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+is paper concerned with almost α-cosymplectic manifolds satisfying conformally flat condition. Firstly, we investigate Kaehler
integral submanifolds of almost α-cosymplectic manifolds. Next, we study conformally flat almost α-cosymplectic manifolds of
dim ≥ 5 whose integral submanifolds are Kaehler. Finally, an illustrative example is constructed to verify our result.

1. Introduction

+e notion of conformal flatness is one of the most primitive
concepts in differential geometry. Notwithstanding this fact,
most of the studies have been local character. However,
Kulkarni classified conformally flat manifolds up to con-
formal equivalence [1].

On a Riemannian manifold M, Weyl established a tensor
of type (1, 3) which vanishes whenever the metric is (locally)
conformally equivalent to a flat metric.+erefore, this tensor
is called the conformal curvature tensor of the metric and
defined by

C(X, Y)Z � R(X, Y)Z −
1

(2n − 1)
􏼠 􏼡[S(Y, Z)X − S(X, Z)Y

+ g(Y, Z)QX − g(X, Z)QY]

+
r

(2n(2n − 1))
􏼠 􏼡[g(Y, Z)X − g(X, Z)Y],

(1)

for any vector fields X, Y, andZ on M. Here, we denote by R

and r the Riemann curvature tensor and scalar curvature of
M, respectively [2, 3]. A necessary condition being con-
formally flat for a Riemannian manifold is the vanishing of
the Weyl curvature tensor. It is obvious that the Weyl tensor

vanishes identically in 2 dimensions. In general, it is nonzero
in dimensions ≥ 4. +e metric is locally conformally flat
provided that the Weyl tensor vanishes for 4 dimensions. In
this case, the metric has a local coordinate system where it is
proportional to a constant tensor. In dimension 3, we have

c(X, Y) � ∇XQ( 􏼁Y − ∇YQ( 􏼁X −
1

2(n − 2)
􏼠 􏼡 ∇Xr( 􏼁Y − ∇Yr( 􏼁X􏼂 􏼃.

(2)

Equation (2) is a necessary and sufficient condition for
three-dimensional Riemannian manifold being conformally
flat. Here, c is the divergence operator of C [3].

A (2n + 1)-dimensional Riemannian manifold M2n+1 is
conformally flat if and only if the Weyl conformal curvature
tensor C vanishes for any vector fields X, Y, andZ when
n> 2 or the tensor L of type (1, 1) defined as

LX �
1

2n − 1
􏼒 􏼓 QX −

r

4n
􏼒 􏼓X􏼒 􏼓, (3)

for any vector field X, is of Codazzi type when n � 1. Here, Q
is the Ricci operator associated with the Ricci tensor S and r

is the scalar curvature [4].
In contact metric manifolds, Okumura obtained that a

conformally flat Sasakian manifold of dimension > 3 is
locally isometric to the unit sphere [5]. Later, this result was
extended to the K-contact manifolds by Tanno for
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dimension ≥ 3. Gosh and Sharma showed that a con-
formally flat contact strongly pseudo-convex integrable CR
manifold is locally isometric to a unit sphere if the char-
acteristic vector field is an eigenvector of the Ricci tensor at
each point [6]. Afterwards, Gosh et al. obtained that a
conformally flat contact strongly pseudo-convex integrable
CR manifold of dimension > 3 is of constant curvature 1
[7].

Moreover, if an almost cosymplectic manifold with di-
mension (2n + 1) is conformally flat (n≥ 2), then it is locally
flat and cosymplectic [8]. Conversely to this, there exist
conformally flat almost cosymplectic manifolds with Kaehler
leaves which are not locally flat and not cosymplectic in
dimension 3 [8].

Recently, Blair et al. have focused on almost contact
metric manifolds with conformally flat condition [9]. +e
authors construct an illustrative example of 3-dimensional
conformally flat almost α-Kenmotsu manifold whose sec-
tional curvature is nonconstant. Furthermore, they consider
conformally flat almost contact metric manifolds which are
∗ − η-Einstein manifold with dim ≥ 5. Moreover, Wang
investigated conformally flat almost Kenmotsu manifold of
k-dimension 3 [4]. After these studies, we also point out that
Weyl conformal curvature tensor has been studied exten-
sively by Venkatesha et al. [10].

In this paper, we study the geometry of conformally flat
almost α-cosymplectic manifolds. We aim at characterizing
and classifying conformally flat almost α-cosymplectic
manifolds. +en, we obtain the curvature properties of al-
most α-cosymplectic manifolds with Kaehler integral sub-
manifolds and investigate almost α-cosymplectic manifolds
of dim ≥ 5 which are Kaehler integral submanifolds. Finally,
we give a concrete example of 3-dimensional almost
α-Kenmotsu manifolds.

2. Preliminaries

Let M2n+1 be a (2n + 1)-dimensional smooth manifold
endowed with a triple (ϕ, ξ, η) where ϕ is a type of (1, 1)
tensor field, ξ is a vector field, and η is a 1-form on M2n+1

such that

η(ξ) � 1,

ϕ2 � − I + η⊗ ξ,

ϕξ � 0,

η ∘ϕ � 0,

rank(ϕ) � 2n.

(4)

If M2n+1 admits a Riemannian metric g, defined by

g(ϕX, ϕY) � g(X, Y) − η(X)η(Y), η(X) � g(X, ξ),

(5)

then M2n+1 is called almost contact structure (ϕ, ξ, η, g).
Also, the fundamental 2-form Φ of M2n+1 is defined by

Φ(X, Y) � g(ϕX, Y). If the Nijenhuis tensor vanishes, de-
fined by

Nϕ(X, Y) � [ϕX, ϕY] − ϕ[ϕX, Y] − ϕ[X, ϕY]

+ ϕ2[X, Y] + 2dη(X, Y)ξ,
(6)

then (M2n+1, ϕ, ξ, η) is said to be normal [3]. It is obvious that
a normal almost Kenmotsu manifold is said to be Kenmotsu
manifold. In other words, an almost contact metric manifold
is known as Kenmotsu if and only if (∇Xϕ)Y � g(ϕX, Y)ξ −

η(Y)ϕX [11]. An almost contact metric structure is cosym-
plectic if and only if ∇η and ∇Φ are closed [12].

In the light of the above definitions, the generalization of
almost Kenmotsu manifold M2n+1 is called almost α-Ken-
motsu manifold if dη � 0 and dΦ � 2αη∧Φ, where α is a
nonzero real constant [13, 14]. If we combine almost
α-Kenmotsu and almost cosymplectic manifolds, then we
introduce a new notion of an almost α-cosymplectic man-
ifold defined by dη � 0 and dΦ � 2αη∧Φ for any real
number α [15]. A normal almost α-cosymplectic manifold is
said to be α-cosymplectic manifold, and it is either
cosymplectic or α-Kenmotsu under the condition α � 0 or
α≠ 0, respectively [16–19].

Let M2n+1 be an almost α-cosymplectic manifold
endowed with (ϕ, ξ, η, g). D is the contact distribution of
M2n+1 given by D � kerη. Since dη � 0, D is integrable and
the (2n)-dimensional distribution is defined by ϕ(D) � D.
Moreover, it is clear that ξ is orthogonal to D. Assume that
N is a maximal integral submanifold of D. +erefore, the ξ
restricted to integral submanifold N is the normal vector of
N. +us, there exists a Hermitian structure and the tensor
field ϕ induces an almost complex structure J defined by
JX � ϕX for any vector field X tangent to N [12, 13, 20].

Suppose that G is the Riemannian metric induced on N

defined by G(X, Y) � g(X, Y). +en, (J, G) has an almost
Hermitian structure on N given byG(X, Y) � G(JX, JY) for
any vector field X and Y tangent to N. +e fundamental 2-
form Ω,Ω(X, Y) � G(JX, Y) of (J, G) induced on N. +is
means thatΩ(X, Y) � Φ(X, Y), i.e.,Ω is the pull-back of the
tensor field ϕ from M2n+1 to N. Since Ω is closed, we obtain
dΩ � 0. +us, the pair (J, G) is an almost Kaehler structure
on N of D. When the structure J is complex, (J, G) becomes
a Kaehler structure onN. If the structure (J, G) is Kaehler on
every integral submanifolds of the distribution D, this
manifold is said to be an almost α-cosymplectic manifold
with Kaehler integral submanifolds.

Denote by A and h the (1, 1) tensor fields on M2n+1

defined by

A � − ∇ξ,

h �
1
2

􏼒 􏼓Lξϕ,

(7)

respectively. Here, L is the Lie derivative of g. Obviously,
A(ξ) � 0 and h(ξ) � 0. +us, we the following relations for
any vector fields X, Y on M2n+1 [16]:

2 Journal of Mathematics



∇Xξ � − αϕ2X − ϕhX, (8)

(ϕ ∘ h)X +(h ∘ ϕ)X � 0,

(ϕ ∘A)X +(A ∘ ϕ)X � − 2αϕ,
(9)

tr(h) � 0,

tr(A) � − 2αn,

tr(ϕA) � 0,

Aϕ + ϕA � − 2α,

(10)

∇XA( 􏼁ξ � A
2
X, tr A

2
􏼐 􏼑 � A

2����
����. (11)

3. Curvature Properties

+is section deals with the fundamental curvature equations
of almost α-cosymplectic manifolds with Kaehler integral
submanifolds. Let us give the basic propositions that we will
use in later usage. +e proof of some propositions are left to
the reader for shortness.

Proposition 1. Let M2n+1 be an almost α-cosymplectic
manifold. /en, we have

R(X, Y)ξ � α2[η(X)Y − η(Y)X] − α[η(X)ϕhY

− η(Y)ϕhX] + ∇Yϕh( 􏼁X − ∇Xϕh( 􏼁Y,
(12)

R(X, Y)ξ � − ∇XA( 􏼁Y + ∇YA( 􏼁X, (13)

R(X, ξ)ξ � α2ϕ2X + 2αϕhX − h
2
X + ϕ ∇ξh􏼐 􏼑X, (14)

∇ξh􏼐 􏼑X � − ϕR(X, ξ)ξ − α2ϕX − 2αhX − ϕh
2
X, (15)

R(X, ξ)ξ − ϕR(ϕX, ξ)ξ � 2 α2ϕ2X − h
2
X􏽨 􏽩, (16)

S(X, ξ) � − 2nα2η(X) − 􏽘
2n+1

i�1
g ∇ei

ϕh􏼐 􏼑ei, X􏼐 􏼑, (17)

tr(l) � − 2nα2 + tr h
2

􏼐 􏼑􏽨 􏽩, (18)

where l � R(., ξ)ξ is the Jacobi operator with respect to ξ. By
direct computations, we have the following proposition.

Proposition 2. An almost α-cosymplectic manifold M2n+1

with Kaehler integral submanifolds holds the following
equation:

R(X, Y)ϕZ − ϕR(X, Y)Z � g(AX, ϕZ)AY − g(AY, ϕZ)AX − g(AX, Z)ϕAY + g(AY, Z)ϕAX

+ η(Z)ϕ ∇XA( 􏼁Y − ∇YA( 􏼁X( 􏼁 + g ∇XA( 􏼁Y − ∇YA( 􏼁X, ϕZ( 􏼁ξ

� g(AX, ϕZ)AY − g(AY, ϕZ)AX − g(AX, Z)ϕAY + g(AY, Z)ϕAX − η(Z)ϕ(R(X, Y)ξ)

− g(R(X, Y)ξ, ϕZ)ξ.

(19)

Remark 1. +e Ricci operator Q does not have to commute
with the basic collineation ϕ for a contact metric manifold.
Now, we give this condition for almost α-cosymplectic
manifold M2n+1 with Kaehler integral submanifolds.

Proposition 3. Let M2n+1 be an almost α-cosymplectic
manifold with Kaehler integral submanifolds. /e following
identity is held:

Qϕ − ϕQ � lϕ − ϕl + 4α(1 − n)ϕA + 4α2(1 − n)ϕX

+(η ∘Qϕ)ξ − η ∘ (ϕQξ).
(20)

Proof. Using (5) and (19), one obtains

g(ϕR(ϕX, ϕY)Z, ϕW) � g(ϕR(Z, W)X, ϕY) + g(AZ, ϕX)g(AW, ϕY) − g(AW, ϕX)g(AZ, ϕY)

− g(AZ, X)g(ϕAW, ϕY) + g(AW, X)g(ϕAZ, ϕY) − η(X)g(ϕR(Z, W)ξ,ϕY) − η(R(ϕX, ϕY)Z)η(W).

(21)

Putting X � ϕX and Y � ϕY in (19), we have

g(R(ϕX, ϕY)ϕZ,ϕW) − g(ϕR(ϕX, ϕY)Z, ϕW) � g(AϕX, ϕZ)g(AϕY, ϕW) − g(AϕY, ϕZ)g(AϕX, ϕW)

− g(AϕX, Z)g(ϕAϕY, ϕW) + g(AϕY, Z)g(ϕAϕX, ϕW)

− η(Z)g(ϕR(ϕX, ϕY)ξ,ϕW).

(22)
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Substituting of (21) into (22) yields immediately

g(R(ϕX, ϕY)ϕZ, ϕW) � g(ϕR(Z, W)X, ϕY) + g(AZ, ϕX)g(AW, ϕY) − g(AW, ϕX)g(AZ, ϕY)

− g(AZ, X)g(ϕAW, ϕY) + g(AW, X)g(ϕAZ, ϕY) − η(X)g(ϕR(Z, W)ξ, ϕY) − η(R(ϕX, ϕY)Z)η(W)

+ g(AϕX, ϕZ)g(AϕY, ϕW) − g(AϕY, ϕZ)g(AϕX, ϕW) − g(AϕX, Z)g(ϕAϕY, ϕW)

+ g(AϕY, Z)g(ϕAϕX, ϕW) − η(Z)g(ϕR(ϕX, ϕY)ξ,ϕW).

(23)

By the help of (5), (23) can be written as

g(R(ϕX, ϕY)ϕZ, ϕW) � g(R(Z, W)X, Y) − η(R(Z, W)X)η(Y) − g(AZ, X)g(AW, Y)

+ g(AW, X)g(AZ, Y) − η(X)g(R(Z, W)ξ, Y) − η(R(ϕX, ϕY)Z)η(W) + g(AϕX, ϕZ)g(AϕY, ϕW)

− g(AϕY, ϕZ)g(AϕX, ϕW) − η(Z)g(ϕR(ϕX,ϕY)ξ, ϕW).

(24)

Contracting with respect to Y and Z, we obtain

− ϕQϕX − QX � − ϕlϕX − lX + 4α(1 − n)A

− 4α2(1 − n)ϕ2X − η(X)Qξ

+ 􏽘

2n+1

i�1
η R ϕX, ϕei( 􏼁ei( 􏼁ξ.

(25)

+e rest of the proof follows acting ϕ on the last
equation. □

Definition 1. Q and Q∗ are the Ricci and ∗ -Ricci operators
of M2n+1 defined by

g(QX, Y) � tr X⟶ R(X, Y)Z{ },

g Q
∗
X, Y( 􏼁 � tr X⟶ ϕR(X, Y)ϕZ􏼈 􏼉,

(26)

and denote by r and r∗ the scalar and ∗ -scalar curvatures of
M2n+1, where

r � tr(Q),

r � tr Q
∗

( 􏼁,
(27)

respectively [8].

Proposition 4. For the Ricci and ∗ -Ricci operators of almost
α-cosymplectic manifold with Kaehler integral submanifolds
M2n+1, we have

QY − Q
∗
Y � 􏽘

2n+1

i�1
g ∇ei

A􏼐 􏼑ei, Y􏼐 􏼑ξ + ∇ξA􏼐 􏼑Y − A
2
Y

+ 2α(n − 1)AY,

(28)

where e1, e2, . . . , e2n, e2n+1 � ξ􏼈 􏼉 is an orthonormal frame at
any point of M2n+1.

Proof. Taking trace of (19) with respect to X yields

g(QY, Z) − g Q
∗
Y, Z( 􏼁 � g(ϕAϕAY, Z) + g A

2
Y, Z􏼐 􏼑 + 2αng(AY, Z)

− η(Z) 􏽘
2n+1

i�1
g ∇eiA( 􏼁Y − ∇YA( 􏼁ei, ei( 􏼁 + g ∇ξA􏼐 􏼑Y − ∇YA( 􏼁ξ, Z􏼐 􏼑.

(29)

By using the properties of A in (29), this ends the
proof. □

Proposition 5. For the scalar and ∗ -scalar curvatures of
almost α-cosymplectic manifold with Kaehler integral sub-
manifolds M2n+1, we obtain

r
∗

− r � 2‖A‖
2

+ 4α2n(n − 1). (30)

Proof. (30) is a direct consequence of (29) by means of (10)
and the following equation:

􏽘

2n+1

i�1
g ∇eiA( 􏼁ξ, ei( 􏼁 � tr A

2
􏼐 􏼑 � ‖A‖

2
. (31)

□
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Proposition 6. For the Ricci operator of almost α-cosym-
plectic manifold with Kaehler integral submanifolds M2n+1,
we have

Qξ � − 􏽘
2n+1

i�1
∇eiA( 􏼁ei,

g(Qξ, ξ) � − ‖A‖
2
.

(32)

Proof. By using the projection of (28) onto ξ and
g(Q∗Y, ξ) � 0, the proof is obvious. □

Proposition 7. An almost α-cosymplectic manifold with
Kaehler integral submanifolds M2n+1 satisfies the following
equation:

ϕR(ξ, ϕY)ξ − R(ξ, Y)ξ � − 2A
2
Y − 4αAY + 4α2ϕ2Y. (33)

Proof. From (13), we get

ϕR(ξ,ϕY)ξ − R(ξ, Y)ξ � − ϕ ∇ξA􏼐 􏼑ϕY + ϕ ∇ϕYA􏼐 􏼑ξ

+ ∇ξA􏼐 􏼑Y − ∇YA( 􏼁ξ.
(34)

+e proof is clear from the right side of equation
(34). □

Proposition 8. Let M2n+1 be an almost α-Kenmotsu man-
ifold (n≥ 2). /en, it has Kaehler integral submanifolds of the
distribution D if and only if it holds

∇Xϕ( 􏼁Y � − g(ϕAX, Y)ξ + η(Y)ϕAX, (35)

where AX � αϕ2X + ϕhX.

Proof. By using similar technique in [8], the proof is
clear. □

Proposition 9. Let M2n+1 be an almost α-Kenmotsu man-
ifold (n≥ 2). If M2n+1 is conformally flat, then M2n+1 is a
space of constant negative curvature − α2.

Proof. By the help of [11, 15], we can complete the proof.
□

4. Conformal Flatness Condition

+is section is devoted to study conformally flat almost
α-cosymplectic manifolds whose integral submanifolds are
Kaehler.

Theorem 1. If M2n+1 is a conformally flat almost
α-cosymplectic manifold with Kaehler integral submanifolds
(n≥ 2), then ξ is the eigenvector of Ricci operator on M2n+1

Proof. Substituting ξ for X in (19), we have

R(ξ, Y)ϕZ − ϕR(ξ, Y)Z � η(Z)ϕlY − g(ϕlY, Z)ξ. (36)

Let ei􏼈 􏼉 be an orthonormal basis of vector fields on
M2n+1. Taking Y � Z � ei in (36) for i � 1, 2, . . . , 2n + 1, then
we get

􏽘

2n+1

i�1
R ξ, ei( 􏼁ϕei � ϕQξ, (37)

where tr(ϕl) � 0. Since M2n+1 is conformally flat and n≥ 2,

C is identically zero. So, we can write

R(X, Y)Z �
1

(2n − 1)
􏼠 􏼡(S(Y, Z)X − S(X, Z)Y

+ g(Y, Z)QX − g(X, Z)QY)

−
r

2n(2n − 1)
􏼠 􏼡(g(Y, Z)X − g(X, Z)Y).

(38)

Putting X � ξ, Y � ei, and Z � ϕei in (38) and summing
over i, we obtain

􏽘

2n+1

i�1
R ξ, ei( 􏼁ϕei �

1
(2n − 1)

[tr(Qϕ)ξ +(ϕQ)ξ]. (39)

From (37) and (39), we have

ϕQξ �
1

(2n − 1)
[tr(Qϕ)ξ +(ϕQ)ξ], (40)

where tr(Qϕ) � 0 and ϕQξ � 0. Following from (40), we can
complete the proof. □

Theorem 2. If M2n+1 is a conformally flat almost
α-cosymplectic manifold with Kaehler integral submanifolds
(n≥ 2), then we have

tr(l) �
r

2
+ α2n(2n − 1). (41)

Proof. By the hypothesis, we have

g Q
∗
Y, Z( 􏼁 �

1
2n − 1

􏼒 􏼓[g(QϕY, ϕZ)X + g(QY, Z)

− g(Qξ, Y)η(Z) − g(X, Z)QY]

+
r

2n(2n − 1)
􏼠 􏼡[g(Y, Z) − η(Y)η(Z)].

(42)

It follows that

r
∗

�
1

2n − 1
􏼒 􏼓[r − 2g(Qξ, ξ)]. (43)

+en, making use of (32) and (43), we get

r
∗

�
1

2n − 1
􏼒 􏼓 r + 2‖A‖

2
􏼐 􏼑. (44)

Since n≥ 2, from (30) and (44), we have
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r
∗

� − 2α2n,

‖A‖
2

� −
r

2
− α2n(2n − 1).

(45)

Taking into account (32) and (42), we deduce

g Q
∗
Y, Z( 􏼁 − g Q

∗
Z, Y( 􏼁 �

1
(2n − 1)

􏽘

2n+1

i�1
g ∇eiA( 􏼁ei, Y( 􏼁η(Z) − g ∇eiA( 􏼁ei, Z( 􏼁η(Y)⎡⎣ ⎤⎦. (46)

On the other hand, using (28) and (30) in (46), we have

g Q
∗
Y, Z( 􏼁 − g Q

∗
Z, Y( 􏼁 � 􏽘

2n+1

i�1
g ∇eiA( 􏼁ei, Y( 􏼁η(Z) − g ∇eiA( 􏼁ei, Z( 􏼁η(Y). (47)

From (46) and (47), it follows that

􏽘

2n+1

i�1
∇eiA( 􏼁ei � 􏽘

2n+1

i�1
g ∇eiA( 􏼁ei, ξ( 􏼁ξ. (48)

Taking into account (45) and (48), one obtains

􏽘

2n+1

i�1
∇eiA( 􏼁ei � ‖A‖

2ξ �
− r

2
􏼒 􏼓ξ − α2n(2n − 1)ξ. (49)

Finally, making use of (32) and (49) and +eorem 1, the
proof ends. □

Theorem 3. A conformally flat almost α-cosymplectic
manifold M2n+1(n≥ 2) with Kaehler integral submanifolds
satisfies the following equation:

Q �
r

4n
􏼒 􏼓 +

2n − 1
4n

􏼒 􏼓rη⊗ ξ +
α2

2
􏼠 􏼡(2n − 1)

2η⊗ ξ

+ α(2n − 1)A +
α2

2
􏼠 􏼡(2n − 1).

(50)

Proof. From (42), we have

Q
∗
Y �

1
2n − 1

􏼒 􏼓(− ϕQϕY + QY) −
1

2n(2n − 1)
􏼠 􏼡rY

− n −
1

2n(2n − 1)
􏼠 􏼡rη(Y)ξ − α2nη(Y)ξ.

(51)

Putting X � ξ in (13), we get

R(ξ, Y)ξ � − ∇ξA􏼐 􏼑Y + A
2
Y. (52)

On the other hand, using (38) and (41), it follows that

R(ξ, Y)ξ � −
1

2n − 1
􏼒 􏼓QY − n −

1
2n(2n − 1)

􏼠 􏼡rY

+
1
2n

􏼒 􏼓rη(Y)ξ + 2α2nη(Y)ξ − α2nY.

(53)

+e last two equalities lead to

∇ξA􏼐 􏼑Y � A
2
Y +

1
2n − 1

􏼒 􏼓QY + n −
1

2n(2n − 1)
􏼠 􏼡rY

−
1
2n

􏼒 􏼓rη(Y)ξ − 2α2nη(Y)ξ + α2nY.

(54)

In view of (28), (49), (51), and (54), one finds

(2n − 3)QY + ϕQϕY �
n − 2
2n

􏼒 􏼓rY +
(n − 1)

2

n
􏼠 􏼡rη(Y)ξ

+ 2α2n(n − 2)(2n − 1)η(Y)ξ

+ α2n(2n − 1)Y + 2α(n − 1)(2n − 1)AY.

(55)

Substituting ϕY for Y in (55) and using (41), we have

(2n − 3)ϕQϕY + QY � −
n − 2
2n

􏼒 􏼓rY +
n − 1

n
􏼒 􏼓rη(Y)ξ

+ 2α2(2 − n)(2n − 1)η(Y)ξ

+ α2(3n − 4)(2n − 1)Y

+ 2α(n − 1)(2n − 1)AY.

(56)

Finally, this proof ends using (55) and (56).
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Theorem 4. Let M2n+1 be a conformally flat almost
α-cosymplectic manifold with Kaehler integral submanifolds
(n≥ 2). /en, the following relation is held:

Qϕ − ϕQ � lϕ − ϕl − 4α(n − 1)ϕA + 4α2(n − 1)ϕX. (57)

Proof. +e proof follows from (20) and +eorem 1 in
[8]. □

Theorem 5. Let M2n+1 be an almost α-cosymplectic manifold
with Kaehler integral submanifolds (n≥ 2). If M2n+1 is
conformally flat, then M2n+1 is either locally flat and
cosymplectic or M2n+1 is an α-Kenmotsu manifold with
constant negative curvature − α2.

Proof. Let M2n+1 be an almost α-cosymplectic manifold with
Kaehler integral submanifolds. Assume additionally that
M2n+1 is conformally flat and n≥ 2. At certain places of the
main idea of the proof, we are inspired by the paper of Dacko
and Olszak [8]. Also, the almost cosymplectic case (α � 0) is
clear by means of +eorem 1 in [8].

Now, we shall prove the assertion of our theorem in case
of α≠ 0. Since n≥ 3, (50) holds. +us, the auxiliary tensor L

has the following shape:

LX � QX −
1
4n

􏼒 􏼓rX. (58)

From (50) and (58), L can be written as

LX � 2n −
1
4n

􏼒 􏼓rη(X)ξ +
α2

2
􏼠 􏼡(2n − 1)

2η(X)ξ

+ α(2n − 1)AX +
α2

2
􏼠 􏼡(2n − 1)X.

(59)

In view of (7), (10), and (59) with X � ξ, we obtain
2n − 1
4n

􏼒 􏼓(ξ(r)η(Y)ξ − Y(r)ξ) + α(2n − 1)

· ∇ξA􏼐 􏼑Y􏼐 􏼑 +
2n − 1
4n

􏼒 􏼓r +
α2

2
􏼠 􏼡

· (2n − 1)
2

− (α(2n − 1)A)AY � 0,

(60)

where ξ(r)η(Y)ξ � Y(r)ξ. So, the last equation reduces to

0 � α(2n − 1) ∇ξA􏼐 􏼑Y􏼐 􏼑 +
2n − 1
4n

􏼒 􏼓r

+
α2

2
􏼠 􏼡(2n − 1)

2
− α(2n − 1)A)AY.

(61)

Replacing X and Y by ξ in (38) and using (50), we find
that

lX � −
tr(l)

2n
􏼠 􏼡ϕ2X + αϕhX. (62)

+en, using (52) and (62), we have

∇ξA􏼐 􏼑Y � −
tr(l)

2n
􏼠 􏼡ϕ2X + αϕhX + A

2
Y. (63)

Following from (61) and (63), we get

tr(l)

2n
􏼠 􏼡 + α2􏼠 􏼡ϕhX � 0. (64)

Also, using (18) and (64), one obtains

−
tr h

2
􏼐 􏼑

2n
⎛⎝ ⎞⎠ϕhX � 0, (65)

which reduces to h � 0. Finally, we can use Proposition 9 to
complete the proof. □

Remark 2. It is noted that +eorem 5 generalizes the result
of Dacko and Olszak [8].

Example. Considering M3 � (x, y, z) ∈ R3􏼈 􏼉 such that
(x, y, z) are the standard coordinates in R, the vector fields
are

E1 � λ2e
− αz z

zx
􏼠 􏼡 + λ1e

− αz z

zy
􏼠 􏼡,

E2 � − λ1e
− αz z

zx
􏼠 􏼡 + λ2e

− αz z

zy
􏼠 􏼡,

E3 �
z

zz
􏼠 􏼡,

(66)

where g1 andg2 are given by g1(z) � λ2e− αz and g2(z) �

λ1e− αz with λ21 + λ22 ≠ 0, α≠ 0 for constants λ1, λ2, and α. Also,
the set of E1, E2, E3􏼈 􏼉 is linearly independent at each point of
M3. Let g be the Riemannian tensor product given by

g � g
2
1 + g

2
2􏼐 􏼑

− 1
(dx⊗ dx + dy⊗ dy) + dz⊗ dz. (67)

Let η be the 1-form defined by η(X) � g(X, E3) and ϕ be
the (1, 1) tensor field defined by

ϕ e1( 􏼁 � e2,

ϕ e2( 􏼁 � − e1,

ϕ e3( 􏼁 � 0.

(68)

Furthermore, we can calculate

E1, E3􏼂 􏼃 � αe1,

E2, E3􏼂 􏼃 � αe2,

E1, E2􏼂 􏼃 � 0,

∇E1
E1 � − αE3, ∇E2

E1 � − E3, ∇E3
E1 � 0,

∇E1
E2 � − E3, ∇E2

E2 � − αE3, ∇E3
E2 � 0,

∇E1
E3 � αE1, ∇E2

E3 � αE2, ∇E3
E3 � 0.

(69)

+us, we can check the only nonzero components of Φ.
Namely, we get
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Φ
z

zx
,

z

zy
􏼠 􏼡 � − g

2
1 + g

2
2􏼐 􏼑

− 1
� − λ21 + λ22􏼐 􏼑

− 1
e
2αz

. (70)

Since η � dz, it implies that dΦ � 2α(η∧Φ) on M3.
Moreover, Nijenhuis torsion tensor of ϕ vanishes.

For the curvature operator R, the nonzero components
are as follows:

R E1, E2( 􏼁E1 � α αE2 − E1( 􏼁, R E1, E3( 􏼁E2

� αE3, R E1, E2( 􏼁E2 � α E2 − αE1( 􏼁,

R E1, E3( 􏼁E1 � α2E3, R E1, E3( 􏼁E3 � − α2E1,

R E2, E3( 􏼁E1 � αE3,

R E2, E3( 􏼁E3 � − α2E2, R E2, E3( 􏼁E2 � α2E3,

R E3, E2( 􏼁E1 � − αE3.

(71)

Clearly, g is not locally flat.
For the Ricci tensor S, assume Sij � S(Ei, Ej); then, we

obtain Sii � − 2α2 and r � − 6α2. Consequently, the Ricci
operator Q satisfies the equations

QE1 � bE1 + αE2,

QE2 � αE1 + bE2,

QE3 � bE3,

(72)

with b � − 2α2. For the auxiliary operator L of M3, we have

LE1 � aE1 + αE2,

LE2 � αE1 + aE2,

LE3 � aE3,

(73)

with a � − (2α2 + (r/4)), r � 4(b − a) where L is defined by
L � (Q − (r/4)I).

To obtain the conformal flatness of g, it remains to verify
the Codazzi condition for L. Namely,

0 � − L Ei, Ej􏽨 􏽩 − ∇Ej
LEi + ∇Ei

LEj, (74)

for 1≤ i< j≤ 3. It is seen that the Codazzi condition does not
hold. +us, the manifold M3 is not conformally flat and has
constant sectional curvature K � − α2.

5. Conclusion and Discussion

A Riemannian manifold is conformally flat if each point has
a neighborhood that can be mapped to flat space by a
conformal transformation [2, 3]. +ere exist conformally flat
contact metric manifolds which are not constant curvature
[9]. However, this is an open problem in dimensions ≥ 5. In
recent years, some authors have studied this area for almost
contact metric manifolds [4, 8, 9].

+is paper deals with the conformally flat almost
α-cosymplectic manifolds given by Kaehler integral sub-
manifolds. Our main target is to make some generalizations
and classifications on such manifolds, and certain results are
proved in the last two sections. [20].
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