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*e enhancement of the intelligent construction of the power grid and widespread popularity of smart meters enable large
amounts of electrical energy consumption data to be collected and analyzed. Based on the data, the energy provider gives a guiding
price in the future periods to users. It encourages users to be more economical and smarter in the process of using electricity. By
applying the social welfare model to equate demand and supply in every time interval, we gain the optimal prices and generation
capacity. Nevertheless, the truth is that there is a great gap between the consumers’ booked electrical energy consumption and the
optimal generation capacity, causing the power system overload and even outage. *is article puts forward a novel automatic
process control strategy in order to monitor the gap between the consumers’ booked electrical energy consumption and optimal
generation capacity by using statistical method to predict the future one. When the predicted value exceeds the boundary, the
energy provider adopts the changeable electricity price to stimulate consumers to adjust their electrical energy demands so that it
can have smoothly actual electrical energy consumption. Our adjustment method is data-driven exponential function-based
adjustment. Case study results show that the strategy can obtain small adjustment times, stable actual consumption load, and
controllable prediction errors. Different from the linear monitoring and adjustment strategy, our approach obtains almost the
same adjustment frequency, less standard deviation of residuals, and higher total social welfare and energy provider profit.

1. Introduction

With the development of urbanization, human beings’
material living quality has improved dramatically. However,
some issues such as the environmental pollution also have
emerged. In order to decrease the environmental pollution
and avoid overconsumption of resources, words like peak
carbon dioxide emissions and carbon neutrality have been
hotly discussed. Mentioning energy consumption, human
beings turn to some clean sustainable energy resources
including hydropower and solar energy rather than
restricting traditional coal fossil energy.

*e limitation of traditional power grid’s rigid con-
struction, namely, the lack of flexibility for grid connection
with new energy and the delays in the transmission of in-
formation due to the backward communication network and
so on, may cause problems, for example, the supply-demand
imbalance. Due to the defects of the previous generation of

grid and the emergence of mobile communication tech-
nology, smart grid was put forward by IBM (in America) in
2006, “next generation power grid” [1]. Not only America
and EU countries but also China has picked up some cities as
pilot ones for SG (smart grid) [2]. Compared with traditional
grid, SG has the following advantages: timely reliable two-
way communication among data on the network, the sup-
ply-demand balance on account of information interaction,
simple and convenient storage of the distribution energy for
security of the microgrid connection benefiting from the
development of high capacity battery technology, and highly
efficient calculating ability generated from the creative
model and smart algorithm.

Smart meter develops rapidly with the gradually mature
communication technology, which integrates the metering
and data interaction functions of traditional one. So, users
and energy providers can exchange data. Meanwhile, it also
can analyze, forecast, and manage the consumption load.
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Equipped with advanced sensor technology and reliable
terminal equipment, real-time pricing (RTP) is booming.
Different from traditional pricing structures, reasonable
RTP can keep supply and demand in balance and keep the
consumers’ and suppliers’ comfort maximized, because it
has the flexible and intelligent characteristics.

*e ultimate purpose of RTP research by domestic and
foreign experts is to achieve maximized total social welfare
[3, 4]. For this aim, a distributed dynamic pricing algorithm
was developed to obtain peak-shaving and valley-filling [4].
Lately, this sort of RTPmodels has been advanced vigorously
in terms of model improvement and stronger algorithm
convergence. Chiu et al. [5] researched on an energy
transaction billing system by using a dynamic pricing
mechanism. Zhu et al. [6] got a better rate of convergence
and a better operation effect by solving the model with
ADMM algorithm.

RTP highlights the stable and reliable theoretical pricing
policy and optimal generation capacity, but it is out of line
with reality. *e original intention is to guide users to make
rational use of electric energy through changing electricity
prices and balance the smart grid. Nevertheless, the truth is
that the majority of consumers are unwilling to adjust their
electricity demand with the ever-changing electricity price
every hour. *at causes the practical electrical energy
consumption to lose control again and leads to the loss of the
smart grid stability and reliability. Even in extreme cases, the
fact that the energy provider offers the booked consumption
to the users may cause blackouts at peak time. To solve the
blackout, the electricity companies and power plants have to
face the increasing energy cost, which is far more than the
revenues. *at is the least thing that the energy provider
wants to have. In order to prevent this, we should work out a
solution based on the operation of RTP model. It can not
only make the power system have a limited changing price
through the automatic monitoring but also have a smooth
and steady practical electrical energy consumption. In other
words, the users’ practical electrical energy consumption is
close to the optimal generation capacity from the RTP
model. In the existing literature, there are many studies on
how to manage the electrical energy consumption in smart
grid. However, they rarely consider how to reduce the ad-
justment frequency of electricity price [7, 8].

*e automatic process control (APC) strategy can make
up for this shortcoming. It can offer effective process
monitoring and adjustment. Box [9] applied APCmethod to
product control. We will make an adjustment when the
process is beyond the boundary set before. In this way, the
adjustment frequency will decrease and the production
quality will often be controlled in a certain range. *e APC
strategy is widely used in product, manufacture, and service
fields. Hernández et al. [10] put forward a control tool to
monitor variables. Yuan et al. [11] studied an APC chart to
identify exceptions. To monitor the gap between the booked
and optimal electrical energy consumptions, He et al. [12]
researched a line function-based APC strategy. However, the
APC strategy has not been widely used in SG [13–15].

A new data-driven exponential function-based APC
strategy is proposed in this paper. We use exponentially

weighted moving average (EWMA) to monitor electrical
energy consumption. After obtaining the dynamic pricing
from energy providers, the users can book one day or more
of electricity in advance through the smart meters. At that
time, the energy providers can monitor users’ booked
consumption load and calculate the difference between the
optimal generation capacity and it. Since then, it is the turn
to use data-driven APC scheme to manage electrical energy
consumption by changing the dynamic pricing. *ere is a
long research history of the EWMA for scholars from home
and abroad. Yang et al. [16] designed a Phase Two EWMA
control model to monitor alterable dimension mean vector.
In statistical applications, EWMA is often used to predict
trends [17–19]. He et al. [20] studied an EWMA prediction
model to monitor the process of electrical energy con-
sumption. In this paper, EWMA is applied to predict the
next interval gap between the optimal electrical energy
generation capacity and the booked electrical energy con-
sumption. When it exceeds the preset boundary, rising or
reducing the price in some time interval is supposed to be
adopted to stimulate the demand response. In this way, it can
get a few adjustments and avoid the side effects on the users
caused by the frequent price adjustments. *e stable con-
sumption load is finally achieved.

*e research features and highlights of this article are
listed as follows:

(1) *is study comes up with an original data-driven
exponential function-based automatic process con-
trol strategy to manage the gap between the con-
sumers’ booked electrical energy consumption and
the optimal generation capacity

(2) A small adjustment number is obtained by the data-
driven exponential function adjustment method,
which can achieve a practical electrical energy
consumption approaching the optimal generation
capacity after adjustment

(3) *is strategy can make up for the defects of the RTP
algorithm and achieve effective peak carbon dioxide
emissions effects

*e remaining part of this article is arranged as follows:
data-driven APC strategy is offered in Section 2. In Section 3,
the algorithm is proposed. Case studies and result analysis
are included in Section 4. *e conclusions are drawn in
Section 5.

2. Data-Driven APC (Automatic Process
Control) Strategy

*e structure of the SG system discussed in this article is as
follows: a power plant, an energy provider, and a few users.
*e users have installed smart meters. *e power plant
transmits the power to an energy provider. *e energy
provider collects the power consumption data from users
through smart meters. *e energy providers apply the social
welfare maximization model to calculate price of next time
interval and transmit it to users. After receiving the price as
p dollars/kWh, users reserve consumption load from the
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energy provider (one day or even one week). Set the number
of consumers as N, and assume that the time period of
electrical energy operation is divided into T intervals.
Suppose that setℵ � 1, 2, . . . , N{ } represents consumers and
set Γ � 1, 2, . . . , T{ } represents time intervals. *e energy
provider obtains each user i’s (i ∈ ℵ) valley and peak
electrical energy consumption data in interval t ∈ Γ
according to the past data provided by the smart meter,
namely, mt

i and Mt
i . Denote xt

i as user i’s electrical energy
consumption in interval t, and its range can be assumed as
mt

i ≤xt
i ≤Mt

i .*e detailed social welfare model is available in
Appendix.

After we solve the optimization problem (C.1)–(C.3) (see
Appendix), optimal price p∗t and theoretical optimal gen-
eration capacity G∗t in interval t can be gained.*e electricity
supplier obtains a smooth and steady electrical energy
consumption based on G∗t . But this is just an optimal sit-
uation. Most often, consumers’ booked electrical energy
consumption observed from smart meters is considerably
different from optimal generation capacity G∗t . Guiding the
consumers to use electrical energy appropriately is the most
effective way to prevent this kind of phenomenon.

Taking users’ demand response mechanism to price into
account, we calculate the gap between optimal generation ca-
pacity with the social welfare model and the booked con-
sumption loads. Later, when it exceeds the boundary, we use the
data-driven APC scheme to change the gap. *e energy pro-
vider changes prices to make users adjust their actual con-
sumption loads. In the end, the actual electrical energy
consumption is near the optimal generation capacity.Moreover,
we can obtain higher social welfare and the energy provider can
get more profit with data-driven APC strategy than before. We
first introduce the definition of the EWMA estimation [12, 20].

2.1. EWMAEstimation. We suppose that the users book the
electrical energy consumption of the next interval, and the
reservation retains an important reference value for accurate
adjustment.

In order to accurately obtain the extent of gap between
booked electrical energy consumption xt of users in time
interval t and optimal generation capacity G∗t , we set gap dt

as

dt � xt − G
∗
t , (1)

and we predict the next gap value dt+1 by the EWMA model
from last adjusted gap value. *e details of the calculation
are as follows.

Set the initial gap value as dτ , τ � t, t − 1, . . ., and set the
adjusted one as dτ′, τ � t, t − 1, . . .. *e EWMA dt+1 of gap
value dt+1 in time interval t + 1 is in the following formula:

dt+1 � θdt + μdt
′, (2)

in which θ � 1 − μ is the discount factor.
Similarly, EWMA pt+1 of price pt+1 in interval t + 1 is

pt+1 � θpt + μpt
′, (3)

in which pt
′ is changed price in interval t.

In the process of adjustment, the changed EWMA value
pt+1′ in interval t + 1 is

pt+1′ � θpt + μpt
″, (4)

where pt
″ is readjusted price in interval t.

2.2. Data-Driven APC Electrical Energy Monitoring. In this
section, we discuss how to develop a data-driven APC
electrical energy monitoring strategy in order to minimize
the difference from the goal electrical energy gap E. We will
change the price when the EWMA value is beyond the
boundary as

dt+1 ≥B1

or dt+1 ≤B2, B1 ≥ 0, B2 ≤ 0,
(5)

where B1 is prestipulated upper limit and B2is prestipulated
lower limit. In the process of monitoring, when dt+1 con-
forms to (5), the EWMA value dt+1 is out of the limits. *e
action of adjusting it to get nearer to the goal value will be
taken. It is obvious in test results that, to achieve a stable
subsequent adjustment, it is worthy of discussion to find a
way to set parameters E1 ≥ 0 and E2 ≤ 0 of the target process
properly.

When monitoring users’ booked consumption load, we
obtain a series dt 

T

t�1 of EWMA estimation. If dt+1 satisfies
(5), the users’ booking electrical energy consumption has
been beyond the steady limit. For preventing the consumers’
blind electricity utilization, the energy provider applies the
users’ price demand response. It guides the users to use
power properly, which achieves smooth and steady electrical
energy consumption.

2.3. Data-Driven APC Adjustment. If the automatically
calculated estimated value dt+1 exceeds the upper boundary
B1, it means the booked electrical energy consumption is
beyond expectation. Meanwhile, the real-time price will be
increased to induce consumers to reasonably reduce the
booked electrical energy consumption. By the same token, if
dt+1 is lower than the lower boundary B2, it means scheduled
electrical energy consumption is lower than expectation and
the remaining power is sufficient. It is necessary to reduce
the real-time price to encourage consumers to add more
booked electrical energy consumption at that moment.
Energy provider can even encourage users to store electricity
in their own batteries to get through the period of rising
prices. *rough the above adjustments, users can be guided
to reasonable electrical energy consumption. *erefore, a
smooth and steady supply of electricity can be ensured from
the energy supplier.

*e strategy needs to be discussed in terms of the
quantitative relation between price changes and the gap
between users’ booked electrical energy consumption and
optimal generation capacity. *e relationship can be tested
by relevant data. In order to explain the adjustment strategy,
we provide the following theorem.
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Theorem 1. Set the demand function as an exponential
function. .e gap EWMA estimation dt+1 is exponential to
electricity price EWMA value pt+1, and the form is
dt+1 � k1e

k2pt+1 or dt+1 � −k1e
− k2pt+1 ; k1 > 0 and k2 < 0 are

constants. When the load gap satisfies dt+1 ≥B1 > 0, dt+1 is
adjusted to E1 ∈ [0, B1), and then the price variation is

δt+1 �
1
μk2

ln E1 − ln dt+1 . (6)

When dt+1 ≤B2 < 0, dt+1 is adjusted to E2 ∈ (B2, 0], and
then the price variation is

δt+1 �
1

−μk2
ln E2


 − ln dt+1


 . (7)

Proof. In interval t + 1, when dt+1 ≥B1 > 0, dt+1 has to adjust
to E1 ∈ [0, B1). Meanwhile, the EWMA price is shifted from
pt+1 to pt+1′. Under the assumed condition, we have

dt+1 � k1e
k2pt+1 ,

E1 � k1e
k2pt+1′ ,

(8)

which can be written as

ln dt+1 � ln k1 + k2pt+1,

ln E1 � ln k1 + k2pt+1′ ,

ln E1 − ln dt+1 � k2 pt+1′ − pt+1( .

(9)

According to (3), (4), (8), and (9), we have

ln E1 − ln dt+1

� k2μ pt
″ − pt
′( .

(10)

Setting δt+1: � pt
″ − pt
′ as change in price, we have

δt+1 �
1
μk2

ln E1 − ln dt+1 . (11)

Similarly, when dt+1 ≤B2 < 0, we adjust dt+1 to
E2 ∈ (B2, 0]; under the assumed condition, we have

dt+1 � −k1e
− k2pt+1 ,

E2 � −k1e
− k2p
′
t+1 ,

(12)

so we obtain

ln dt+1


 � ln −k1


 − k2pt+1,

ln E2


 � ln −k1


 − k2pt+1′ ,

ln E2


 − ln dt+1


 � −k2 pt+1′ − pt+1(  � −μk2δt+1.

(13)

Hence, from above, formula (7) is established. □

3. Algorithm

According to *eorem 1, the adjusted electrical energy
consumption in interval t + 1 is

xt+1′ �

xt+1 − k1e
k2δt+1 ,

xt+1,

δt+1 > 0,

δt+1 � 0,

xt+1 + k1e
k2δt+1 , δt+1 < 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

*en we have

dt+1′ � dt+1 + xt+1′ − xt+1

�

dt+1 − k1e
k2δt+1 ,

dt+1,

δt+1 > 0,

δt+1 � 0,

dt+1 + k1e
k2δt+1 , δt+1 < 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

We get optimal solution p∗t 
T
t�1 and G∗t 

T
t�1 by applying

Lagrange dual method to solve the social welfare maximi-
zation problem (C.1)–(C.3) (see Appendix). Smart meters
feed users’ booked electrical energy consumption series
xt 

T

t�1 back to the energy supplier. According to (1), we
calculate the series dt 

T

t�1 of gap between booked electrical
energy consumption xt of users in interval t and optimal
generation capacity G∗t . Let the initial adjusted consumption
load gap d1′ � d1, p1′ � p∗1 , and d1 � 0, so that the initial
predicted error is e1 � d1′ − d1 � d1′. Set the initial price
adjustment as δ1 � 0. Suppose that the parameters k1 > 0 and
k2 < 0, 0≤E1 <B1, B2 <E2 ≤ 0, and μ ∈ [0, 1],ω ∈ [1, 4]. In
interval t ∈ Γ, applying data-driven APC strategy, the
monitoring and adjustment algorithm is summarized as
Algorithm 1.

4. Case Analysis

*e operation effect of data-driven exponential function-
based APC monitoring and adjustment strategy is analyzed
through Singapore’s power market data [21] in this part.

4.1. Power Load. We select RTP data from Mar 5, 2017, to
Mar 6, 2017, and electrical energy consumption data from
Mar 3, 2017, to Mar 6, 2017, for simulation. In Algorithm 1,
we set the RTP data as the initial booked sequences p∗t 

T
t�1.

In equation (1), we set the electrical energy consumption
data from Mar 5, 2017, to Mar 6, 2017, as booked electrical
energy consumption xt 

T

t�1. Past electrical energy data at the
corresponding time from Mar 3, 2017, to Mar 4, 2017, is
regarded as optimal generation capacity L∗t 

T

t�1 in equation
(1). *e original power loads are shown in Figure 1.

As illustrated in Figure 1, the users’ booked consumption
power load runs far away from the optimal generation ca-
pacity. In order to encourage users to reasonably consume
power, the data-driven APC strategy needs to be adopted.
*is means that the adjustment of electricity prices is set by
suppliers. *en it will guide consumers to adjust real
electrical energy consumption.

4.2. Numerical Analysis for APC Adjustment. Let p1 � 75,
and see Section 3 for the other initial arguments. Set the
parameters in Algorithm 1 as follows: k1 � 20, k2 � −1,
μ � 0.3, B1 � 800, B2 � −800, E1 � B1/2, and E2 � B2/2.
Assume that the arguments a, b, c in equation (B.3) are

4 Journal of Mathematics



0.01, 0, 0. Figures 2–5 show the APC strategy simulation
results.

Figure 2 depicts that electrical energy gap series are
steadier than the ones without adjustment after 11 adjust-
ments. By experience, the average adjustment interval is 47/
11� 4.3, and the standard deviation of residuals is

σ �

��������������

(
T
t�1 e2t /(T − 1))



�

����������

(
48
t�1e

2
t /47)



� 734. No points
outside the range 3σ indicate that there is no sign of the
abnormality.

As can be seen in Figure 3, adjusted electricity con-
sumption is nearer optimal generation capacity than the
one without adjustment, and expected effects can be
achieved. Figure 4 shows that the electricity price has
changed 11 times. *e biggest change in price is −3.376 ×

10− 3 units. During these periods, we encourage the
consumers to buy and use more electrical energy con-
sumption. We apply equation (C.1) to calculate the total
social welfare to get 6.34 × 108, and we apply equation
(B.4) to calculate the profit to get 3.82 × 107. As can be
seen from Figure 5 by running our strategy, we can obtain
higher social welfare and profits than those without
adjustment.

Besides improving energy provider’s profit and total
social welfare, the data-driven APC adjustment strategy
helps to balance power supply and prevent SG outages.

4.3. Comparison between Two Different Demand Function
Adjustments. Reference [12] points out that there is a linear
relationship between the EWMA predicted value dt+1 of
consumption load gap and the EWMA predicted value pt+1 of
price.*is paper proposes that dt+1 andpt+1 are presented as an
exponential function. *e arguments are
k1 � 120, k2 � −1, k � 500, μ � 0.5, B1 � 1000, B2 � −1000,
E1 � B1/2, and E2 � B2/2. *e comparison of the electrical
energy consumption results adjusted by these two methods is
shown in Table 1 and Figures 6–8.

From Table 1 and Figure 6, we can learn that the ad-
justment frequency of the exponential adjustment is slightly
higher than that of the linear one, but the standard deviation
of the exponential adjustment is smaller than that of the
linear adjustment.

Table 1 and Figure 7 illustrate that total social welfare and
energy provider’s profit of the exponential demand function are
higher than those of the linear one. Figure 8 presents that price

Step 1: calculate dt+1 according to (2). If (5) holds, turn to Step 4. Otherwise, δt+1 � 0, turn to Step 2.
Step 2: calculate xt+1′ according to (14), dt+1′ according to (15), et+1 � dt+1′ − dt+1.
Step 3: repeat Step 1.
Step 4: when dt+1 ≥B1 > 0, let δt+1 � (1/μk2)(ln E1 − ln dt+1), when dt+1 ≤B2 < 0, let δt+1 � (1/−μk2)(ln|E2| − ln|dt+1|), then turn to

Step 2.

ALGORITHM 1: Data-driven APC algorithm.
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Figure 1: Comparison between optimal generation capacity and booked electrical energy consumption.
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adjustment effects of exponential demand function are better
than those of the linear one. In particular, even the adjustment
frequency with the exponential adjustment is slightly more than
that in the linear one, and the standard deviation of residuals,
total social welfare, and energy provider’s profit with

exponential demand function are better than those of the linear
function adjustment.

From the observation results, we can conclude that, in
general, the effect of exponential function adjustment is
better than that of linear function adjustment.
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Figure 2: APC strategy process.
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Figure 3: Electrical energies comparison.
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Figure 5: Comparison of total social welfare and energy provider’s profit, with original and adjusted pricing strategies.
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Figure 6: Comparison of adjustments in different APC strategies.
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Figure 7: Comparison of total social welfare and energy provider’s profit, with linear and exponential adjustment pricing strategies.

Table 1: Comparison results.

Exponential adjustment Linear adjustment
Adjustment frequency 10 9
Standard deviation 585 625
Social welfare 6.35×108 5.24×108

Profit 3.82×107 3.76×107
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5. Conclusions

In our smart grid system, users can book a day or more of
electrical energy consumption according to dynamic
pricing provided by the energy provider. *is energy
provider monitors the real-time booked consumption
loads and obtains the stable consumption load through
the price demand response mechanism. *e automatic
process control strategy put forward in the article is as
follows. Manage power consumption process. *at is to
say, the energy supplier monitors the gap between the
optimal generation capacity given by the social welfare
maximization problem and consumers’ booked electrical
energy consumption. *en predict next time interval
electrical energy consumption gap with statistical average
model. It is only when predicted average number is be-
yond the presupposed boundary that price rises and cuts
are used to change the price and to stimulate demand
response. In this way, the adjustment frequency is not too
great, and the users will change their initial consumption
plan (i.e., reservation consumption) during the actual
power consumption process. So the electrical energy
consumption can become stable and the grid can run
reliably and safely. *e case analysis show that the net-
work system of the energy provider automatically
monitors and adjusts the price so as to get a small ad-
justment frequency, a stable actual electrical energy
consumption, and a controllable residual standard de-
viation. After comparison, the exponential function ad-
justment method proposed in this paper is also shown to
be more suitable than the linear one.

Appendix

The Social Welfare Model

A. Users’ Utility Function. Based on microeconomics, a
utility function U(x,ω) can be chosen to show the users’

satisfactory degree after power consumption. x means the
consumption load, and ω gives consumers’ electrical energy
consumption wills, changing with intervals and consumers.
Consider no electricity demand and no utility. We choose
logarithmic functions as [20]

U x
t
i ,ω  �

ω ln x
t
i + 1 , if x

t
i ≥ 0,

0, if x
t
i < 0.

⎧⎨

⎩ (A.1)

px denotes the consumers’ cost, and the benefit function
of each user is

W x
t
i ,ω

t
i  � U x

t
i ,ω

t
i  − ptx

t
i , (A.2)

where W(xt
i ,ωt

i) is the welfare function of consumer i in
interval t. It is assumed that the goal of every consumer is
getting the optimal benefit value; that is, the maximum
utility function and the minimum power consumption cost
are generated.

B..e Energy Provider Profit Function. Gt denotes the energy
provider’s generation capacity in interval t. Gmax

t and Gmin
t

denote peak and valley generation capacities, respectively.
When consumers book electrical energy consumption several
days ago, and the energy provider supplies power according to
the booked electrical energy consumption, the energy system in
this article will not have a blackout due to insufficient power
supply. We assume Gmax

t equals the amounts of maximum
electrical energy demands of all users, and Gmin

t equals those of
minimum ones. Gmax

t and Gmin
t are expressed as follows [4]:

G
max
t � 

N

i�1
M

t
i , (B.1)

G
min
t � 

N

i�1
m

t
i . (B.2)

*e power generation cost C(Gt) in time interval t of the
energy provider is [4]
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Figure 8: Comparison of price adjustment effects in different adjustment strategies.
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C Gt(  � aG
2
t + bGt + c, (B.3)

where a> 0, b, c≥ 0 are presupposed arguments. ptGt is the
energy provider’s sales amount. *en the energy provider’s
profit in interval t is [4]

P Gt(  � ptGt − C Gt( . (B.4)

C..eSocialWelfareMaximizationProblem. We discuss the
optimization problem for the SG system in this article. *e
following formula shows the maximum total social welfare
[4]:

max
xt

i
,Gt



N

i�1
U x

t
i ,ω

t
i  − C Gt( . (C.1)

*e constraint condition (C.2) displays that the con-
sumption loads are less than the supply ones:

s.t. 
N

i�1
x

t
i ≤Gt, i ∈ ℵ, t ∈ Γ, (C.2)

m
t
i ≤x

t
i ≤M

t
i ,

G
min
t ≤Gt ≤G

max
t .

(C.3)

Namely, under such a real-time electricity price mode,
power failure caused by insufficient power supply can never
happen. Because the objective function displayed in (C.1) is
concave and the constraint condition (C.2) is linear, the
model (C.1)–(C.3) is a convex programming problem.
*erefore, not a few algorithms can solve the consumption
load and generation capacity. For example, interior point
algorithm can solve the problem. However, these algorithms
cannot solve the exact RTP, a key point in controlling and
managing the electrical energy consumption in the article.
So the dual method is applied to solve problem (C.1)–(C.3).
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