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In chemistry, graphs are commonly used to show the structure of chemical compounds, with nodes and edges representing the
atom and bond types, respectively. Edge resolving set λe is an ordered subset of nodes of a graph C, in which each edge of C is
distinctively determined by its distance vector to the nodes in λ. %e cardinality of a minimum edge resolving set is called the edge
metric dimension of C. An edge resolving set Le,f of C is fault-tolerant if λe,f∖b is also an edge resolving set, for every b in λe,f.
Resolving set allows obtaining a unique representation for chemical structures. In particular, they were used in pharmaceutical
research for discovering patterns common to a variety of drugs. In this paper, we determine the exact edge metric and fault-
tolerant edge metric dimension of benzenoid tripod structure and proved that both parameters are constant.

1. Introduction

Mathematical chemistry has recently presented a wide range
of approaches to understanding the chemical structures that
underpin existing chemical theories and developing and
exploring new mathematical models of chemical phenom-
ena and applying mathematical concepts and processes to
chemistry. Only a few scientists have been convinced to
exploit linkages betweenmathematics and chemistry and the
possibility of using arithmetic to deduce known and an-
ticipate new chemical characteristics, throughout the history
of science. In many areas of physical chemistry, such as
thermodynamics and compound energy, extensive use of
mathematical approaches is commonplace. After physicists
revealed in the first few years of the twentieth century that
the key features of chemical compounds can be predicted
using quantum theory approaches, a significant need for
mathematics in chemistry arose. %e main driving force that
drove the mathematics and its concepts into chemistry
laboratories was the realization that chemistry cannot be
comprehended without knowledge of quantum physics,
including its complicated mathematical instruments. For the

different study of mathematical chemistry in terms of graph
theory, we suggest some literature here [1].

Chemical graph theory is a branch of mathematical
science that is used to characterise the structural properties
of molecules, processes, crystals, polymers, clusters, and
other objects.%e vertex of a chemical graph theory might be
an electron, an atom, a molecule, a collection of atoms,
intermediates, orbitals, and many other things. Intermo-
lecular bonding, bonded and nonbonded connections, basic
reactions, and other forces such as van der Waals forces,
Keesom forces, and Debye forces can all be used to illustrate
the relationships between vertices of a structure.

%e general convex polytope structures are discussed in
[2, 3], in which authors consider the problem of edge metric
resolvability. In the reply to aroused question from seminal
work of edge resolvability, Raza and Bataineh [4] answered
some questions and provided interesting results as well as
analysis between vertex and edge resolvability. %e detailed
discussion of identifying edges and vertices of general graph
is studied in [5]. Necklace graph’s edge resolvability is
discussed in [6]. Polycyclic aromatic hydrocarbons in terms
of edge and fault-tolerant edge resolvability are deeply
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investigated in [7]. %e generalized version of edge
resolvability is introduced in [8]. Few efficient techniques of
finding edge resolving set are found in [9]. %e graph having
larger edge resolvability rather than vertex resolvability is
generally studied in [10]. %e generalized Peterson graph’s
edge resolvability is found in [11]. %e k-multiwheel graph
point of discussion with its edge resolvability is found in
[12].

Slater [13] presented the idea of resolving sets, which was
later discussed by Harary andMelter [14]. Metric generators,
as detailed in [15, 16], allow for alternative representations of
chemical substances. Precisely, they were used in pharma-
ceutical research for determining patterns similar to a variety
of drugs [17]. Metric dimension has various other appli-
cations, such as robot navigation [18], weighing problems
[19], computer networks [20], combinatorial optimization
[21], image processing, facility location problems, and sonar
and coastguard loran [13]; for further detail, see [22, 23].
Due to its variety of applications, the concept of metric
dimension is widely used to solve many difficult problems.
Hussain et al. [24], Krishnan et al. [25], and Siddiqui et al.
[26] have computed the resolvability parameter for alpha-
boron nanotube, certain crystal structures, and certain
nanotube lattices, respectively. For the NP-harness of these
topics, for example, and for the metric dimension [27, 28]
and application along with its NP-hardness, see [29]. Rather
than separating two unique vertices of a graph based on a
subset of vertices, two edges might be distinguished based on
the same subset of vertices. Kelenc et al. [30] created a new
parameter called the edge metric dimension to represent this
idea. %ey employed graph metric to identify each pair of
edges based on the graph’s distance from a selection of
vertices.

%e following are basic preliminaries for the concepts
studied here.

Definition 1 (see [31]). Assume that C is an associated graph
of chemical structure/network, whose vertex/node set are
denoted by symbol N(C) or simply N, while B(C) or B is the
edge/bond set, and the shortest distance between two bonds
b1, b2 ∈ N(C) is denoted by Sb1 ,b2

and calculated by counting
the number of bonds while moving through the b1 − b2 path.

Definition 2 (see [32]). %e distance between an edge e �

b1b2 ∈ B(C) and a node b ∈ N(C) is counted by the relation
Se, b � min Sb1, b, Sb2, b􏼈 􏼉. Assuming a subset of selected
nodes λe, if the position p(e|λe) of each edge e is unique of a
graph, then λe is called as edge metric resolving set and
dime(C) is the minimum count of members of λe, called as
edge metric dimension.

Definition 3. Assuming that any of the member of edge
metric resolving set λe is not working or any of the node
from κ members is spoiled, then one cannot get the unique
position of the entire edge set. To tackle this issue, the
definition is known as fault-tolerant edge resolving set which
is dealt with by eliminating any of the member from λe and
still obtains the unique position of the entire edge set of a
graph, symbolized as λe,f, and the minimummembers in the
set denoted as dime,f(C) and named as fault-tolerant edge
metric dimension.

Theorem 1 (see [30]). If dime(C) is the edge metric di-
mension, then dime(C) � 1, iff C is a path Pn.

2. Construction of Tripod Structure

Because it is significant in theoretical chemistry, benzenoid
systems are natural graph representations of benzenoid
hydrocarbons. It is a well-known fact that hydrocarbons
generated from benzenoids are important and beneficial in
the chemical, food, and environmental industries, according
to [33]. %e authors in [34] describe the benzenoid system
we mentioned above in our work. Polynomial types were
discussed in relation to various catacondensed and peri-
condensed benzenoid structures. %is is a pericondensed
benzenoid tripod construction. It has 4(δ1 + δ2 + δ3) − 8
nodes and 5(δ1 + δ2 + δ3) − 11 bonds, with all the running
parameters δ1, δ2, δ3 ≥ 2. Furthermore, Jamil et al. [35]
provide a comprehensive topological investigation of ben-
zenoid structures, and metric-based study of benzenoid
networks is available in [36]. %e node and bond or vertex
and edge set for the benzenoid structure T(δ1, δ2, δ3) is
shown as follows. In our primary results, we apply the la-
belling of nodes and edges specified in Figure 1.

N T δ1, δ2, δ3( 􏼁( 􏼁 � aκ: 1≤ κ≤ 2δ3􏼈 􏼉∪ bκ: 1≤ κ≤ 2δ1􏼈 􏼉∪ cκ, cκ′: 1≤ κ≤ 2δ2 − 1􏼈 􏼉

∪ aκ′: 1≤ κ≤ 2δ3 − 3􏼈 􏼉∪ bκ′: 1≤ κ≤ 2δ1 − 3􏼈 􏼉,

B T δ1, δ2, δ3( 􏼁( 􏼁 � aκaκ+1: 1≤ κ≤ 2δ3 − 1􏼈 􏼉∪ bκbκ+1: 1≤ κ≤ 2δ1 − 1􏼈 􏼉

∪ cκcκ+1, cκ′cκ+1′ : 1≤ κ≤ 2δ2 − 2􏼈 􏼉∪ aκ′aκ+1′ : 1≤ κ≤ 2δ3 − 4􏼈 􏼉

∪ bκ′bκ+1′ : 1≤ κ≤ 2δ1 − 4􏼈 􏼉∪ aκaκ′: 1≤ κ(odd)≤ 2δ3 − 3􏼈 􏼉

∪ bκ+3bκ′: 1≤ κ(odd)≤ 2δ1 − 3􏼈 􏼉∪ cκcκ′: 1≤ κ(odd)≤ 2δ2 − 1􏼈 􏼉

∪ a2δ3b1, a2δ3−1c1′, b2c1, a2δ3−3′c2′, b1′c2,􏽮 􏽯.

(1)
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Lemma 1. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then the minimum members in its edge
resolving set are two.

Proof. %e total number of nodes in the corresponding
graph of benzenoid tripod with δ1, δ2, δ3 ≥ 2 is 4(δ1 + δ2 +

δ3) − 8 and to check the possibilities of edge resolving set
with cardinality two is C(4(δ1 + δ2 + δ3) − 8, 2) �

((4(δ1 + δ2 + δ3) − 8)!/(2 × (4(δ1 + δ2 + δ3) − 10)!)). Here,
we are checking with cardinality two because by %eorem 1,
the edge resolving set with cardinality one is reserved for
path graph only. Now due to the NP-hardness of choosing
edge resolving set, we cannot find the exact number of edge
resolving sets for a graph, but from
((4(δ1 + δ2 + δ3) − 8)!/(2 × (4(δ1 + δ2 + δ3) − 10)!))-possi-
bilities, we choose a subset λe and defined as λe � a1, b1􏼈 􏼉.
Now to prove this claim that λe is actually one of the
candidates for the edge resolving set of benzenoid tripod
graph or T(δ1, δ2, δ3), we will follow Definition 2. To fulfill
the requirements of definition, we will check the unique
positions or locations of each edge and the methodology is
defined above in Definition 2.

Positions p(aκaκ+1|λe) with respect to λe, for the edges
aκaκ+1 with κ � 1, 2, . . . , 2δ3 − 1, are given as

p aκaκ+1|λe( 􏼁 � κ − 1, 2δ3 − κ( 􏼁. (2)

Positions p(bκbκ+1|λe) with respect to λe, for the edges
bκbκ+1 with κ � 1, 2, . . . , 2δ1 − 1, are given as

p bκbκ+1|λe( 􏼁 � 2δ3 + κ − 1, κ − 1( 􏼁. (3)

Positions p(cκcκ+1|λe) with respect to λe, for the edges
cκcκ+1 with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκcκ+1|λe( 􏼁 �
2δ3, κ + 1( 􏼁, if κ � 1, 2,

2δ3 + κ − 3, κ + 1( 􏼁, if κ � 3, 4, . . . , 2δ2 − 1.
􏼨

(4)

Positions p(aκ′aκ+1′ |λe) with respect to λe, for the edges
aκ′aκ+1′ with κ � 1, 2, . . . , 2δ3 − 4, are given as

p aκ′aκ+1′ |λe( 􏼁 � κ, 2δ3 + 1 − κ( 􏼁. (5)

Positions p(bκ′bκ+1′ |λe) with respect to λe, for the edges
bκ′bκ+1′ with κ � 1, 2, . . . , 2δ1 − 4, are given as

p bκ′bκ+1′ |λe( 􏼁 � 2δ3 + κ + 1, κ + 3( 􏼁. (6)

Positions p(cκ′cκ+1′ |λe) with respect to λe, for the edges
cκ′cκ+1′ with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκ′cκ+1′|λe( 􏼁 �
2 δ3 − 1( 􏼁, κ + 2( 􏼁, if κ � 1,

2 δ3 − 2( 􏼁 + κ, κ + 2( 􏼁, if κ � 2, 3, . . . , 2δ2 − 1.
􏼨

(7)

Positions p(aκaκ′|λe)with respect to λe, for the edges aκaκ′
with κ � 1, 3, . . . , 2δ3 − 3, are given as

p aκaκ′|λe( 􏼁 � κ − 1, 2δ3 − κ + 1( 􏼁. (8)

Positions p(bκ+3bκ′|λe) with respect to λe, for the edges
bκ+3bκ′ with κ � 1, 3, . . . , 2δ1 − 3, are given as

p bκ+3bκ′|λe( 􏼁 � 2δ3 + κ + 1, κ + 2( 􏼁. (9)

Positions p(cκaκ′|λe) with respect to λe, for the edges cκcκ′
with κ � 1, 3, . . . , 2ml − 3, are given as

p cκcκ′|λe( 􏼁 �
2δ3 − 1, κ + 1( 􏼁, if κ � 1,

2 δ3 − 2( 􏼁 + κ, κ + 1( 􏼁, if κ � 2, 3, . . . , 2δ2 − 1.
􏼨

(10)

Positions of the joint edges are given as

p a2δ3b1|λe􏼐 􏼑 � 2δ3 − 1, 0( 􏼁,

p a2δ3c1
′|λe􏼐 􏼑 � 2δ3 − 2, 2( 􏼁,

p b2c1|λe( 􏼁 � 2δ3, 1( 􏼁,

p a2δ3−3′c2′|λe􏼐 􏼑 � 2δ3 − 3, 4( 􏼁,

p b1′c2|λe( 􏼁 � 2δ3 + 1, 3( 􏼁.

(11)

%e given positions p(.|λe) of all
5(δ1 + δ2 + δ3) − 11-bonds of T(δ1, δ2, δ3) graph of benze-
noid tripod with δ1, δ2, δ3 ≥ 2, with respect to λe, are unique
and no two bonds have the same position p. So we can
conclude that we resolve the bonds of T(δ1, δ2, δ3) with two
nodes. It is implied that the minimum members in the edge
resolving set of T(δ1, δ2, δ3) are two. □

Remark 1. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then

dime T δ1, δ2, δ3( 􏼁( 􏼁 � 2. (12)

Proof. From the definition of edge metric dimension, the
concept is solemnly based on the selected subset (λe) chosen
in such a way that the entire edge set has unique position
with respect to the selected nodes or subset. In Lemma 1, we
already discussed the possibility of selected subset (edge
resolving set) and, according to the definition, its minimum
possible cardinality. In that lemma, we choose λe � a1, b1􏼈 􏼉

as an edge resolving set for the graph of benzenoid tripod or
T(δ1, δ2, δ3) for all the possible combinatorial values of
δ1, δ2, δ3 ≥ 2. We also proved in such lemma that |λe| � 2 is
the least possible cardinality of edge resolving set for the
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Figure 1: Benzenoid tripod with δ1, δ2, δ3􏼈 􏼉 � 3, 3, 4{ }.
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benzenoid tripod T(δ1, δ2, δ3). It is enough for the proof of
what we claim in the statement that edge metric dimension
of benzenoid tripod is two, which completes the proof. □

Lemma 2. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then the minimum members in its fault-
tolerant edge resolving set are four.

Proof. %e total number of nodes in the corresponding
graph of benzenoid tripod with δ1, δ2, δ3 ≥ 2, are 4(δ1 + δ2 +

δ3) − 8 and to check the possibilities of fault-tolerant edge
resolving set with cardinality four are C(4(δ1 + δ2 + δ3) −

8, 4) � ((4(δ1 + δ2 + δ3) − 8)!/(2 × (4(δ1 + δ2+ δ3) − 12)!)).
Here we are checking with cardinality four, and later, we will

also check cardinality three. Now due to the NP-hardness of
choosing fault-tolerant edge resolving set, we cannot find the
exact number of fault-tolerant edge resolving sets for a
graph, but from ((4(δ1 + δ2+ δ3) − 8)!/(2 × (4(δ1 + δ2+
δ3) − 12)!))-possibilities, we choose a subset λe,f and defined
as λe,f � a1, b1, a2δ3, b2δ1􏽮 􏽯. Now to prove this claim that λe,f

is actually one of the candidates for the fault-tolerant edge
resolving set of benzenoid tripod graph or T(δ1, δ2, δ3), we
will follow Definition 3. To fulfill the requirements of def-
inition, we will check the unique positions or locations of
each node and the methodology is defined above in Defi-
nition 3.

Positions p(aκaκ+1|λe,f)with respect to λe,f, for the edges
aκaκ+1 with κ � 1, 2, . . . , 2δ3 − 1, are given as

p aκaκ+1|λe,f􏼐 􏼑 �
κ − 1, 2δ3 − κ, 2δ3 − 1 − κ, 2 δ3 + δ1( 􏼁 − 1 − κ( 􏼁, if κ � 1, 2, . . . , 2δ3 − 2,

κ − 1, 2δ3 − κ, 2δ3 − 1 − κ, 2δ3( 􏼁, if κ � 2δ3 − 1.
􏼨 (13)

Positions p(bκbκ+1|λe,f) with respect to λe,f, for the edges
bκbκ+1 with κ � 1, 2, . . . , 2δ1 − 1, are given as

p bκbκ+1|λe,f􏼐 􏼑 � 2δ3 + κ − 1, κ − 1, κ, 2δ1 − 1 − κ( 􏼁. (14)

Positions p(cκcκ+1|λe,f) with respect to λe,f, for the edges
cκcκ+1 with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκcκ+1|λe,f􏼐 􏼑 �

2δ3, κ + 1, κ + 2, 2δ1 − 2( 􏼁, if κ � 1,

2δ3, κ + 1, κ + 2, 2 δ1 − 2( 􏼁 + κ( 􏼁, if κ � 2,

2δ3 + κ − 3, κ + 1, κ + 2, 2 δ1 − 2( 􏼁 + κ( 􏼁, if κ � 3, 4, . . . , 2δ2 − 1.

⎧⎪⎪⎨

⎪⎪⎩
(15)

Positions p(aκ′aκ+1′ |λe,f) with respect to λe,f, for the edges
aκ′aκ+1′ with κ � 1, 2, . . . , 2δ3 − 4, are given as

p aκ′aκ+1′|λe,f􏼐 􏼑 � κ, 2δ3 + 1 − κ, 2δ3 − κ, 2 δ3 + δ1 − 1( 􏼁 − κ( 􏼁.

(16)

Positions p(bκ′bκ+1′|λe,f) with respect to λe,f, for the edges
bκ′bκ+1′ with κ � 1, 2, . . . , 2δ1 − 4, are given as

p bκ′bκ+1′ |λe,f􏼐 􏼑 � 2δ3 + κ + 1, κ + 3, κ + 4, 2δ1 − 3 − κ( 􏼁.

(17)

Positions p(cκ′cκ+1′ |λe,f) with respect to λe,f, for the edges
cκ′cκ+1′ with κ � 1, 2, . . . , 2δ2 − 2, are given as

p cκ′cκ+1′ |λe,f􏼐 􏼑 �

2 δ3 − 1( 􏼁, κ + 2, κ + 1, 2δ1( 􏼁, if κ � 1,

2 δ3 − 1( 􏼁, κ + 2, κ + 1, 2δ1( 􏼁, if κ � 2,

2 δ3 − 2( 􏼁 + κ, κ + 2, κ + 1, 2δ1 − 3 + κ( 􏼁, if κ � 3, 4, . . . , 2δ2 − 1.

⎧⎪⎪⎨

⎪⎪⎩
(18)

Positions p(aκaκ′|λe,f) with respect to λe,f, for the edges
aκaκ′ with κ � 1, 3, . . . , 2δ3 − 3, are given as:

p aκaκ′|λe,f􏼐 􏼑 � κ − 1, 2δ3 − κ + 1, 2δ3 − κ, 2 δ3 + δ1( 􏼁 − 1 − κ( 􏼁.

(19)

Positions p(bκ+3bκ′|λe,f) with respect to λe,f, for the edges
bκ+3bκ′ with κ � 1, 3, . . . , 2δ1 − 3, are given as

p bκ+3bκ′|λe,f􏼐 􏼑 � 2δ3 + κ + 1, κ + 2, κ + 3, 2δ1 − 3 − κ( 􏼁.

(20)
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Positions p(cκaκ′|λe,f) with respect to λe,f, for the edges
cκcκ′ with κ � 1, 3, . . . , 2ml − 3, are given as

p cκcκ′|λe,f􏼐 􏼑 �
2δ3 − 1, κ + 1, κ + 1, 2δ1 − 1( 􏼁, if κ � 1,

2 δ3 − 2( 􏼁 + κ, κ + 1, κ + 1, 2 δ1 − 2( 􏼁 + κ( 􏼁, if κ � 2, 3, . . . , 2δ2 − 1.
􏼨 (21)

Positions of the joint edges with respect to λe,f are given as

p a2δ3b1|λe,f􏼐 􏼑 � 2δ3 − 1, 0, 0, 2δ1 − 1( 􏼁,

p a2δ3c1
′|λe,f􏼐 􏼑 � 2δ3 − 2, 2, 1, 2δ1( 􏼁,

p b2c1|λe,f􏼐 􏼑 � 2δ3, 1, 2, 2δ1 − 2( 􏼁,

p a2δ3−3′ c2′|λe,f􏼐 􏼑 � 2δ3 − 3, 4, 3, 2δ1 + 1( 􏼁,

p b1′c2|λe,f􏼐 􏼑 � 2δ3 + 1, 3, 4, 2δ1 − 3( 􏼁.

(22)

On the behalf of given fact for the fulfillment of defi-
nition of fault-tolerant edge resolving set, we can say that λe,f

with cardinality four is possible, but when it comes to op-
timized value of |λe,f|, we still need to investigate about the
minimum value of |λe,f|. Following are some possible cases
to check that whether |λe,f| � 3 is possible or not. However,
we find the fault-tolerant edge resolving set with the help of
algorithm satisfying that |λe,f|≠ 3, but for the proving
purpose we build some general cases and try to conclude that
only |λe,f|> 3 is possible.

Case 1: assume that λe,f
′ ⊂ aκ: κ � 1, 2, . . . , 2δ3􏼈 􏼉, with a

condition according to our requirement of theorem
that |λe,f

′| � 3, and removal of any vertex from λe,f
′ to

fulfill the definition. %e result is implied in the same
edge’s position and contradicts our assumption with
the fact that p(arar+1|λe,f

′) � p(asas
′|λe,f
′), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 2: assume that λe,f

′ ⊂ bκ: κ � 1, 2, . . . , 2δ1􏼈 􏼉, with a
condition according to our requirement of theorem
that |λe,f

′| � 3, and removal of any vertex from λe,f
′ to

fulfill the definition. %e result is implied in the same
edge’s position and contradicts our assumption with
the fact that p(arar+1|λe,f

′) � p(as
′as+1′|λe,f

′), where
1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 3: assume that λe,f

′ ⊂ cκ: κ � 1, 2, . . . , 2δ2 − 1􏼈 􏼉,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(br+3br

′|λe,f
′) � p(asas+1|λe,f

′), where
1≤ r(odd)≤ 2δ1 − 3 and 1≤ s≤ 2δ3 − 1.
Case 4: assume that λe,f

′ ⊂ aκ′ : κ � 1, 2, . . . , 2δ3 − 3􏼈 􏼉,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′) � p(cscs
′|λe,f
′), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ2 − 1.

Case 5: assume that λe,f
′ ⊂ bκ′ : κ � 1, 2, . . . , 2δ1 − 3􏼈 􏼉,

with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(as
′as+1′ |λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 6: assume that λe,f

′ ⊂ cκ′ : κ � 1, 2, . . . , 2δ2 − 1􏼈 􏼉,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas+1|λe,f
′ ), where

1≤ r, s≤ 2δ3 − 1.
Case 7: assume that λe,f

′ ⊂ aκ, bj: κ �􏽮

1, 2, . . . , 2δ3, j � 1, 2, . . . , 2δ1}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1

and 1≤ s≤ 2δ1 − 4.
Case 8: assume that λe,f

′ ⊂ aκ, cj: κ �􏽮

1, 2, . . . , 2δ3, j � 1, 2, . . . , 2δ2 − 1}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(br+3br

′|λe,f
′) � p(bs

′bs+1′|λe,f
′), where

1≤ r(odd)≤ 2δ1 − 3 and 1≤ s≤ 2δ1 − 4.
Case 9: assume that λe,f

′ ⊂ aκ, aj
′: κ � 1, 2,􏽮

. . . , 2δ3, j � 1, 2, . . . , 2δ3 − 3}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′) � p(bs+3|br
′λe,f
′), where 1≤ r≤ 2δ1 − 1

and 1≤ s(odd)≤ 2δ1 − 3.
Case 10: assume that λe,f

′ ⊂ aκ, bj
′: κ �􏽮

1, 2, . . . , 2δ3, j � 1, 2, . . . , 2δ1 − 3}, with a condition
according to our requirement of theorem that |λe,f

′| � 3,
and removal of any vertex from λe,f

′ to fulfill the def-
inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(arar+1|λe,f

′) � p(asas
′|λe,f
′), where 1≤ r≤ 2δ3 − 1 and

1≤ s(odd)≤ 2δ3 − 3.
Case 11: assume that λe,f

′ ⊂ aκ, cj
′: κ � 1, 2,􏽮

. . . , 2δ3, j � 1, 2, . . . , 2δ2 − 1}, with a condition
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according to our requirement of theorem that |λe,f
′| � 3,

and removal of any vertex from λe,f
′ to fulfill the def-

inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1

and 1≤ s≤ 2δ1 − 4.
Case 12: assume that
λe,f
′ ⊂ bκ, cj: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ2 − 1􏽮 􏽯,

with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas
′|λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 13: assume that
λe,f
′ ⊂ bκ, aj

′: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ3 − 3􏽮 􏽯,
with a condition according to our requirement of
theorem that |λe,f

′| � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas
′|λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 14: assume that
λe,f
′ ⊂ bκ, bj

′: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ3 − 3􏽮 􏽯,
with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(asas
′|λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s(odd)≤ 2δ3 − 3.
Case 15: assume that
λe,f
′ ⊂ bκ, cj

′: κ � 1, 2, . . . , 2δ1, j � 1, 2, . . . , 2δ2 − 1􏽮 􏽯,
with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(as
′as+1′ |λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 16: assume that λe,f

′ ⊂ cκ, aj
′: κ � 1, 2, . . . , 2δ2−􏽮

1, j � 1, 2, . . . , 2δ3 − 3}, with a condition according to
our requirement of theorem that |λe,f

′| � 3, and removal
of any vertex from λe,f

′ to fulfill the definition.%e result
is implied in the same edge’s position and contradicts
our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1

and 1≤ s≤ 2δ1 − 4.
Case 17: assume that
λe,f
′ ⊂ cκ, bj

′: κ � 1, 2, . . . , 2δ2 − 1, j � 1, 2, . . . , 2δ1−􏽮

3}, with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(arar+1|λe,f

′ ) � p(as
′as+1′ |λe,f
′ ), where

1≤ r≤ 2δ3 − 1 and 1≤ s≤ 2δ3 − 4.
Case 18: assume that
λe,f
′ ⊂ cκ, cj

′: κ, j � 1, 2, . . . , 2δ2 − 1􏽮 􏽯, with a condition
according to our requirement of theorem that |λe,f

′ | � 3,

and removal of any vertex from λe,f
′ to fulfill the def-

inition.%e result is implied in the same edge’s position
and contradicts our assumption with the fact that
p(brbr+1|λe,f

′ ) � p(bsbs+1|λe,f
′ ), where 1≤ r, s≤ 2δ1 − 1.

Case 19: assume that
λe,f
′ ⊂ aκ′, bj

′: κ � 1, 2, . . . , 2δ3 − 3, j � 1, 2, . . . , 2δ1−􏽮

3}, with a condition according to our requirement of
theorem that |λe,f

′ | � 3, and removal of any vertex from
λe,f
′ to fulfill the definition. %e result is implied in the

same edge’s position and contradicts our assumption
with the fact that p(brbr+1|λe,f

′ ) � p(bs
′bs+1′|λe,f
′ ), where

1≤ r≤ 2δ1 − 1, 1≤ s≤ 2δ1 − 4.
Case 20: assume that
λe,f
′ ⊂ aκ′, cj

′: κ � 1, 2, . . . , 2δ3 − 3,􏽮 j � 1, 2, . . . ,

2δ2 − 1}, with a condition according to our requirement
of theorem that |λe,f

′ | � 3, and removal of any vertex
from λe,f
′ to fulfill the definition.%e result is implied in

the same edge’s position and contradicts our as-
sumption with the fact that
p(brbr+1|λe,f

′ ) � p(bs
′bs+1′ |λe,f
′ ), where 1≤ r≤ 2δ1 − 1,

1≤ s≤ 2δ1 − 4.
Case 21: assume that λe,f

′ ⊂ bκ′,􏼈

cj
′: κ � 1, 2, . . . , 2δ1 − 3, j � 1, 2, . . . , 2δ2 − 1}, with a
condition according to our requirement of theorem
that |λe,f

′| � 3, and removal of any vertex from λe,f
′ to

fulfill the definition. %e result is implied in the same
edge’s position and contradicts our assumption with
the fact that p(arar+1|λe,f

′) � p(as
′as+1′|λe,f

′), where
1≤ r, s≤ 2δ1.

%e given positions p(.|λe,f) of all
5(δ1 + δ2 + δ3) − 11-bonds of T(δ1, δ2, δ3) graph of benze-
noid tripod with δ1, δ2, δ3 ≥ 2, with respect to λe,f, having
|λe,f| � 4, are unique and no two bonds have the same
position p. It can also be accessed that eliminating any of
arbitrary nodes from λe,f will not affect the definition of edge
resolving set. We also checked that the fault-tolerant edge
resolving set λe,f with |λe,f| � 3 resulted in two edges having
the same position p. So we can conclude that we resolve the
bonds of T(δ1, δ2, δ3) with four nodes. It is implied that the
minimum members in the fault-tolerant edge resolving set
of T(δ1, δ2, δ3) are four. □

Remark 2. If T(δ1, δ2, δ3) is a graph of benzenoid tripod
with δ1, δ2, δ3 ≥ 2, then

dime,f T δ1, δ2, δ3( 􏼁( 􏼁 � 4. (23)

Proof. From the definition of fault-tolerant edge metric
dimension (same as in parent concept), the concept is
solemnly based on the selected subset (λe,f) chosen in such a
way that the entire edge set has unique position with respect
to the selected nodes or subset. Addition or removal of any
arbitrary single member of λe,f does not affect the resolv-
ability of edges or position of the entire edge set of graph
remains unique. In Lemma 2, we already discussed the
possibility of selected subset (fault-tolerant edge resolving
set) and, according to the definition, its minimum possible
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cardinality. In that lemma, we choose
λe,f � a1, b1, a2δ3, b2δ1􏽮 􏽯 as a fault-tolerant edge resolving set
for the graph of benzenoid tripod or T(δ1, δ2, δ3) for all the
possible combinatorial values of δ1, δ2, δ3 ≥ 2. We also
proved in such lemma that |λe,f| � 4 is the least possible
cardinality of fault-tolerant edge resolving set for the ben-
zenoid tripod T(δ1, δ2, δ3). It is enough for the proof of what
we claim in the statement that fault-tolerant edge metric
dimension of benzenoid tripod is four, which completes the
proof. □

3. Conclusion

Mathematical chemistry, particularly graphical chemistry,
has made it simpler to examine complicated networks and
chemical structures in their simplest forms. Similarly,
resolvability is a parameter in which the complete node or
edge set, and occasionally both, reconfigure themselves into
unique outfits in order to call or access them. Edge metric
dimension is also a parameter with this property to gain each
edge into a unique form. In this work, we consider ben-
zenoid tripod structure to achieve its resolvability and found
its minimum edge-resolving set. We concluded that edge
metric and fault-tolerant edge metric resolving set are with
constant and exact number of members for this structure.
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[22] M. Perc, J. Gómez-Gardeñes, A. Szolnoki, L. M. Floŕıa, and
Y. Moreno, “Evolutionary dynamics of group interactions on
structured populations: a review,” Journal of 5e Royal Society
Interface, vol. 10, no. 80, Article ID 20120997, 2013.

[23] M. Perc and A. Szolnoki, “Coevolutionary games-a mini
review,” Biosystems, vol. 99, no. 2, pp. 109–125, 2010.

[24] Z. Hussain, M. Munir, M. Choudhary, and S. M. Kang,
“Computing metric dimension and metric basis of 2d lattice
of alpha-boron nanotubes,” Symmetry, vol. 10, 2018.

[25] S. Krishnan and B. Rajan, “Fault-tolerant resolvability of
certain crystal structures,” Applied Mathematics, vol. 7, no. 7,
pp. 599–604, 2016.

[26] H. M. A. Siddiqui and M. Imran, “Computing metric and
partition dimension of 2-dimensional lattices of certain
nanotubes,” Journal of Computational and 5eoretical
Nanoscience, vol. 11, no. 12, pp. 2419–2423, 2014.

[27] M. Hauptmann, R. Schmied, and C. Viehmann, “Approxi-
mation complexity of metric dimension problem,” Journal of
Discrete Algorithms, vol. 14, pp. 214–222, 2012.

[28] H. R. Lewis, M. Garey, and D. Johnson, “Michael R. ΠGarey
and David S. Johnson. Computers and intractability. A guide

Journal of Mathematics 7



to the theory of NP-completeness. W. H. Freeman and
Company, San Francisco1979, x + 338 pp,” 5e Journal of
Symbolic Logic, vol. 48, no. 2, pp. 498–500, 1983.

[29] M. A. Johnson, “Browsable structure-activity datasets,” Ad-
vances in Molecular Similarity, pp. 153–170, JAI Press Con-
necticut, Stamford, CT, USA, 1998.

[30] A. Kelenc, N. Tratnik, and I. G. Yero, “Uniquely identifying
the edges of a graph: the edge metric dimension,” Discrete
Applied Mathematics, vol. 251, pp. 204–220, 2018.

[31] M. F. Nadeem, M. Azeem, and A. Khalil, “%e locating
number of hexagonal möbius ladder network,” Journal of
Applied Mathematics and Computing, vol. 66, no. 1-2,
pp. 149–165, 2020.

[32] B. Deng, M. F. Nadeem, and M. Azeem, “On the edge metric
dimension of different families of möbius networks,” Math-
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