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Due to the importance of Yosida approximation operator, we generalized the variational inequality problem and its equivalent
problems by using Yosida approximation operator. -e aim of this work is to introduce and study a Yosida complementarity
problem, a Yosida variational inequality problem, and a Yosida proximal operator equation involving XOR-operation. We prove
an existence result together with convergence analysis for Yosida proximal operator equation involving XOR-operation. For this
purpose, we establish an algorithm based on fixed point formulation. Our approach is based on a proximal operator technique
involving a subdifferential operator. As an application of our main result, we provide a numerical example using the MATLAB
program R2018a. Comparing different iterations, a computational table is assembled and some graphs are plotted to show the
convergence of iterative sequences for different initial values.

1. Introduction

Stampacchia [1] and Ficchera [2] originated the study of
variational inequalities, separately. Variational inequalities
are mathematical models for many problems occurring in
physics, engineering sciences, transportation planning, fi-
nancial problems, and inmany industrial strategies, etc. (see,
for example, [3–11]). In 1968, Cottle and Dantzig [12]
proposed linear complementarity problem which appear
continually in computational mechanics. It is interesting to
note that finding the solution of linear complementarity
problem is associated with minimizing some quadratic
function. However, in 1964, Cottle [13] in his Ph. D thesis
introduced nonlinear complementarity problem which is
closely related to Hartman and Stampacchia variational
inequality problem. -e proximal operator technique is

useful to establish equivalence between variational in-
equalities and proximal operator equations. -e proximal
operator equation approach is used to solve variational
inequalities and related optimization problems.

XOR is a logical operation and represents the inequality
function, that is, the output is true if the inputs are not alike;
otherwise, the output is false. An easy way to remember XOR
is “must have one or the other but not both.” It is important
to note that XOR does not leak information about the
original plain text. -e inner XOR is the encryption and the
outer XOR is the decryption, that is, the exact XOR function
can be used for both encryption and decryption. Consider a
string of binary digits 10101 and XOR the string 10111 with it
to get 00010. -at is, the original string is encoded and the
second string becomes key; if we XOR our key with our
encoded string, we get our original string back. XOR allows
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to easily encrypt and decrypt a string; the other logical
operations do not.

-e possible strategy of solving stochastic notion of
multivalued differential equation in finite dimensional space
is based on Yosida approximation approach. -e existence
of multivalued stochastic differential equation in finite di-
mensional space with a time-independent, deterministic
maximal monotone operator through Yosida approximation
approach was first discussed by Petterson [14]. Yosida ap-
proximation operators are used to solve wave equations, heat
equations, etc. For more details and recent past develop-
ments about complementarity problems, variational in-
equalities, proximal operator equations, Yosida
approximation operator, and related topics, we refer to
[15–28] and references therein.

Motivated by all the above discussed concepts, in this
paper, we consider and study a Yosida complementarity
problem, a Yosida variational inequality problem, and a
Yosida proximal operator equation involving XOR-opera-
tion. Some equivalence results are proved. To obtain the
solution of Yosida proximal operator equation involving
XOR-operation, we define an algorithm based on fixed point
formulation. Convergence criteria are also discussed. In
support of our main result, an example is provided using
MATLAB program R2018a. A comparison of different it-
erations is assembled in the form of a computational table,
and the convergence of the iterative sequences is shown by
some graphs for different initial values.

2. Preliminaries and Basic Results

We suppose that H is a real ordered positive Hilbert Space
with its norm ‖ · ‖ and inner product 〈·, ·〉,C⊆H is a closed
convex pointed cone, d is the metric induced by the norm
‖ · ‖, 􏽥CB(H) is the family of nonempty, closed, and bounded
subsets of H, and D(·, ·) is the Hausdorff metric on 􏽥CB(H).

-e following definitions, concepts, and results are re-
quired for the presentation of this paper.

Definition 1. A convex cone is a subset of a vector space over
an ordered field that is closed under linear combinations
with positive coefficients.

Definition 2. Two elements x and y of a set X are said to be
comparable with respect to a binary operation ≤ , if at least
one of x≤y or y≤x is true. Comparable elements x and y

are denoted by x∝y.

Definition 3. A partial order is any binary relation which is
reflexive, antisymmetric, and transitive.

Definition 4. Suppose lub x, y􏼈 􏼉 and glb x, y􏼈 􏼉 for the set
x, y􏼈 􏼉 exist; then, XOR and XNOR operations denoted by ⊕
and ⊙ are defined as follows:

(i) x⊕y � (x − y)∨ (y − x)

(ii) x⊙y � (x − y)∧ (y − x), where x∨y � lub x, y􏼈 􏼉,
x∧y � glb x, y􏼈 􏼉, lub means the least upper bound,
and glb means the greatest lower bound

Proposition 1 (see [29]). Let ⊕ be an XOR-operation and ⊙
be an XNOR operation. 5en, the following axioms are true:

(i) x⊙x � 0, x⊙y � y⊙ x � − (x⊕y) � − (y⊕x)

(ii) x⊕x � 0, x⊕y � y⊕ x, 0≤ x⊕y

(iii) x⊕ 0 � x

(iv) 0≤ x⊕y, if x∝y

(v) If x∝y, then x⊕y � 0 if and only if x � y

(vi) ‖0⊕ 0‖ � ‖0‖

(vii) ‖x⊕y‖≤ ‖x − y‖

(viii) If x∝y, then ‖x⊕y‖ � ‖x − y‖

Definition 5. Let N: H × H × H⟶ H be a single-valued
mapping and A: C⟶ 􏽥CB(H) be a multivalued mapping.
-en

(i) N is said to be Lipschitz continuous in the first
argument if there exists a constant λN1

> 0 such that

N u1, ·, ·( 􏼁 − N u2, ·, ·( 􏼁
����

����≤ λN1
u1 − u2

����
����, ∀x1, x2 ∈ C, u1 ∈ A x1( 􏼁 and u2 ∈ A x2( 􏼁, (1)

(ii) N is said to be Lipschitz continuous in the second
argument if there exists a constant λN2

> 0 such that

N ·, u1, ·( 􏼁 − N ·, u2, ·( 􏼁
����

����≤ λN2
u1 − u2

����
����, ∀x1, x2 ∈ C, u1 ∈ A x1( 􏼁 and u2 ∈ A x2( 􏼁. (2)

Similarly, we can define the Lipschitz continuity of N in
the third argument.
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Definition 6. A multivalued mapping A: C⟶ 􏽥CB(H) is
said to be D-Lipschitz continuous if for any x, y ∈ C, there
exists a constant λDA

> 0 such that

D(A(x), A(y))≤ λDA
‖x − y‖. (3)

Definition 7 (see [30]). Let ψ: H⟶ R∪ +∞{ } be a proper
convex functional. A vector w ∈ H is called subgradient of ψ
at x ∈ do mψ, if

〈w, y − x〉≤ψ(y) − ψ(x), ∀y ∈ H. (4)

-e set of all subgradients of ψ at x is denoted by zψ(x).
-e mapping zψ : H⟶ 2H defined by

zψ(x) � w ∈ H: 〈w, y − x〉≤ψ(y) − ψ(x),∀y ∈ H􏼈 􏼉

(5)

is called subdifferential of ψ.

Definition 8. Let P: C⟶ C be a mapping and
ψ: C⟶ R∪ +∞{ } be a proper convex functional. -e
proximal operator J

zψ
ρ : C⟶ C is defined by

J
zψ
ρ (x) � [P + ρzψ]

− 1
(x), ∀x ∈ C, (6)

where ρ> 0 is a constant.

Definition 9. -e Yosida approximation operator of ψ is
defined by

Y
zψ
ρ (x) �

1
ρ

I − J
zψ
ρ􏽨 􏽩(x), ∀x ∈ C, (7)

where ρ> 0 is a constant.

Furthermore, we prove some propositions related to
proximal operator and Yosida approximation operator.

Proposition 2. Let P: C⟶ C and ψ: C⟶ R∪ +∞{ } be
linear mappings, then the proximal operator J

zψ
ρ is linear.

5at is

αJ
zψ
ρ (x) � J

zψ
ρ (αx), (8)

provided

J
zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ (x)􏼐 􏼑 � J

zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ􏼐 􏼑􏼒 􏼓(x) � x,

∀x ∈ C and α> 0.

(9)

Proof. Using the definition of J
zψ
ρ , linearity of P and ψ, and

-eorem 1.48 and -eorem 1.49 of [31], we have

αJ
zψ
ρ (x) � J

zψ
ρ J

zψ
ρ􏼐 􏼑

− 1
αJ

zψ
ρ (x)􏼐 􏼑

� J
zψ
ρ [P + ρzψ] αJ

zψ
ρ (x)􏼐 􏼑

� J
zψ
ρ P αJ

zψ
ρ (x)􏼐 􏼑 + ρzψ αJ

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ P αJ

zψ
ρ (x)􏼐 􏼑 + ρzψ αJ

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ P αJ

zψ
ρ (x)􏼐 􏼑 + ρz αψ J

zψ
ρ (x)􏼐 􏼑􏼐 􏼑􏽨 􏽩

� J
zψ
ρ αP J

zψ
ρ (x)􏼐 􏼑 + ρα zψ J

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ α[P + ρzψ] J

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ α J

zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ (x)􏼔 􏼕

� J
zψ
ρ α J

zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ􏼐 􏼑􏼒 􏼓(x)􏼔 􏼕

� J
zψ
ρ [αx].

(10)

□

Proposition 3. 5e Yosida approximation operator
Y

zψ
ρ : C⟶ C is linear, that is,

Y
zψ
ρ (αx) � αY

zψ
ρ (x), ∀x ∈ C. (11)

Proof. Using the definition of Y
zψ
ρ and Proposition 2, we

have

Y
zψ
ρ (αx) �

1
ρ

I − J
zψ
ρ􏽨 􏽩(αx)

�
1
ρ

αx − J
zψ
ρ (αx)􏽨 􏽩

�
1
ρ

αx − αJ
zψ
ρ (x)􏽨 􏽩

�
α
ρ

I − J
zψ
ρ􏽨 􏽩(x)

� αY
zψ
ρ (x), ∀x ∈ C.

(12)

□

Proposition 4. 5e proximal operator J
zψ
ρ : C⟶ C is

Lipschitz continuous, provided P: C⟶ C is strongly
monotone with respect to J

zψ
ρ with constant μ> 0, ψ is strongly

convex with modulus λ> 0, and J
zψ
ρ is strongly monotone with

constant σ > 0, where σ � 2λ.

Proof. Let x, y ∈ C, then

J
zψ
ρ (x) � [P + ρzψ]

− 1
(x), (13)

J
zψ
ρ (y) � [P + ρzψ]

− 1
(y). (14)
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-us,
1
ρ

x − P J
zψ
ρ (x)􏼐 􏼑􏽨 􏽩 ∈ zψ J

zψ
ρ (x)􏼐 􏼑, (15)

1
ρ

y − P J
zψ
ρ (y)􏼐 􏼑􏽨 􏽩 ∈ zψ J

zψ
ρ (y)􏼐 􏼑. (16)

As ψ is strongly convex with modulus λ> 0, then the
proximal operator J

zψ
ρ is strongly monotone with constant

σ > 0, where σ � 2λ (see [31]). -erefore,

σ J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����
2
≤ 〈

1
ρ

x − P J
zψ
ρ (x)􏼐 􏼑􏼐 􏼑 −

1
ρ

y − P J
zψ
ρ (y)􏼐 􏼑􏼐 􏼑, x − y〉

�
1
ρ
〈x − y − P J

zψ
ρ (x)􏼐 􏼑 − P J

zψ
ρ (y)􏼐 􏼑􏼐 􏼑, x − y〉

�
1
ρ

〈x − y, x − y〉 − 〈P J
zψ
ρ (x)􏼐 􏼑 − P J

zψ
ρ (y)􏼐 􏼑, x − y〉􏽨 􏽩.

(17)

Since P is strongly monotone with respect to J
zψ
ρ with

constant μ> 0, we have

σ J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����
2
≤
1
ρ

‖x − y‖
2

− μ J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����
2

􏼔 􏼕,

(18)

which implies that

J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����≤ θ‖x − y‖, where θ �
1

������σρ + μ√ .

(19)

-at is, J
zψ
ρ is Lipschitz continuous. □

Proposition 5. 5e Yosida approximation operator is
strongly monotone if all the conditions of Proposition 4 hold.

Proof. Using the Lipschitz continuity of proximal operator
J

zψ
ρ , we have

〈Yzψ
ρ (x) − Y

zψ
ρ (y), x − y〉 �〈

1
ρ

I − J
zψ
ρ􏽨 􏽩(x) −

1
ρ

I − J
zψ
ρ􏽨 􏽩(y), x − y〉

�
1
ρ

〈x − y, x − y〉 − 〈Jzψ
ρ (x) − J

zψ
ρ (y), x − y〉􏽨 􏽩

≥
1
ρ

‖x − y‖
2

− J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����‖x − y‖􏼔 􏼕

≥
1
ρ

‖x − y‖
2

− θ‖x − y‖
2

􏽨 􏽩

�
1 − θ
ρ

􏼠 􏼡‖x − y‖
2

� δy‖x − y‖
2
, where δy �

1 − θ
ρ

􏼠 􏼡.

(20)

□

3. Description of the Problems and
Equivalence Lemmas

Let H be a real ordered positive Hilbert space andC ⊆H be
a closed convex pointed cone. Let A, B, C: C⟶ 􏽥CB(H) be

the multivalued mappings and N: H × H × H⟶ H be a
single-valued mapping. Suppose ψ: C⟶ R∪ +∞{ } is a
proper, convex functional and Y

zψ
ρ : C⟶ C is the Yosida

approximation operator. We consider the following Yosida
complementarity problem involving XOR-operation.
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Find x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) such that

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑 � 0,

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ 0, ∀y ∈ C.

(21)

From problem (21), one can easily obtain the comple-
mentarity problems studied by Huang et al. [32], Yin and Xu
[33], Flores-Bazán and López [34], Isac [35, 36] and Far-
ajzadeh and Harandi [37], etc.

In connection with Yosida complementarity problem
involving XOR-operation (21), we mention the following
Yosida variational inequality problem involving XOR-
operation.

Find x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) such that

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 0, ∀y ∈ C.

(22)

In acquaintance with Yosida variational inequality
problem involving XOR-operation (22), we mention the
following Yosida proximal operator equation involving
XOR-operation.

Find x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) such that

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � 0, (23)

where ρ> 0 is a constant, R
zψ
ρ � [I − P(J

zψ
ρ )], J

zψ
ρ is the

proximal operator, P: C⟶ C is a mapping, and
z � P(Y

zψ
ρ (x)) + ρN(u, v, w).

-e equivalence between problem (21) and problem (22)
and the equivalence between problem (22) and problem (23)
are given as follows.

Lemma 1. Let A, B, C: C⟶ 􏽥CB(H) be the multivalued
mappings and N: H × H × H⟶ H be a single-valued
mapping. Suppose ψ: C⟶ R∪ +∞{ } is a linear, proper
functional. Let Y

zψ
ρ : C⟶ C be the Yosida approximation

operator. If 〈N(u, v, w), Y
zψ
ρ 〉∝ψ(Y

zψ
ρ (x)), for all

x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x), then the Yosida com-
plementarity problem involving XOR-operation (21) and the
Yosida variational inequality problem involving XOR-oper-
ation (22) are equivalent.

Proof. Let the Yosida complementarity problem involving
XOR-operation (21) holds. We have

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑 � 0,

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ 0, ∀x, y ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x).

(24)

Since 〈N(u, v, w), Y
zψ
ρ (x)〉∝ψ(Y

zψ
ρ (x)), using (v) of

Proposition 1, we have

〈N(u, v, w), Y
zψ
ρ (x)〉 � ψ Y

zψ
ρ (x)􏼐 􏼑. (25)

Also, 〈N(u, v, w), Y
zψ
ρ (y)〉⊕ψ(Y

zψ
ρ (y))≥ 0, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ ψ Y

zψ
ρ􏼐 􏼐y)􏼐 􏼑⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ψ Y

zψ
ρ (y)􏼐 􏼑.

(26)

By (ii) and (iii) of Proposition 1, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 ≥ψ Y

zψ
ρ (y)􏼐 􏼑. (27)

Using the properties of inner product, we can write

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 �〈N(u, v, w), Y

zψ
ρ (y)〉

− 〈N(u, v, w), Y
zψ
ρ (x)〉.

(28)

Applying (25) and (27), (28) becomes

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ≥ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑,

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0,

(29)

which is the Yosida variational inequality problem involving
XOR-operation (22).

On the other hand, let the Yosida variational inequality
problem (22) holds. -at is, x ∈ C, u ∈ A(x), v ∈
B(x), w ∈ C(x) such that

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 0, ∀y ∈ C.

(30)
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AsC is a closed convex pointed cone, y � 2x ∈ C as well
as y � (1/2)x ∈ C. Putting y � 2x and y � (1/2)x and using
linearity of ψ and Proposition 3, we have

〈N(u, v, w), Y
zψ
ρ (2x) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (2x)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0

〈N(u, v, w), 2Y
zψ
ρ (x) − Y

zψ
ρ (x)〉 ⊕ ψ 2Y

zψ
ρ (x)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ 2ψ Y

zψ
ρ (x)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑≥ 0,

〈N(u, v, w), Y
zψ
ρ

1
2

x􏼒 􏼓 − Y
zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ

1
2

x􏼒 􏼓􏼒 􏼓 − ψ Y
zψ
ρ (x)􏼐 􏼑􏼒 􏼓≥ 0

〈N(u, v, w),
− 1
2

Y
zψ
ρ (x)〉 ⊕

− 1
2
ψ Y

zψ
ρ (x)􏼐 􏼑􏼒 􏼓≥ 0

〈N(u, v, w),
− 1
2

Y
zψ
ρ (x)〉 ≥

− 1
2

ψ Y
zψ
ρ (x)􏼐 􏼑􏼐 􏼑

〈N(u, v, w), Y
zψ
ρ (x)〉 ≤ψ Y

zψ
ρ (x)􏼐 􏼑.

(31)

-us, we have

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑≤ 0. (32)

Adding (31) and (32), we have

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑 � 0. (33)

Since

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0,

(34)

we have

〈N(u, v, w), Y
zψ
ρ (y)〉 − 〈N(u, v, w), Y

zψ
ρ (x)〉

≥ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑.

(35)

Using (25), from the above inequality, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 − ψ Y

zψ
ρ (x)􏼐 􏼑≥ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑,

(36)

it follows that

〈N(u, v, w), Y
zψ
ρ (y)〉 ≥ψ Y

zψ
ρ (y)􏼐 􏼑. (37)

Using (ii) of Proposition 1, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑

≥ψ Y
zψ
ρ (y)􏼐 􏼑⊕ψ Y

zψ
ρ (y)􏼐 􏼑,

(38)

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ 0. (39)

Combination of (33) and (39) is the required Yosida
complementarity problem involving XOR-operation
(21). □

-e following Lemma guarantees the equivalence be-
tween the Yosida variational inequality problem involving
XOR-operation (22) and a fixed point equation.

Lemma 2. Let P: C⟶ C be a mapping, then the Yosida
variational inequality problem involving XOR-operation (22)
has a solution x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x), if and
only if it satisfies the equation:

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩, (40)

where ρ> 0 is a constant.

Proof. Let x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) satisfy
equation (40), that is,

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩. (41)

Using the definition of the proximal operator J
zψ
ρ and

from the above equation, we have
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Y
zψ
ρ (x) � [P + ρzψ]

− 1
P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩

P Y
zψ
ρ (x)􏼐 􏼑 + ρzψ Y

zψ
ρ (x)􏼐 􏼑 � P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w) (that is, )

N(u, v, w) ∈ zψ Y
zψ
ρ (x)􏼐 􏼑. (which gives us)

(42)

Applying the definition of subdifferential operator, the
above inclusion holds if and only if

ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑≥ 〈N(u, v, w),ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉.

(43)

Using (ii) of Proposition 1, we have

〈N(u, v, w),ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 〈N(u, v, w),ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉⊕ 〈N(u, v, w),ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉.

(44)

It follows that

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 0, ∀y ∈ C,

(45)

which is the required Yosida variational inequality problem
involving XOR-operation (22). □

-e Lemma mentioned below ensures the equivalence
between the Yosida variational inequality problem involving
XOR-operation (22) and the Yosida proximal operator
equation involving XOR-operation (23).

Lemma 3. Suppose N(u, v, w)∝R
zψ
ρ (z) and P: C⟶ C is

a one-one mapping. 5en x ∈ C, u ∈ A(x), v ∈ B(x),

w ∈ C(x) is the solution of the Yosida variational inequality
problem involving XOR-operation (22) if and only if
x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) satisfy the Yosida
proximal operator equation involving XOR-operation (23),
where R

zψ
ρ � [I − P(J

zψ
ρ )], in which J

zψ
ρ is the proximal op-

erator and P(J
zψ
ρ (z)) � P(J

zψ
ρ )(z).

Proof. Let x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) be the so-
lution of the Yosida variational inequality problem involving
XOR-operation (22). -en by Lemma 2, it satisfies the
equation:

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩. (46)

Let z � P(Y
zψ
ρ (x)) + ρN(u, v, w), then

Y
zψ
ρ (x) � J

zψ
ρ (z),

As z � P J
zψ
ρ (z)􏼐 􏼑 + ρN(u, v, w)

z − P J
zψ
ρ (z)􏼐 􏼑 � ρN(u, v, w)

I − P J
zψ
ρ􏼐 􏼑􏼐 􏼑(z) � ρN(u, v, w)

R
zψ
ρ (z) � ρN(u, v, w)

ρ− 1
R

zψ
ρ (z) � N(u, v, w), whereP J

zψ
ρ (z)􏼐 􏼑 � P J

zψ
ρ􏼐 􏼑(z).

(47)

Using (ii) of Proposition 1, we have

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � N(u, v, w)⊕N(u, v, w) � 0.

(48)

-us, we have

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � 0, (49)

which is the required Yosida proximal operator equation
involving XOR-operation (23).

Conversely, let x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x)

be the solution of Yosida proximal operator equation in-
volving XOR-operation (23).

-at is, we have

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � 0. (50)

Using (v) of Proposition 1, definition of R
zψ
ρ and

comparability of N(u, v, w) with R
zψ
ρ (z), we obtain

ρN(u, v, w) � R
zψ
ρ (z) � I − P J

zψ
ρ􏼐 􏼑􏽨 􏽩(z)

� z − P J
zψ
ρ􏼐 􏼑(z)

� P Y
zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w) − P J

zψ
ρ P Y

zψ
ρ􏼐 􏼐x)􏼑 + ρN(u, v, w􏼐 􏼑􏼐 􏼑􏼐 􏼑.

(51)
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From above, we have

P Y
zψ
ρ (x)􏼐 􏼑 � P J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏼐 􏼑􏼐 􏼑. (52)

Since P is a one-one mapping, we obtain

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩. (53)

Applying Lemma 2, we conclude that
x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) is the solution of
Yosida variational inequality problem involving XOR-op-
eration (22). □

4. Algorithm and Existence Results

Invoking Lemmas 2 and 3, we suggest the following algo-
rithm for solving Yosida proximal operator equation in-
volving XOR-operation (23).

Algorithm 1. For any x0, z0 ∈ C, u0 ∈ A(x0), v0 ∈ B(x0),

w0 ∈ C(x0), we let

z1 � P Y
zψ
ρ x0( 􏼁􏼐 􏼑 + ρN u0, v0, w0( 􏼁. (54)

Take any x1 ∈ C such that

Y
zψ
ρ x1( 􏼁 � J

zψ
ρ z1( 􏼁. (55)

Since u0 ∈ A(x0), v0 ∈ B(x0), w0 ∈ C(x0), by Nadler’s
theorem [38], there exist u1 ∈ A(x1), v0 ∈ B(x1),
w0 ∈ C(x1), using (viii) of Proposition 1 and comparability
of u0, u1; v0, v1 andw0, w1, we have

u0 ⊕ u1
����

���� � u0 − u1
����

����≤ (1 + 1)D A Y
zψ
ρ x0( 􏼁􏼐 􏼑, A Y

zψ
ρ x1( 􏼁􏼐 􏼑􏼐 􏼑,

v0 ⊕ v1
����

���� � v0 − v1
����

����≤ (1 + 1)D B Y
zψ
ρ x0( 􏼁􏼐 􏼑, B Y

zψ
ρ x1( 􏼁􏼐 􏼑􏼐 􏼑,

w0 ⊕w1
����

���� � w0 − w1
����

����≤ (1 + 1)D C Y
zψ
ρ x0( 􏼁􏼐 􏼑, C Y

zψ
ρ x1( 􏼁􏼐 􏼑􏼐 􏼑,

(56)

where D(·, ·) is the Hausdorff metric on 􏽥CB(H).
Let z2 � P(Y

zψ
ρ (x1)) + ρN(u1, v1, w1) and take any

x2 ∈ C such that

Y
zψ
ρ x2( 􏼁 � J

zψ
ρ z2( 􏼁. (57)

Continuing the above procedure, we compute the se-
quences xn􏼈 􏼉, un􏼈 􏼉, vn􏼈 􏼉 and zn􏼈 􏼉 by the schemes given
below:

Y
zψ
ρ xn( 􏼁 � J

zψ
ρ zn( 􏼁,

un ∈ A xn( 􏼁, un+1 ∈ A xn+1( 􏼁 such that un∝ un+1,

un ⊕ un+1
����

���� � un − un+1
����

����≤ 1 +
1

n + 1
􏼒 􏼓D A Y

zψ
ρ xn( 􏼁􏼐 􏼑, A Y

zψ
ρ xn+1( 􏼁􏼐 􏼑􏼐 􏼑,

vn ∈ B xn( 􏼁, vn+1 ∈ B xn+1( 􏼁 such that vn∝ vn+1,

vn ⊕ vn+1
����

���� � vn − vn+1
����

����≤ 1 +
1

n + 1
􏼒 􏼓D B Y

zψ
ρ xn( 􏼁􏼐 􏼑, B Y

zψ
ρ xn+1( 􏼁􏼐 􏼑􏼐 􏼑,

wn ∈ C xn( 􏼁, wn+1 ∈ C xn+1( 􏼁 such thatwn∝wn+1,

wn ⊕wn+1
����

���� � wn − wn+1
����

����≤ 1 +
1

n + 1
􏼒 􏼓D C Y

zψ
ρ xn( 􏼁􏼐 􏼑, C Y

zψ
ρ xn+1( 􏼁􏼐 􏼑􏼐 􏼑,

zn+1 � P Y
zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un, vn, wn( 􏼁,

(58)

where ρ> 0 is a constant and n � 0, 1, 2, 3, · · ·.

Theorem 1. Let H be a real ordered positive Hilbert Space
and C⊆H be a closed convex pointed cone. Let
A, B, C: C⟶ 􏽥CB(H) be the D-Lipschitz continuous
mappings with constants λDA

, λDB
, and λDC

, respectively. Let
N: H × H × H⟶ H be a single-valued mapping such that
N is Lipschitz continuous in first, second, and third argu-
ments with constants λN1

, λN2
, and λN3

, respectively. Let
Y

zψ
ρ : C⟶ C be the Yosida approximation operator such

that Y
zψ
ρ is strongly monotone with constant δy and

J
zψ
ρ : C⟶ C be the proximal operator such that J

zψ
ρ is

Lipschitz continuous with constant θ. Suppose P: C⟶ C be
a Lipschitz continuous mapping with constant λP, strongly

monotone with respect to J
zψ
ρ with constant μ and

ψ: H⟶ R∪ +∞{ } be a strongly convex, subdifferentiable,
proper functional satisfying Y

zψ
ρ (x) ∈ do m(zψ). Suppose

that zn+1∝ zn, for n � 0, 1, 2, · · · and if the following condition
is satisfied:

θ< 2δy, ξ(θ) <
1 − λPθ

ρθ
, where ξ(θ)

� λN1
λDA

+ λN2
λDB

+ λN3
λDC

and θ �
1

������σρ + μ√ ,

(59)

then there exists x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x)

satisfying the Yosida proximal operator equation involving
XOR-operation (23) and the sequences xn􏼈 􏼉, zn􏼈 􏼉, un􏼈 􏼉, vn􏼈 􏼉
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and wn􏼈 􏼉 generated by Algorithm 1 converge strongly to
x, z, u, v, and w, respectively.

Proof. Using (x) of Algorithm 1 and (ii) of Proposition 1,
we have

0≤ zn+1 ⊕ zn

� P Y
zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un, vn, wn( 􏼁􏽨 􏽩⊕ P Y

zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un− 1, vn− 1, wn− 1( 􏼁􏽨 􏽩

� P Y
zψ
ρ xn( 􏼁􏼐 􏼑⊕P Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏽨 􏽩 + ρ N un, vn, wn( 􏼁⊕N un− 1, vn− 1, wn− 1( 􏼁􏼂 􏼃.

(60)

It follows from (60) that

zn+1 ⊕ zn

����
����≤ P Y

zψ
ρ xn( 􏼁􏼐 􏼑⊕P Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑

�����

�����

+ ρ N un, vn, wn( 􏼁⊕N un− 1, vn− 1, wn− 1( 􏼁
����

����.

(61)

Since zn+1∝ zn and using (vii) and (viii) of Proposition
1, from (61), we obtain

zn+1 − zn

����
����≤ P Y

zψ
ρ xn( 􏼁􏼐 􏼑 − P Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑

�����

�����

+ ρ N un, vn, wn( 􏼁 − N un− 1, vn− 1, wn− 1( 􏼁
����

����.

(62)

Since N is Lipschitz continuous in all the three argu-
ments with constants λN1

, λN2
, and λN3

, respectively, and
A, B, C are D-Lipschitz continuous mappings with constants
λDA

, λDB
, λDC

, respectively, and using (vii), (viii), (ix) of
Algorithm 1, we have

N un, vn, wn( 􏼁 − N un− 1, vn− 1, wn− 1( 􏼁
����

���� � N un, vn, wn( 􏼁 − N un− 1, vn, wn( 􏼁 + N un− 1, vn, wn( 􏼁
����

− N un− 1, vn− 1, wn( 􏼁 + N un− 1, vn− 1, wn( 􏼁 − N un− 1, vn− 1, wn− 1( 􏼁
����

≤ λN1
un − un− 1

����
���� + λN2

vn − vn− 1
����

����λN3
wn − wn− 1

����
����

≤ λN1
1 +

1
n

􏼒 􏼓D A Y
zψ
ρ xn( 􏼁􏼐 􏼑, A Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏼐 􏼑􏼔 􏼕

+ λN2
1 +

1
n

􏼒 􏼓D B Y
zψ
ρ xn( 􏼁􏼐 􏼑, B Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏼐 􏼑􏼔 􏼕

+ λN3
1 +

1
n

􏼒 􏼓D C Y
zψ
ρ xn( 􏼁􏼐 􏼑, C Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏼐 􏼑􏼔 􏼕

≤ λN1
1 +

1
n

􏼒 􏼓λDA
Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����􏼔 􏼕

+ λN2
1 +

1
n

􏼒 􏼓λDB
Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����􏼔 􏼕

+ λN3
1 +

1
n

􏼒 􏼓λDC
Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����􏼔 􏼕

� λN1
λDA

+ λN2
λDB

+ λN3
λDC

􏼐 􏼑 1 +
1
n

􏼒 􏼓 Y
zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����.

(63)

Using strong monotonicity of the Yosida approximation
operator Y

zψ
ρ with constant δY and Lipschitz continuity of

the proximal operator J
zψ
ρ with constant θ, we have

xn − xn− 1
����

����
2

� J
zψ
ρ zn( 􏼁 − J

zψ
ρ zn− 1( 􏼁 − Y

zψ
ρ xn( 􏼁 − xn − Y

zψ
ρ xn− 1( 􏼁 − xn− 1􏼐 􏼑􏽨 􏽩

�����

�����
2

≤ J
zψ
ρ zn( 􏼁 − J

zψ
ρ zn− 1( 􏼁

�����

�����
2

− 2〈Yzψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁, xn − xn− 1〉 + xn − xn− 1

����
����
2

≤ θ2 zn − zn− 1
����

����
2

− 2δy xn − xn− 1
����

����
2

+ xn − xn− 1
����

����
2
.

(64)
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It follows that

2δy xn − xn− 1
����

����
2 ≤ θ2 zn − zn− 1

����
����
2
,

xn − xn− 1
����

����≤
θ2
���
2δy

􏽱 zn − zn− 1
����

����,

xn − xn− 1
����

����≤ ξ(y) zn − zn− 1
����

����,

(65)

where ξ(y) � θ2/
���
2δy

􏽱
.

Combining (62) and (63), using Lipschitz continuity of
P, J

zψ
ρ and (vi) of Algorithm 1, we have

zn+1 − zn

����
����≤ λP Y

zψ
ρ xn( 􏼁􏼐 􏼑 − Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑

�����

�����

+ ρ λN1
λDA

+ λN2
λDB

+ λN3
λDC

􏼐 􏼑 1 +
1
n

􏼒 􏼓 Y
zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����,

(66)

zn+1 − zn

����
����≤ λP + ρξn(θ)􏼂 􏼃 Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����

≤ λP + ρξn(θ)􏼂 􏼃 J
zψ
ρ zn( 􏼁 − J

zψ
ρ zn− 1( 􏼁

�����

�����

� λP + ρξn(θ)􏼂 􏼃θ zn − zn− 1
����

����

� λPθ + ρξn(θ)θ􏼂 􏼃 zn − zn− 1
����

����

� Sn(θ) zn − zn− 1
����

����,

(67)

where Sn(θ) � λPθ + ρξn(θ)θ, θ � (1/ ������σρ + μ√
) and

ξn(θ) � (λN1
λDA

+ λN2
λDB

+ λN3
λDC

)(1 + (1/n)).
Letting S(θ) � λPθ + ρξ(θ)θ, where ξ(θ) � (λN1

λDA
+

λN2
λDB

+ λN3
λDC

), it follows that Sn(θ)⟶ S(θ) as
n⟶∞. From (59), we have ξ(y)< 1 and S(θ) < 1. Con-
sequently, we conclude from (65) and (67) that xn􏼈 􏼉 and zn􏼈 􏼉

both are Cauchy sequences. Since H is complete and C⊆H

is a closed convex subset of H and thus C is also complete,
we may assume that xn⟶ x ∈ C and zn⟶ z ∈ C. From
(vii), (viii), and (ix) of Algorithm 1, it follows that un􏼈 􏼉, vn􏼈 􏼉,
and wn􏼈 􏼉 are also Cauchy sequences such that
un⟶ u, vn⟶ v and wn⟶ w, as n⟶∞.

It can be shown easily by using the techniques of [28]
that u ∈ A(x), v ∈ B(x), and w ∈ C(x). By Lemma 3, we
conclude that x, z ∈ C, u ∈ A(x), v ∈ B(x), and w ∈ C(x) is
the solution of Yosida proximal operator equation involving
XOR-operation (23). □

We provide the following numerical example using
MATLAB program R2018a along with a computational table
and a convergence graphs for different initial values in
support of Algorithm 1 and -eorem 1.

Example 1. Suppose C � H � [0,∞). Let P: C⟶ C and
ψ: C⟶ R∪ +∞{ } be the mappings such that for x ∈ C,

P(x) �
x

2
,

ψ(x) � x
2
,

Then zψ(x) � 2x{ }, the sub differential of ψ.

(68)

Since ψ′′(x) � 2> 0. Hence, ψ is strongly convex with
modulus λ � 2.

For ρ � 1, the proximal operator J
zψ
ρ is given by

J
zψ
ρ � [P + ρzψ]

− 1
(x) �

2x

5
,where [P + ρzψ](x) �

5x

2
.

(69)

It is simple to see that P is Lipschitz continuous with
constant λp � (11/10), strongly monotone with respect to
J

zψ
ρ with constant μ � 1/3, and J

zψ
ρ is Lipschitz continuous

with constant θ �
�
2

√
/3.

In view of proximal operator calculated above, the
Yosida approximation operator is given by

Y
zψ
ρ (x) �

1
ρ

I − J
zψ
ρ􏽨 􏽩(x) �

3x

5
. (70)

Also,

〈Yzψ
ρ (x) − Y

zψ
ρ (y), x − y〉 �〈

3x

5
−
3y

5
, x − y〉

�〈
3
5

(x − y), x − y〉

�
3
5

〈x − y, x − y〉 �
3
5
‖x − y‖

2

≥
2
5
‖x − y‖

2
.

(71)

Hence, Y
zψ
ρ is strongly monotone with constant

δy � (2/5).

10 Journal of Mathematics



Let us consider the mappings N: H × H × H⟶ H and
A, B, C: C⟶ 􏽥CB(H) such that

A(x) �
x

7
􏼚 􏼛,

B(x) �
x

5
􏼚 􏼛,

C(x) �
x

6
􏼚 􏼛,

N(u, v, w) �
u

2
+

v

2
+

w

2
,

(72)

where x ∈ C, u ∈ A(x), v ∈ B(x), andw ∈ C(x).

Clearly, D(A(x), A(y)) � max supx∈A(x)d(x, F(y)), supy∈F(y)d(F(x), y)􏽮 􏽯

≤max
x

7
−

y

7

������

������,
y

7
−

x

7

������

������􏼚 􏼛

�
1
7
max ‖x − y‖, ‖y − x‖􏼈 􏼉

≤
1
5

‖x − y‖,

(73)

that is, D(A(x), A(y))≤ (1/5)‖x − y‖.
-us, A is D-Lipschitz continuous with constant

λDA
� (1/5). Similarly, we can obtain that B and C are D-

Lipschitz continuous with constants λDB
� (1/3) and

λDC
� (1/3), respectively.
N is Lipschitz continuous in all the three arguments with

constants λN1
� λN2

� λN3
� 1.

Then, N(u, v, w) �
x

14
+

x

10
+

x

12

�
107x

420
,

Since z � P Y
zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)

�
Y

zψ
ρ (x)

2
+ N(u, v, w)

�
1
2

·
3x

5
+ N(u, v, w),

z �
3x

10
+ N(u, v, w),

J
zψ
ρ (z) �

6x

50
+
2N(u, v, w)

5
.

(74)

Hence,

R
zψ
ρ (z) � I − J

zψ
ρ􏽨 􏽩(z) �

3
5

3x

10
+ N(u, v, w)􏼔 􏼕. (75)

Below we show that condition (59) is satisfied.

For λP � 11/10, ρ � 1, δy � 2/5, μ � 1/3, λ � 2, σ � 2λ �

4, θ �
�
2

√
/3, λN1

� λN2
� λN3

� 1, λDA
� 1/5, λDB

� 1/3, λDC
�

1/3, ξ(θ) � λN1
λDA

+ λN2
λDB

+ λN3
λDC

� 0.86 and (1 − λP

θ)/ρθ � 1.021. Hence, θ< 2δy and ξ(θ) < (1 − λPθ)/ρθ. -at
is, condition (59) is satisfied.

For, x � 0, the Yosida proximal operator equation in-
volving XOR-operator (23) is fulfilled.

That is, N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z)

� N(u, v, w)⊕
3
5

3x

10
+ N(u, v, w)􏼔 􏼕 � 0.

(76)

Furthermore, we obtain the sequences xn􏼈 􏼉 and zn􏼈 􏼉

generated by iterative Algorithm 1 as

zn+1 � P Y
zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un, vn, wn( 􏼁

�
Y

zψ
ρ xn( 􏼁

2
+
107xn

420

�
1
2

·
3xn

5
+
107xn

420

�
3xn

10
+
107xn

420
,

also, Y
zψ

ρ xn( 􏼁 � J
zψ
ρ zn( 􏼁

3xn

5
�
2zn

5

xn �
2zn

5
.

(77)
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Figure 1: Case I: for the initial value z0 � − 5.
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Figure 2: Case II: for the initial value z0 � 2.5.
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Figure 3: Case III: for the initial value z0 � 5.
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From (77) and (78), we have

zn+1 �
3
10

+
107
420

􏼒 􏼓
2zn

5
,

zn+1 �
233
1050

zn.

(78)

Clearly, the sequence zn􏼈 􏼉 converges to 0, and conse-
quently, the sequence xn􏼈 􏼉 also converges to 0.

It is shown in Figures 1–3 that, for initial values
z0 � − 5, 2.5, and 5, the sequence zn􏼈 􏼉 converges to 0. A
consolidated graph using Figures 1–3 is provided in Figure 4.
In Table 1, comparing different initial values of zn􏼈 􏼉 and for
different iterations, it is obtained that the sequence zn􏼈 􏼉

converges to 0.

5. Conclusion

In this work, we introduce and study three new problems,
that is, a Yosida complementarity problem, a Yosida

variational inequality problem, and a Yosida proximal
operator equation involving XOR-operation. It is shown
that Yosida complementarity problem involving XOR-
operation is equivalent to a Yosida variational inequality
problem involving XOR-operation and Yosida variational
inequality problem involving XOR-operation is equivalent
to a Yosida proximal operator equation involving XOR-
operation. An algorithm is established to obtain the so-
lution of Yosida proximal operator equation involving
XOR-operation. Finally, an existence and convergence
result is proved. A numerical example is given in support of
our main result.

It is still an open and interesting problem that how to
establish equivalence between Yosida complementarity
problem involving XOR-operation and Yosida proximal
operator equation problem involving XOR-operation.

Data Availability

No data were used to support this study.
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Figure 4: By combining all the above graphs, we get the following conjoining graph of convergence.

Table 1: -e values of zn with initial values z0 � − 5, z0 � 2.5, and z0 � 5.

No. of iterations For z0 � − 5 For z0 � 2.5 For z0 � 5
zn zn zn

n� 1 − 5 2.5 5
n� 2 − 1.10952380952381 0.554761904761905 1.10952380952381
n� 3 − 0.246208616780045 0.123104308390023 0.246208616780045
n� 4 − 0.0546348644854767 0.0273174322427384 0.0546348644854767
n� 5 − 0.0121237365953486 0.00606186829767432 0.0121237365953486
n� 10 − 6.52333379900596e − 06 3.26166689950298e − 06 6.52333379900596e − 06
n� 15 − 3.50996440070956e − 09 1.75498220035478e − 09 3.50996440070956e − 09
n� 20 − 1.88858189291582e − 12 9.44290946457911e − 13 1.88858189291582e − 12
n� 25 − 1.01617599469911e − 15 5.08087997349556e − 16 1.01617599469911e − 15
n� 27 − 5.00382572119910e − 17 2.50191286059955e − 17 5.00382572119910e − 17
n� 29 − 2.46397001884969e − 18 1.23198500942484e − 18 2.46397001884969e − 18
n� 30 − 5.46766680373311e − 19 2.73383340186656e − 19 5.46766680373311e − 19
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Disclosure

A variant form of Yosida variational inequality and Yosida
proximal operator equation involving XOR-operation was
considered in “Some Problems Concerning Generalized
Variational Inequalities”, Ph. D -esis, (2009), AMU Ali-
garh [39]. In this variant form, neither the concept of Yosida
approximation operator nor the concept of XOR-operation
was used. Moreover, no complementarity problem was
considered in the abovementioned thesis.
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