U0. (en, for each λ ∈∇,
either Vλ ⊆Uc(λ) for some c(λ) or Vλ ⊆Gx(λ) for some x(λ).
Put ∇0 � λ ∈∇|Vλ ⊆Uc(λ) . (en, V0 � Vλ|λ ∈ ∇0  is a
locally finite semi-I-open refinement of U and A⊆ ∪ λ∈∇0Vλ.
(us, A is semi-I(∗ )-paracompact. □

Theorem 18. Every open semi-I(∗ )-paracompact subset of
an ideal topological space (X, τ, I) is semi-I-paracompact.

Proof. Let U be an open semi-I(∗ )-paracompact subset of
an ideal topological space (X, τ, I). Let V � Vc|c ∈ Γ  be

6 Journal of Mathematics



any open cover of U by open subsets of the subspace
(U, τ|U, I|U). Since U is open, V is a cover of U by open
subsets of X and so V has a locally finite semi-I-open re-
finement ofW in (X, τ, I). (en,W′0 � W′ ∩U|W′ ∈W  is
a locally finite semi-I-open refinement of V in (U, τ|U, I|U)

and the result follows. □

Theorem 19. Let U be a clopen subspace of an ideal topo-
logical space (X, τ, I).  en, U is semi-I(∗ )-paracompact if
and only if it is semi-I-paracompact.

Proof. It follows from (eorem 18.
Conversely, let V � Vc|c ∈ Γ  be any open cover of U

by open subsets of (X, τ, I). (en, V0 � U∩Vc|c ∈ Γ  is an
open cover of the semi-I|U-paracompact subspace
(U, τ|U, I|U) and so V0 has a locally finite semi-I-open re-
finementW in (U, τ|U, I|U). By Lemma 7, W′ ∈ sIO(X, τ) for
every W′ ∈W. To show thatW is locally finite in (X, τ, I), let
x ∈ X. If x ∈ U, then there exists Gx ∈ τ|U ⊆ τ containing x

such that Gx intersects at most finitely many members of W.
Otherwise, X − U is an open set containing x which in-
tersects no member of W. (erefore, W is locally finite in
(X, τ, I) such that U⊆ ∪ W′|W′ ∈W . (us, U is semi-
I(∗ )-paracompact. □

Corollary 2. Every clopen subspace of a semi-I-paracompact
space is semi-I-paracompact.
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