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In this paper, we consider a generalized mixed variational-like inequality problem and prove a Minty-type lemma for its related
auxiliary problems in a real Banach space. We prove the existence of a solution of these auxiliary problems and also prove some
properties for the solution set of generalized mixed variational-like inequality problem. Furthermore, we introduce and study an
inertial hybrid iterative method for solving the generalizedmixed variational-like inequality problem involving Bregman relatively
nonexpansive mapping in Banach space. We study the strong convergence for the proposed algorithm. Finally, we list some
consequences and computational examples to emphasize the efficiency and relevancy of the main result.

1. Introduction

,roughout the paper, unless otherwise stated, let X be a
reflexive Banach space with X∗ as its dual and C≠∅ be the
closed convex subset of X. In this paper, we consider the
generalized mixed variational-like inequality problem (in
brief, GMVLIP): find u ∈ C such that

G(v, u; u) + b(u, v) − b(u, u)≥ 0, ∀v ∈ C, (1)

where b: C × C⟶ R and G: C × C × C⟶ R, be
bifunction and trifunction, respectively, and R be the set of
real numbers. Sol (GMVLIP equation (1)) stands for the
solution of equation (1). If b ≡ 0, GMVLIP equation (1) is
reduced to GVLIP: find u ∈ C such that

G(v, u; u)≥ 0, ∀v ∈ C, (2)

which is introduced by Preda et al. [1] (see, for instance,
[2, 3]).

If we set G(v, u; u) � 〈Du + Au, η(v, u)〉, where
D, A: C⟶ X and η: C × C⟶ X, GMVLIP equation (1)
is reduced to MVLIP (see for details [4]).

Further, if we set G(v, u; u) � 〈Du , η(v, u)〉 and b ≡ 0,
GMVLIP equation (1) is reduced to VLIP: find u ∈ C such
that

〈Du, η(v, u)〉≥ 0, ∀v ∈ C, (3)

which is presented by Parida et al. [5].
Moreover, if η(v, u) � v − u, VLIP is reduced to VIP:

find u ∈ C such that
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〈Du, v − u〉≥ 0, ∀v ∈ C, (4)

which is introduced by Hartmann and Stampacchia [6].
If b ≡ 0, X � Rn, and G(v, u; u) � 〈▽ Du , η(v, u)〉,

where η is continuous and D is differentiable and η-convex,
GMVLIP equation (1) is reduced to mathematical pro-
gramming problem as [5]

min
u∈C

D(u). (5)

Korpelevich [7] proposed the iterative method for VIP in
1976 on Hilbert space H as

u0 ∈ C⊆H,

vn � projC un − σ Dun( 􏼁,

un+1 � projC un − σ Dvn( 􏼁, n≥ 0,

⎫⎪⎪⎬

⎪⎪⎭
(6)

where σ > 0, projC denotes projection of H onto C, and D is
monotone and Lipschitz continuous mapping. ,is method
is called the extragradient iterative method.

Nadezkhina and Takahashi [8] proposed a hybrid
extragradient algorithm involving nonexpansive mapping T

on C and studied the convergence analysis in 2006 as

u0 ∈ C⊆H,

xn � projC un − σnDun( 􏼁,

vn � αnun + 1 − αn( 􏼁TprojC un − σnDxn( 􏼁,

Cn � z ∈ C: vn − z
����

����
2 ≤ un − z

����
����
2

􏼚 􏼛,

Dn � z ∈ C: 〈un − z, u0 − un〉 ≥ 0􏼈 􏼉,

un+1 � projCn∩Dn
u0, n≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

,e idea considered in [8] has been generalized in [9]
from Hilbert to Banach space X as

u0 ∈ C⊆X,

vn � J
− 1 αnJun + 1 − αn( 􏼁JTun( 􏼁,

Cn � z ∈ K: ϕ z, vn( 􏼁≤ϕ z, un( 􏼁􏼈 􏼉,

Dn � z ∈ K: 〈un − z, Ju0 − Jun〉 ≥ 0􏼈 􏼉,

un+1 � 􏽙
Cn∩Dn

u0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where ΠC denotes generalized projection of X onto C, ϕ is
the Lyapunov function such that ϕ(u, v) � ‖v‖2 − 2〈v,

Ju〉 + ‖u‖2, ∀u, v ∈ X, and J: X⟶ 2X∗ is the normalized
duality mapping with J− 1 being its inverse. For further work,
see [10–17].

In 1967, an important technique was discovered by
Bregman [18] in the light of Bregman distance function.,is
technique is very useful not only in design and interpretation
of the iterative method but also to solve optimization and
feasibility problems and to approximate equilibria, fixed
point, variational inequalities, etc. (for details [19–22]).

In 2010, Reich and Sabach [23] introduced iterative
algorithm on Banach space involving maximal monotone
operators. In the light of Bregman projection, there were

various iterative algorithms studied by researchers in this
field (see, for instance, [19, 24–28]).

In 2008, Maingé [29] developed and studied an inertial
Krasnosel’skiǐ–Mann algorithm as

tn � un + θn un − un− 1( 􏼁,

un+1 � 1 − αn( 􏼁tn + αnTtn.
􏼩 (9)

For further work, see [30–39].
Inspired by the work in [2, 27, 29], we establish an

inertial hybrid iterative algorithm involving Bregman rela-
tively nonexpansive mapping to find a common solution of
GMVLIP equation (1) and a fixed-point problem in Banach
space. Moreover, we study the convergence analysis for the
main result. At last, we list some consequences and com-
putational example to emphasize the efficiency and rele-
vancy of the main result.

2. Preliminaries

Assume g: X⟶ (− ∞, +∞] is a proper, convex, and lower
semicontinuous mapping and g∗: X∗ ⟶ (− ∞, +∞] is a
Fenchel conjugate of g, defined as

g
∗

u0( 􏼁 � sup 〈u0, u〉 − g(u): u ∈ Y􏼈 􏼉, u0 ∈ Y
∗
. (10)

And, for any w ∈ int(domg), interior of the domain of g and
u ∈ X, the right-hand derivative of g at w in the direction u

is

g
0
(w, u) � lim

λ⟶0+

g(w + λu) − g(w)

λ
. (11)

A mapping g is called Gateaux differentiable at w if the
above limit exists. So, g0(w, u) agrees with ∇g(w), the value
of the gradient of g at w. It is called Frechet differentiable at
w, if the limit is attained uniformly in ‖u‖ � 1. It is called
uniformly Frechet differentiable on C⊆X, if the above limit is
attained uniformly for w ∈ C and ‖u‖ � 1.

,e mapping g is called Legendre if the following holds
[19]:

(i) int(domg)≠∅, g is Gateaux differentiable on
int(domg), and dom∇g � int(domg)

(ii) int(domg∗)≠∅, g∗ is Gateaux differentiable on
int(domg∗), and dom∇g∗ � int(domg∗)

We have the following [19]:

(i) g be Legendre iff g∗ be Legendre mapping
(ii) (zg)− 1 � zg∗

(iii) ∇g � (∇g∗)− 1, ran∇g � dom∇g∗ � int(domg∗),
ran∇g∗ � dom∇g � int(domg)

(iv) ,e mappings g and g∗ are strictly convex on
int(domg) and int(domg∗)

Definition 1 (see [18]). Let g: Y⟶ (− ∞, +∞] be Gateaux
differentiable and convex and Dg: domg × int(domg)

⟶ [0, +∞) such that
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Dg(u, w) � g(u) − g(w) − 〈∇g(w), u − w〉, w ∈ int(domg), u ∈ domg, (12)

is known as Bregman distance with respect to g.
We notice that the Bregman distance is not a distance in

the usual sense of term. Obviously, Dg(w, w) � 0, but
Dg(w, u) � 0 may not imply w � u. It holds if g is the
Legendre function. However, Dg is neither symmetric nor

satisfy the triangle inequality. We have the following im-
portant properties of Dg [40] for u, u1, u2 ∈ (domg) and
w1, w2 ∈ int(domg).

(i) Two-point identity:

Dg w1, w2( 􏼁 + Dg w2, w1( 􏼁 �〈∇g w1( 􏼁 − ∇g w2( 􏼁, w1 − w2〉. (13)

(ii) ,ree-point identity:

Dg u, w1( 􏼁 + Dg w1, w2( 􏼁 − Dg u, w2( 􏼁 �〈∇g w2( 􏼁 − ∇g w1( 􏼁, u − w1〉. (14)

(iii) Four-point identity:

Dg u1, w1( 􏼁 − Dg u1, w2( 􏼁 − Dg u2, w1( 􏼁 + Dg u2, w2( 􏼁 �〈∇g w2( 􏼁 − ∇g w1( 􏼁, u1 − u2〉. (15)

Definition 2 (see [23, 25]). Let T: C⟶ int(domg) be a
mapping and F(T) � u ∈ C: Tu � u{ }, where F(T) is the set
of fixed points of T. ,en, we have the following:

(i) A point u0 ∈ C is called an asymptotic fixed point if
C contains a sequence un􏼈 􏼉 with un⇀u0 such that
lim

n⟶∞
‖Tun − un‖ � 0. We represent 􏽢F(T) as the set

of asymptotic fixed points of T.
(ii) T is called Bregman quasi-nonexpansive if

F(T) ≠∅; Dg u0, Tu( 􏼁≤Dg u0, u( 􏼁, ∀u ∈ C, u0 ∈ F(T).

(16)

(iii) T is called Bregman relatively nonexpansive if

F(T) � 􏽢F(T)≠∅; Dg u0, Tu( 􏼁≤Dg u0, u( 􏼁,

∀u ∈ C, u0 ∈ F(T).
(17)

(iv) T is called Bregman firmly nonexpansive if
∀u1, u2 ∈ C,

〈∇g Tu1( 􏼁 − ∇g Tu2( 􏼁, Tu1 − Tu2〉 ≤ 〈∇g u1( 􏼁 − ∇g u2( 􏼁, Tu1 − Tu2〉, (18)

or, correspondingly,

Dg Tu1, Tu2( 􏼁 + Dg Tu2, Tu1( 􏼁 + Dg Tu1, u1( 􏼁 + Dg Tu2, u2( 􏼁≤Dg Tu1, u2( 􏼁 + Dg Tu2, u1( 􏼁. (19)

Example 1 (see [26]). Let A: X⟶ 2X∗ be a maximal
monotone mapping. If A− 1(0)≠∅ and the Legendre
function g: X⟶ (− ∞, +∞] is bounded on bounded

subsets of X and uniformly Frechet differentiable, then the
resolvent with respect to A,

resg

A(u) � (∇g + A)
− 1°∇g(u), (20)
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is a single-valued, closed, and Bregman relatively non-
expansive mapping from X onto D(A) and
F(resg

A) � A− 1(0).

Definition 3 (see [18]). Let g: X⟶ (− ∞, +∞] be a Ga-
teaux differentiable and convex function. ,e Bregman
projection of w ∈ int(domg) onto C ⊂ int(domg) is a
unique vector projgCw ∈ C with

Dg projgC(w), w( 􏼁 � inf Dg(u, w): u ∈ C􏽮 􏽯. (21)

Remark 1 (see [24]). (i) If X is a smooth Banach space and
g(u) � (1/2)‖u‖2, ∀u ∈ X, then the Bregman projection

projgC(u) reduces toΠC(u), generalized projection (see [41]),
and it is defined as

ϕ ΠC(u), u( 􏼁 � min
v∈C

ϕ(v, u), (22)

where ϕ is a Lyapunov function. (ii) If X is a Hilbert space
and g(u) � (1/2)‖u‖2, ∀u ∈ X, then projgC(u) reduces to the
metric projection of u onto C.

For all r> 0, assume Br: � z ∈ X: ‖z‖≤ r{ }. ,en, a map
g: X⟶ R is said to be uniformly convex on bounded
subsets of X, if ρr(t)> 0, ∀t> 0, where ρr: [0, +

∞)⟶ [0, +∞) is defined as

ρr(t) � inf
w,v∈Br,‖w− v‖�t,α∈(0,1)

αg(w) +(1 − α)g(v) − g(αw +(1 − α)v)

α(1 − α)
, (23)

∀t≥ 0. ,e function ρr is known as the gauge of uniform
convexity of g. ,e function g is also said to be uniformly

smooth on bounded subsets of X if lim
t⟶0

(σr(t)/t) � 0, for all
r> 0, where σr: [0, +∞)⟶ [0, +∞) is defined by

σr(t) � sup
w∈Br,v∈SX,α∈(0,1)

αg(w +(1 − α)tv) +(1 − α)g(w − αtv) − g(w)

α(1 − α)
, (24)

∀t≥ 0. ,e function g is said to be uniformly convex if the
function δg: [0, +∞)⟶ [0, +∞), defined by

δg(t) ≔ sup
1
2

g(w) +
1
2

g(v) − g
w + v

2
􏼒 􏼓: ‖v − w‖ � t􏼚 􏼛,

(25)

satisfies that lim
t⟶0

(σr(t)/t) � 0.

Remark 2. Let X be a Banach space, r> 0 be a constant, and
g: X⟶ R be a convex function which is uniformly convex
on bounded subsets. ,en,

g(αw +(1 − α)v)≤ αg(w) +(1 − α)g(v) − α(1 − α)ρr(‖w − v‖), (26)

for all w, v ∈ Br and α ∈ (0, 1), where ρr is the gauge of
uniform convexity of g.

Definition 4 (see [20]). Let g: X⟶ (− ∞, +∞] be a Ga-
teaux differentiable and convex function. ,en, g is called
the following:

(i) Totally convex at w ∈ int(domg) if its modulus of
total convexity at u, i.e., the mapping
vg: int(domg) × [0, +∞)⟶ [0, +∞) such that

vg(w, s) � inf Dg(v, w): v ∈ domg, ‖v − w‖ � s􏽮 􏽯, (27)

is positive, for s> 0
(ii) Totally convex if it is totally convex at each point of

w ∈ int(domg)

(iii) Totally convex on bounded sets if vg: int(domg) ×

[0, +∞)⟶ [0, +∞) such that

vg(B, s) � inf vg(w, s): w ∈ B∩ domg􏽮 􏽯. (28)

By [20] (Section 1.3, p.30), we notice that any uniformly
convex function is totally convex but the converse is not true.
Also, by [21] (,eorem 2.10, p.9),g is totally convex on bounded
sets if and only if g is uniformly convex on bounded sets.

Definition 5 (see [20, 23]). A mapping g: X⟶ (− ∞, +∞]

is called the following:

(i) Coercive if lim‖u‖⟶+∞(g(u)/‖u‖) � +∞
(ii) Sequentially consistent if for any un􏼈 􏼉, vn􏼈 􏼉⊆X with

un􏼈 􏼉 bounded,

4 Journal of Mathematics



lim
n⟶∞

Dg vn, un( 􏼁 � 0⇒ lim
n⟶∞

vn − un

����
���� � 0. (29)

Lemma 1 (see [21]). Let g: X⟶ (− ∞, +∞] be a convex
function with domain at least two points. )en, g is se-
quentially consistent iff it is totally convex on bounded sets.

Lemma 2 (see [42]). Let g: X⟶ (− ∞, +∞] be uniformly
Frechet differentiable and bounded on C⊆X, a bounded set.
)en, g is uniformly continuous on C and ∇g is uniformly
continuous on C from the strong topology of X to the strong
topology of X∗.

Lemma 3 (see [23]). Let g: X⟶ (− ∞, +∞] be a Gateaux
differentiable and totally convex function. If u0 ∈ X and
Dg(un, u0)􏽮 􏽯 are bounded, then un􏼈 􏼉 is also bounded.

Lemma 4 (see [21]). Let g: X⟶ (− ∞, +∞] be a Gateaux
differentiable and totally convex function on int(domg). Let
w ∈ int(domg) and C⊆int(domg), a nonempty closed convex
set. If v ∈ C, then the following statements are equivalent:

(i) v ∈ C is the Bregman projection of w onto C with
respect to g, i.e., v � projgC(w)

(ii) )e vector v is the unique solution of the variational
inequality:

〈∇g(w) − ∇g(v), v − u〉≥ 0, ∀u ∈ C (30)

(iii) )e vector v is the unique solution of the inequality:

Dg(u, v) + Dg(v, w)≤Dg(u, w), ∀u ∈ C (31)

Lemma 5 (see [25]). Let g: X⟶ (− ∞, +∞] be Legendre
and T: C⟶ C be Bregman quasi nonexpansive mapping
with respect to g. )en, F(T) is closed and convex.

Lemma 6 (see [23]). Let g: X⟶ (− ∞, +∞] be Gateaux
differentiable and totally convex function, u0 ∈ X, and C⊆X,
a nonempty closed convex set. Suppose that un􏼈 􏼉 is bounded
and any weak subsequential limit of un􏼈 􏼉 belongs to C. If
Dg(un, u0)≤Dg(projgCu0, u0), then un􏼈 􏼉 strongly converges to
projgCu0.

Lemma 7 (see [43]). Let C be a nonempty subset of a
Hausdroff topological vector space X∗ and let f: C⟶ 2X be
a KKM mapping. If f(v) is closed in X∗ for all v ∈ C and
compact for some v ∈ C, then ∩

v∈C
f(v)≠∅.

Definition 6 (see [1]). A function G: C × C × C⟶ R is
said to be generalized relaxed α-monotone if for any u, v ∈ C,
we have

G(v, u; v) − G(v, u; u)≥ α(u, v), (32)

where

lim
t⟶0

α(u, tv +(1 − t)u)

t
� 0. (33)

Remark 3

(i) If G(v, u; w) � 〈Aw, η(v, u)〉, where
η: C × C⟶ X, we say that the mapping A is a
generalized η-α monotone

(ii) In Definition 6, let G(v, u; w) � 〈Aw, η(v, u)〉 and
α(u, v) � β(v − u), where β: C⟶ R with
β(tw) � tpβ(w), for t> 0 and p> 1, then we say that
A is called a relaxed η-α monotone mapping

(iii) In case (ii), if η(v, u) � v − u for all u, v ∈ C, then
Definition 6 reduces to 〈Av − Au, v − u〉≥ β(v − u)

for all u, v ∈ C and A is called a relaxed α-monotone
mapping

(iv) In case (iii), if β(w) � k‖w‖p, where k> 0 is a
constant, then Definition 6 reduces to 〈Av − Au, v −

u〉≥ k‖v − u‖p for all u, v ∈ C and A is called a
p-monotone mapping

(v) If α ≡ 0, then (iii) reduces to 〈Av − Au, v − u〉≥ 0
for all u, v ∈ C and A is called a monotone mapping

We construct an example for generalized relaxed
α-monotone mapping as follows.

Example 2. Consider X � X∗, C � (− ∞,∞), and

G(v, u; w) �
− cw((v − u), v< u,

cw(v − u), v≥ u,
􏼨 (34)

where c> 0 is a constant. ,us, G is generalized relaxed
α-monotone with

α(u, v) �
− c(v − u)

2
, v< u,

c(v − u)
2
, v≥ u.

⎧⎨

⎩ (35)

Assumption 1. Let b: C × C⟶ R satisfy the following:

(i) b is skew-symmetric, i.e., b(u, u) − b(u, v) − b(v,

u) + b(v, v)≥ 0, ∀u, v ∈ C

(ii) b is convex in the second argument
(iii) b is continuous

3. Existence of Solutions and
Resolvent Operator

For w ∈ C, assume the auxiliary problems (in short, AP)
related to GMVLIP equation (1): find u ∈ C such that

G(v, u; u) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥ 0, ∀v ∈ C, (36)
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and find u ∈ C such that

G(v, u; v) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥ α(u, v), ∀v ∈ C. (37)

We have the Minty-type lemma as follows.

Lemma 8. Let g: X⟶ (− ∞, +∞] be Gateaux differen-
tiable and coercive function, and let b: C × C⟶ R satisfy
Assumption 1 (ii). Assume G: C × C × C⟶ R with the
following cases:

(i) G(v, u; .) is hemicontinuous
(ii) G(., u; w) is convex

(iii) G(u, u; w) � 0
(iv) G is a generalized relaxed α-monotone

)en, AP equation (36) and AP equation (37) are
equivalent.

Proof. Let u ∈ C be a solution of AP equation (36) and by
the concept of G, we obtain

G(v, u; v) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)

≥G(v, u; u) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u) + α(u, v)

≥ α(u, v),

(38)

which shows that u ∈ C is a solution of AP equation (37). Conversely, let u ∈ C be a solution of AP equation (37).
,en,

G(v, u; v) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥ α(u, v), ∀v ∈ C. (39)

For any v ∈ C, let vt � tv + (1 − t)u, t ∈ (0, 1], and we
get vt ∈ C. By equation (39), we have

G vt, u; vt( 􏼁 +〈∇g(u) − ∇g(w), vt − u〉 + b u, vt( 􏼁 − b(u, u)≥ α u, vt( 􏼁. (40)

Using conditions (ii) and (iii), we obtain

G vt, u; vt( 􏼁≤ tψ v, u; vt( 􏼁 +(1 − t)ψ u, u; vt( 􏼁 � tψ v, u; vt( 􏼁.

(41)

By Assumption 1 (ii), we have

〈∇g(u) − ∇g(w), vt − u〉 � t〈∇g(u) − ∇g(w), v − u〉 (42)

and

b u, vt( 􏼁≤ tb(u, v) +(1 − t)b(u, u). (43)

Using equations (40)–(43), we have

tG v, u; vt( 􏼁 + t〈∇g(u) − ∇g(w), v − u〉 + tb(u, v) +(1 − t)b(u, u) − b(u, u)

≥G vt, u; vt( 􏼁 +〈∇g(u) − ∇g(w), vt − u〉 + b u, vt( 􏼁 − b(u, u)

tG v, u; vt( 􏼁 + t〈∇g(u) − ∇g(w), v − u〉 + tb(u, v) − tb(u, u)≥ α u, vt( 􏼁.

(44)

Hence,

G v, u; vt( 􏼁 +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥
α u, vt( 􏼁

t
. (45)
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Let t⟶ 0, and by condition (i), we obtain

G(v, u; u) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥ 0.

(46)

,us, u ∈ C be a solution of AP equation (95). □

Theorem 1. Let g: X⟶ (− ∞, +∞] be a Gateaux differ-
entiable and coercive function, b: C × C⟶ R satisfy As-
sumption 1 (ii)-(iii), and α: C × C⟶ R be a bifunction.
Consider G: C × C × C⟶ R and for any u, v, w ∈ C, as-
sume the following:

(i) G(v, u; .) is hemicontinuous
(ii) G(., u; w) is convex and lower semicontinuous
(iii) G(u, v; w) + G(v, u; w) � 0
(iv) G is a generalized relaxed α-monotone
(v) α(., v) is lower semicontinuous

)en, AP equation (36) has solution.

Proof. Let Fw, Gw: C⟶ 2C, for any w ∈ C, be two set-
valued mappings with

Fw(v) � u ∈ C: G(v, u; u) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥ 0􏼈 􏼉, ∀v ∈ C, (47)

and

Gw(v) � u ∈ C: G(v, u; v) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥ α(u, v)􏼈 􏼉, ∀v ∈ C. (48)

Obviously, u ∈ C solves AP equation (36) if and only if
u ∈ ∩ v∈CFw(v). Hence, ∩ v∈CFw(v)≠∅. Next, we prove that
Fw is a KKMmapping. On the contrary, let Fw be not a KKM
mapping; then, ∃ v1, v2, . . . , vm􏼈 􏼉 ⊂ C such that

co v1, v2, . . . , vm􏼈 􏼉⊈∪m
i�1Fw(vi); this means there exists a

u0 ∈ co v1, v2, . . . , vm􏼈 􏼉, u0 � 􏽐
m
i�1 tivi where ti ≥ 0, i � 1, 2,

. . . m, 􏽐
m
i�1 ti � 1, but u0 ∉ ∪m

i�1Fw(vi). ,en,

G vi, u0; u0( 􏼁 +〈∇g u0( 􏼁 − ∇g(w), vi − u0〉 + b u0, vi( 􏼁 − b u0, u0( 􏼁< 0. (49)

By ,eorem 1 (ii)-(iii), we get

0 � G u0, u0; u0( 􏼁 +〈∇g u0( 􏼁 − ∇g(w), u0 − u0〉 + b u0, u0( 􏼁 − b u0, u0( 􏼁

≤ 􏽘
m

i�1
tiG vi, u0; u0( 􏼁 + 􏽘

m

i�1
ti〈∇g u0( 􏼁 − ∇g(w), vi − u0〉 + 􏽘

m

i�1
tib u0, vi( 􏼁 − 􏽘

m

i�1
tib u0, u0( 􏼁

� 􏽘
m

i�1
ti G vi, u0, u0( 􏼁 +〈∇g u0( 􏼁 − ∇g(w), vi − u0〉 + b u0, vi( 􏼁 − b u0, u0( 􏼁􏼂 􏼃

< 0,

(50)

which is a contradiction. ,us, Fw is a KKM mapping.
Next, we prove that Fw(v) ⊂ Gw(v), ∀v ∈ C. Let

u ∈ Fw(v), for any v ∈ C; then,

G(v, u; u) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)≥ 0.

(51)

Using the concept of G, we obtain

G(v, u; v) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u)

≥G(v, u; u) +〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u) + α(u, v)

≥ α(u, v).

(52)
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,us, Fw(v) ⊂ Gw(v), ∀v ∈ C, which yields that Gw(v) is
a KKM mapping.

Let un􏼈 􏼉 be any sequence in Gw(v) with un⟶ u as
n⟶∞. ,en,

G v, un; v( 􏼁 +〈∇g un( 􏼁 − ∇g(w), v − un〉 + b un, v( 􏼁 − b un, un( 􏼁≥ α un, v( 􏼁. (53)

Since g is Gateaux differentiable function, ∇g is norm-
to-weak ∗ continuous. By (ii) and (iii) and lower semi-
continuity of α, we have

α(u, v) + G(u, v; v)≤ lim
n⟶∞

infα un, v( 􏼁 + lim
n⟶∞

infG un, v; v( 􏼁

≤ lim
n⟶∞

inf α un, v( 􏼁 + G un, v; v( 􏼁􏼈 􏼉

≤ lim
n⟶∞

sup α un, v( 􏼁 + G un, v; v( 􏼁􏼈 􏼉

� lim
n⟶∞

sup α un, v( 􏼁 − G v, un, v( 􏼁􏼈 􏼉

≤ 〈∇g(u) − ∇g(w), v − u〉 + b(u, v) − b(u, u),

(54)

which yields that G(v, u; v) + 〈∇g(u) − ∇g(w), v −

u〉 + b(u, v) − b(u, u)≥ α(u, v). ,us, u ∈ Gw(v) and Gw(v)

are the closed subset of C, ∀v ∈ C. As C is closed convex and
bounded subset in X, it is weakly compact. ,us, Gw(v) is
also compact. By Lemmas 7 and 10, we have ∩ v∈CFw(v) �

∩ v∈CGw(v)≠∅. ,erefore, AP equation (36) has a solution.
□

,e resolvent of G: C × C × C⟶ R with respect to b is
the operator resf

G,b: X⟶ 2C, defined as follows:

resg

G,b(u) � w ∈ C: G(v, w; w) +〈∇g(w) − ∇g(u), v − w〉 + b(w, v) − b(w, w)≥ 0, ∀v ∈ C􏼈 􏼉, ∀u ∈ X. (55)

We obtain some properties of the resolvent operator
resg

G,b. First, we show that resg

G,b(u)≠∅ for u ∈ X and dom
(resg

G,b) � X under some suitable conditions. □

Lemma 9. Let g: X⟶ (− ∞, +∞] be a coercive and Ga-
teaux differentiable function. If G: C × C × C⟶ R satisfies
all conditions of )eorem 1 and b: C × C⟶ R satisfies
Assumption 1, then dom (resgG,b) � X.

Proof. First, we prove that for any ξ ∈ X∗∃ u ∈ C such that

G(v, u; u) + b(u, v) − b(u, u) + g(v) − g(u) − 〈ξ, v − u〉≥ 0,

(56)

for any v ∈ C. As g is coercive, the function
h: X × X⟶ (− ∞, +∞] defined by

h(u, v) � g(v) − g(u) − 〈ξ, v − u〉 (57)

satisfies

lim
‖u− v‖⟶+∞

h(u, v)

‖u − v‖
� − ∞, (58)

for each fixed v ∈ C. By ,eorem 1 in [44], equation (56)
holds. Now, we show that equation (56) yields

G(v, u; u) + b(u, v) − b(u, u) +〈∇g(u), v − u〉 − 〈ξ, v − u〉≥ 0,

(59)

for any v ∈ C. Assume vt � tv + (1 − t)u and t ∈ (0, 1]; we
get vt ∈ C. By equation (59) and the concept of G, we get

G vt, u; vt( 􏼁 + b u, vt( 􏼁 − b(u, u) +〈∇g(u), vt − u〉 − 〈ξ, vt − u〉 ≥ α u, vt( 􏼁, (60)

G tv +(1 − t)u, u; vt( 􏼁 + b(u, tv +(1 − t)u) − b(u, u)

+ g(tv +(1 − t)u) − g(v) − 〈ξ, tv +(1 − t)u − u〉≥ α u, vt( 􏼁,∀v ∈ C.
(61)

Since
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g(tv +(1 − t)u) − g(v)≤ 〈∇g(tv +(1 − t)u), tv +(1 − t)u − u〉,

(62)

we get from equation (61),,eorem 1 (ii), and Assumption 1
(ii) that

tG v, u; vt( 􏼁 +(1 − t)G u, u; vt( 􏼁 + tb(u, v) +(1 − t)b(u, u) − b(u, u)

+〈∇g(tv +(1 − t)u), tv +(1 − t)u − u〉 − 〈ξ, tv +(1 − t)u − u〉≥ α u, vt( 􏼁, ∀v ∈ C.
(63)

From Lemma 10 (iii), we have

tG v, u; vt( 􏼁 + tb(u, v) − tb(u, u) +〈∇g(tv +(1 − t)u), t(v − u)〉 − 〈ξ, t(v − u)〉≥ α u, vt( 􏼁 (64)

and

t G v, u; vt( 􏼁 + b(u, v) − b(u, u) +〈∇g(tv +(1 − t)u), (v − u)〉 − 〈ξ, (v − u)〉􏼂 􏼃≥ α u, vt( 􏼁. (65)

,erefore,

G v, u; vt( 􏼁 + b(u, v) − b(u, u) +〈∇g(tv +(1 − t)u), (v − u)〉 − 〈ξ, (v − u)〉≥
α u, vt( 􏼁

t
, ∀v ∈ C. (66)

As g is a Gateaux differentiable function, ∇g is norm-to-
weak ∗ continuous. Taking t⟶ 0, we have

G(v, u; u) + b(u, v) − b(u, u) +〈∇g(u), (v − u)〉 − 〈ξ, (v − u)〉≥ 0, ∀v ∈ C. (67)

,us, for any u ∈ X, let ξ � ∇g(u); we have u ∈ C such
that

G(v, u; u) + b(u, v) − b(u, u) +〈∇g(u), (v − u)〉 − 〈∇g(u), (v − u)〉≥ 0, ∀v ∈ C, (68)

i.e.,

G(v, u; u) + b(u, v) − b(u, u) +〈∇g(u) − ∇g(u), (v − u)〉≥ 0, ∀v ∈ C, (69)

that is, u ∈ resg

G,b(u). Hence, dom (resg

G,b) � X. □ □

Lemma 10. Let G: C × C × C⟶ R satisfy all conditions of
)eorem 1, and let b: C × C⟶ R satisfy Assumption 1. Let
g: X⟶ (− ∞, +∞] be a coercive Legendre function and the

resolvent operator resgG,b: X⟶ 2C be defined by equation
(55). )en, the following holds:

(i) resgG,b is single-valued
(ii) resgG,b is Bregman firmly nonexpansive type mapping,

that is,
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〈∇g resg

G,bu􏼐 􏼑 − ∇g resg

G,bv􏼐 􏼑, resg

G,bu − resg

G,bv〉 ≤ 〈∇g(u) − ∇g(v), resg

G,bu − resg

G,by〉, ∀u, v ∈ X (70)

(iii) F(resgG,b) � Sol(GMVLIP(1)) is closed and convex
(iv)

Dg q, resg

G,bu􏼐 􏼑 + Dg resg

G,bu, u􏼐 􏼑≤Dg(q, u), ∀q ∈ F resg

G,b􏼐 􏼑.

(71)

(v) resgG,b is Bregman quasi-nonexpansive

Proof

(i) For u ∈ X, let w1, w2 ∈ F(resg

G,b). ,en, w1, w2 ∈ C

and hence

G w2, w1; w1( 􏼁 +〈∇g w1( 􏼁 − ∇g(u), w2 − w1〉 + b w1, w2( 􏼁 − b w1, w1( 􏼁≥ 0. (72)

and

G w1, w2; w2( 􏼁 +〈∇g w2( 􏼁 − ∇g(u), w1 − w2〉 + b w2, w1( 􏼁 − b w2, w2( 􏼁. (73)

Adding the above two inequalities, we get

G w2, w1; w1( 􏼁 + G w1, w2; w2( 􏼁 +〈∇g w1( 􏼁 − ∇g w2( 􏼁, w2 − w1〉

+b w1, w2( 􏼁 − b w1, w1( 􏼁 + b w2, w1( 􏼁 − b w2, w2( 􏼁≥ 0.
(74)

By condition (iii) of ,eorem 1, we get

− G w1, w2; w1( 􏼁 + G w1, w2; w2( 􏼁 +〈∇g w1( 􏼁 − ∇g w2( 􏼁, w2 − w1〉

+b w1, w2( 􏼁 − b w1, w1( 􏼁 + b w2, w1( 􏼁 − b w2, w2( 􏼁≥ 0.
(75)

As b is skew symmetric and G is a generalized re-
laxed α-monotone,

α w2, w1( 􏼁 − 〈∇g w1( 􏼁 − ∇g w2( 􏼁, w2 − w1〉 ≤ 0

〈∇g w1( 􏼁 − ∇g w2( 􏼁, w2 − w1〉 ≥ α w2, w1( 􏼁.
(76)

By interchanging the position of w1 and w2 in
equation (76), we get

〈∇g w2( 􏼁 − ∇g w1( 􏼁, w1 − w2〉 ≥ α w2, w1( 􏼁. (77)

Adding equations (76) and (77), we have

2〈∇g w1( 􏼁 − ∇g w2( 􏼁, w2 − w1〉 ≥ α w1, w2( 􏼁 + α w2, w1( 􏼁􏼈 􏼉.

(78)

As α(u, v) + α(v, u)≥ 0, ∀v ∈ C,

〈∇g w1( 􏼁 − ∇g w2( 􏼁, w2 − w1〉 ≥ 0. (79)

,is implies that

〈∇g w2( 􏼁 − ∇g w1( 􏼁, w2 − w1〉 ≤ 0. (80)

As g is convex and Gateaux differentiable,

〈∇g w2( 􏼁 − ∇g w1( 􏼁, w2 − w1〉 ≥ 0. (81)

By equations (80) and (81), we have

〈∇g w2( 􏼁 − ∇g w1( 􏼁, w2 − w1〉 � 0. (82)
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Since g is a Legendre function, w1 � w2. Hence,
resg

G,b is single-valued.
(ii) For u, v ∈ C, we obtain

G resg

G,bv, resg

G,bu; resg

G,bu􏼐 􏼑 +〈∇g resg

G,bu􏼐 􏼑 − ∇g(u), resg

G,bv − resg

G,bu〉

+ b resg

G,bu, resg

G,bv􏼐 􏼑 − b resg

G,bu, resg

G,bu􏼐 􏼑≥ 0
(83)

and

G resg

G,bu, resg

G,bv; resg

G,bv􏼐 􏼑 +〈∇g resg

G,bv􏼐 􏼑 − ∇g(v), resg

G,bu − resg

G,bv〉

+ b resg

G,bv, resg

G,bu􏼐 􏼑 − b resg

G,bv, resg

G,bv􏼐 􏼑≥ 0.
(84)

Adding the above two inequalities, we have

G resg

G,bv, resg

G,bu; resg

G,bu􏼐 􏼑 + G resg

G,bu, resg

G,bv; resg

G,bv􏼐 􏼑

+〈∇g resg

G,bu􏼐 􏼑 − ∇g(u) − ∇g resg

G,bv􏼐 􏼑 + ∇g(v), resg

G,bv − resg

G,bu〉

+ b resg

G,bu, resg

G,bv􏼐 􏼑 − b resg

G,bu, resg

G,bu􏼐 􏼑 + b resg

G,bv, resg

G,bu􏼐 􏼑 − b resg

G,bv, resg

G,bv􏼐 􏼑≥ 0,

(85)

which yields by applying the concept of b and G,

〈∇g resg

G,bu􏼐 􏼑 − ∇g(u) − ∇g resg

G,bv􏼐 􏼑 + ∇g(v), resg

G,bv − resg

G,bu〉

≥ − G resg

G,bv, resg

G,bu; resg

G,bu􏼐 􏼑 + G resg

G,bu, resg

G,bv; resg

G,bv􏼐 􏼑􏽮 􏽯

� G resg

G,bv, resg

G,bu; resg

G,bv􏼐 􏼑 − G resg

G,bv, resg

G,bu; resg

G,bu􏼐 􏼑

≥ α resg

G,bu, resg

G,bv􏼐 􏼑.

(86)

In equation (86), interchanging the position of
resg

G,bu and resg

G,bv, we get

〈∇g resg

G,bv􏼐 􏼑 − ∇g(v) − ∇g resg

G,bu􏼐 􏼑 + ∇g(u), resg

G,bv − resg

G,bu〉 ≥ α resg

G,bv, resg

G,bu􏼐 􏼑. (87)

Adding equations (86) and (87) and using
α(u, v) + α(v, u)≥ 0, ∀v ∈ C, we get

2〈∇g resg

G,bu􏼐 􏼑 − ∇g(u) − ∇g resg

G,bv􏼐 􏼑 + ∇g(v), resg

G,bv − resg

G,bu〉 ≥ α resg

G,bu, resg

G,bv􏼐 􏼑 + α resg

G,bv, resg

G,bu􏼐 􏼑􏽮 􏽯≥ 0. (88)

,is implies that
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〈∇g resg

G,bu􏼐 􏼑 − ∇g resg

G,bv􏼐 􏼑, resg

G,b(u) − resg

G,b(v)〉 ≤ 〈∇g(u) − ∇g(v), resg

G,b(u) − resg

G,b(v)〉. (89)

,is means that resg

G,b is a Bregman firmly non-
expansive type mapping.

(iii) Let u ∈ F(resg

G,b); then,

u ∈ F resg

G,b􏼐 􏼑⇔u � resg

G,bu

⇔G(v, u; u) +〈∇g(u) − ∇g(u), v − u〉 + b(u, v) − b(u, u)≥ 0, ∀v ∈ C

⇔G(v, u; u) + b(u, v) − b(u, u), ∀v ∈ C

⇔u ∈ Sol(GMVLIP(1)).

(90)

Furthermore, Since resg

G,b is a Bregman firmly
nonexpansive type mapping, in ([42], Lemma 1.3.1),
F(resg

G,b) is a closed and convex subset of C.
,erefore, by equation (90), we get that
Sol(GMVLIP(1)) � F(resg

G,b) is closed and convex.

(iv) Now, we show that resg

G,b is Bregman quasi-non-
expansive mapping.
For u, v ∈ C, from (b), we have

〈∇g resg

G,bu􏼐 􏼑 − ∇g resg

G,bv􏼐 􏼑, resg

G,b(u) − resg

G,b(v)〉 ≤ 〈∇g(u) − ∇g(v), resg

G,b(u) − resg

G,b(v)〉. (91)

Moreover, we have

Dg resg

G,b(u), resg

G,b(v)􏼐 􏼑 + Dg resg

G,b(v), resg

G,b(u)􏼐 􏼑≤Dg resg

G,b(u), v􏼐 􏼑 − Dg resg

G,b(u), u􏼐 􏼑

+ Dg resg

G,b(v), u􏼐 􏼑 − Dg resg

G,b(v), v􏼐 􏼑.
(92)

Taking v � w ∈ F(resg

G,b), we see that

Dg resg

G,b(u), w􏼐 􏼑 + Dg w, resg

G,b(u)􏼐 􏼑≤Dg resg

G,b(u), w􏼐 􏼑 − Dg resg

G,b(u), u􏼐 􏼑 + Dg(w, u) − Dg(w, w). (93)

Hence,

Dg w, resg

G,b(u)􏼐 􏼑 + Dg resg

G,b(u), u􏼐 􏼑≤Dg(w, u). (94)

(v) Equation (94) implies that resg

G,b is Bregman quasi-
nonexpansive mapping. □

4. Main Result

We developed the strong convergence algorithm for the
inertial iterative method to find the common solution of
GMVLIP equation (1) and fixed-point problem of a Breg-
man relatively nonexpansive mapping in reflexive Banach
space.

Iterative Algorithm 1. Let the sequences xn􏼈 􏼉 and zn􏼈 􏼉 be
generated by the iterative algorithm:

x0, x− 1 ∈ C,

un � xn + θn xn − xn− 1( 􏼁,

vn � ∇g∗ αn∇g un( 􏼁 + 1 − αn( 􏼁∇g Tun( 􏼁( 􏼁,

wn � ∇g∗ βn∇g Tun( 􏼁 + 1 − βn( 􏼁∇g vn( 􏼁( 􏼁,

zn � resg

G,bwn,

Cn � z ∈ C: Dg z, zn( 􏼁≤Dg z, un( 􏼁􏽮 􏽯,

Qn � z ∈ C: 〈∇g x0( 􏼁 − ∇g xn( 􏼁, z − xn〉 ≤ 0􏼈 􏼉,

xn+1 � projgCn∩Qn
x0, forall n≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(95)

where θn􏼈 􏼉⊆(0, 1) and αn􏼈 􏼉, βn􏼈 􏼉⊆[0, 1].

Theorem 2. Let C⊆X with C⊆int(domg), where
g: X⟶ (− ∞, +∞] be a coercive Legendre function which
is bounded, uniformly Frechet differentiable, and totally
convex on bounded subsets of X. Let G: C × C × C⟶ R
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satisfy all conditions of )eorem 1 with continuous G(y, ·; y),
and b: C × C⟶ R satisfies Assumption 1, respectively. Let
T: C⟶ C be a Bregman relatively nonexpansive mapping.
Let Ω � Sol(GMVLIP(1))∩F(T)≠∅. Let xn􏼈 􏼉, zn􏼈 􏼉 be
generated by Iterative 1 and θn􏼈 􏼉⊆(0, 1), αn􏼈 􏼉, βn􏼈 􏼉⊆[0, 1]

with lim
n⟶∞

αn � 0. )en, xn􏼈 􏼉 converges strongly to projgΩx0.

Proof. For convenience, we divide its proof into several steps
as in the following. □

Step 1. Ω and Cn ∩Qn are closed and convex, ∀n≥ 0.
By Lemmas 5 and 9, Ω is a closed and convex, and

therefore, projgΩx0 is well defined.
Obviously, Qn is closed and convex. Furthermore, we

prove that Cn is closed and convex, ∀n≥ 0. We can easily
show that Cn is closed and convex, ∀n. ,us, Cn ∩Qn is
closed and convex, ∀n≥ 0.

Step 2. Ω ⊂ Cn ∩Qn, ∀n≥ 0, and xn􏼈 􏼉 is well defined.
Let p ∈ Ω; then,

Dg p, zn( 􏼁 � Dg p, resg

G,bwn􏼐 􏼑

≤Dg p, wn( 􏼁

� Dg p,∇g∗ βn∇g Tun( 􏼁( + 1 − βn( 􏼁∇g vn( 􏼁( 􏼁

≤ βnDg p, un( 􏼁 + 1 − βn( 􏼁Dg p, vn( 􏼁,

(96)

and

Dg p, vn( 􏼁 � Dg p,∇g∗ αn∇g un( 􏼁( + 1 − αn( 􏼁∇g Tun( 􏼁( 􏼁

≤ αnDg p, un( 􏼁 + 1 − αn( 􏼁Dg p, un( 􏼁

� Dg p, un( 􏼁.

(97)

Substituting equation (97) into equation (96), we have

Dg p, zn( 􏼁≤Dg p, un( 􏼁. (98)

,us, p ∈ Cn. ,erefore, Ω ⊂ Cn, ∀n≥ 0. Furthermore,
by induction, we show that Ω ⊂ Cn ∩Qn, n≥ 0. As Q0 � C,
Ω ⊂ C0 ∩Q0. Suppose that Ω ⊂ Cm ∩Qm, for some m> 0.
,en, ∃xm+1 ∈ Cm ∩Qm such that xm+1 � projgCm ∩Qm

x0.
From the definition of xm+1, we get
〈∇g(x0) − ∇g(xm+1), xm+1 − z〉≥ 0, ∀z ∈ Ck ∩Qm. Since
Ω ⊂ Cm ∩Qm, we have

〈∇g x0( 􏼁 − ∇g xm+1( 􏼁, p − xm+1〉 ≤ 0, ∀p ∈ Ω, (99)

which implies p ∈ Qm+1. Hence, Ω ⊂ Cm+1 ∩Qm+1 implies
Ω ⊂ Cn ∩Qn, ∀n≥ 0, and thus, xn+1 � projgCn ∩Qn

x0 is well
defined, ∀n≥ 0. Hence, xn􏼈 􏼉 is well defined.

Step 3. ,e sequences xn􏼈 􏼉, un􏼈 􏼉, vn􏼈 􏼉, zn􏼈 􏼉, and wn􏼈 􏼉 are
bounded.

Using the concept of Qn, we get xn � projgQn
x0. By xn �

projgQn
x0 and Lemma 10 (iii), we obtain

Dg xn, x0( 􏼁 � Dg projgQn
x0, x0􏼐 􏼑

≤Dg u, x0( 􏼁 − Dg u, projgQn
x0􏼐 􏼑≤Dg u, x0( 􏼁,

∀u ∈ Ω ⊂ Qn.

(100)

,is implies that Dg(xn, x0)􏽮 􏽯 is bounded, and hence,
xn􏼈 􏼉 is bounded by Lemma 3.

Now,

Dg p, xn( 􏼁 � Dg p, projgCn− 1∩Qn− 1
x0􏼐 􏼑

≤Dg p, x0( 􏼁 − Dg xn, x0( 􏼁,
(101)

which implies that Dg(p, xn)􏽮 􏽯 is bounded. Using
Dg(p, Txn)≤Dg(p, xn), ∀p ∈ Ω, Txn􏼈 􏼉 is bounded.
,erefore, un􏼈 􏼉, vn􏼈 􏼉, wn􏼈 􏼉, and zn􏼈 􏼉 are bounded.

Step 4. lim
n⟶∞

‖xn+1 − xn‖ � 0; lim
n⟶∞

‖xn − un‖ � 0;

lim
n⟶∞

‖zn − un‖ � 0; lim
n⟶∞

‖zn − wn‖ � 0;
lim

n⟶∞
‖un − wn‖ � 0, and lim

n⟶∞
‖un − Tun‖ � 0.

Since xn+1 � projgCn∩Qn
x0 ∈ Qn and xn ∈ proj

g

Qn
x0, we get

Dg xn, x0( 􏼁≤Dg xn+1, x0( 􏼁, ∀n≥ 0, (102)

which implies Dg(xn, x0)􏽮 􏽯 is nondecreasing. By bound-
edness of Dg(xn, x0)􏽮 􏽯, lim

n⟶∞
Dg(xn, x0) exists and is finite.

Furthermore,

Dg xn+1, xn( 􏼁 � Dg xn+1, proj
g

Qn
x0􏼐 􏼑

≤Dg xn+1, x0( 􏼁 − Dg projgQn
x0, x0􏼐 􏼑

� Dg xn+1, x0( 􏼁 − Dg xn, x0( 􏼁,

(103)

which yields

lim
n⟶∞

Dg xn+1, xn( 􏼁 � 0. (104)

Using Lemma 1,

lim
n⟶∞

xn+1 − xn

����
���� � 0. (105)

From the definition of un, ‖un − xn‖ � ‖θn(xn−

xn− 1)‖≤ ‖xn − xn− 1‖, which implies by equation (105) that

lim
n⟶∞

un − xn

����
���� � 0. (106)

Since

un − xn+1
����

����≤ un − xn

����
���� + xn − xn+1

����
����, (107)

it follows from equations (105) and (106) that

lim
n⟶∞

un − xn+1
����

���� � 0. (108)

Using Lemma 2 because g is uniformly Frechet differ-
entiable, we get

lim
n⟶∞

g un( 􏼁 − g xn+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0 (109)

and
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lim
n⟶∞
∇g un( 􏼁 − ∇g xn+1( 􏼁

����
���� � 0. (110)

By the concept of Dg, we get

Dg xn+1, un( 􏼁 � g xn+1( 􏼁 − g un( 􏼁 − 〈∇g un( 􏼁, xn+1 − un〉.
(111)

∇g is bounded on the bounded subset of X because g is
bounded on X. Since g is uniformly Frechet differentiable, it
is uniformly continuous on bounded subsets. Hence, by
equations (108), (109), and (111),

lim
n⟶∞

Dg xn+1, un( 􏼁 � 0. (112)

As xn+1 � projgCn ∩Qn
x0 ∈ Cn, we have

Dg xn+1, zn( 􏼁≤Dg xn+1, un( 􏼁, (113)

and hence, by equations (112) and (113),

lim
n⟶∞

Dg xn+1, zn( 􏼁 � 0. (114)

,anks to Lemma 1,

lim
n⟶∞

xn+1 − zn

����
���� � 0. (115)

Taking into account

zn − un

����
����≤ zn − xn+1

����
���� + xn+1 − un

����
����, (116)

by equations (108) and (115), we get

lim
n⟶∞

zn − un

����
���� � 0. (117)

By Lemma 2,

lim
n⟶∞

g zn( 􏼁 − g un( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0 (118)

and

lim
n⟶∞
∇g zn( 􏼁 − ∇g un( 􏼁

����
���� � 0. (119)

Next, we estimate

Dg p, un( 􏼁 − Dg p, zn( 􏼁 � g(p) − g un( 􏼁 − 〈∇g un( 􏼁, p − un〉

− g(p) + g zn( 􏼁 +〈∇g zn( 􏼁, p − zn〉

� g zn( 􏼁 − g un( 􏼁 +〈∇g zn( 􏼁, p − zn〉 − 〈∇g un( 􏼁, p − un〉

� g zn( 􏼁 − g un( 􏼁 +〈∇g zn( 􏼁, un − zn〉

+〈∇g zn( 􏼁 − ∇g un( 􏼁, p − un〉.

(120)

Since zn􏼈 􏼉, un􏼈 􏼉, ∇g(zn)􏼈 􏼉, and ∇g(un)􏼈 􏼉 are bounded
and by equations (117)–(120), we get

lim
n⟶∞

Dg p, un( 􏼁 − Dg p, zn( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 0. (121)

Furthermore, it follows from Lemma 9 (v) that

Dg zn, wn( 􏼁≤Dg p, wn( 􏼁 − Dg p, zn( 􏼁

≤Dg p,∇g∗ βn∇g Tun( 􏼁 + 1 − βn( 􏼁∇g vn( 􏼁( 􏼁( 􏼁 − Dg p, zn( 􏼁

≤ βnDg p, Tun( 􏼁 + 1 − βn( 􏼁Dg p, un( 􏼁 − Dg p, zn( 􏼁

≤Dg p, un( 􏼁 − Dg p, zn( 􏼁.

(122)

Since Dg(p, un)􏽮 􏽯 and Dg(p, zn)􏽮 􏽯 are bounded, by
equations (121) and (122),

lim
n⟶∞

Dg zn, wn( 􏼁 � 0, (123)

and hence,

lim
n⟶∞

zn − wn

����
���� � 0. (124)

From equations (117) and (124), we get

lim
n⟶∞

un − wn

����
���� � 0. (125)

By uniform Frechet differentiable of g, Lemma 2, and
equations (124) and (125), we have

lim
n⟶∞
∇g zn( 􏼁 − ∇g wn( 􏼁

����
���� � 0, (126)

lim
n⟶∞
∇g un( 􏼁 − ∇g wn( 􏼁

����
���� � 0. (127)
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Note that

∇g un( 􏼁 − ∇g wn( 􏼁
����

���� � ∇g un( 􏼁 − ∇g ∇g∗ βn∇g Tun( 􏼁 + 1 − βn( 􏼁∇g vn( 􏼁( 􏼁( 􏼁
����

����

� ∇g un( 􏼁 − βn∇g Tun( 􏼁 − 1 − βn( 􏼁∇g vn( 􏼁􏼁
����

����

� βn ∇g un( 􏼁 − ∇g Tun( 􏼁( 􏼁 + 1 − βn( 􏼁 ∇g un( 􏼁 − ∇g vn( 􏼁( 􏼁
����

����

� βn ∇g un( 􏼁 − ∇g Tun( 􏼁( 􏼁 + 1 − βn( 􏼁 ∇g un( 􏼁 − ∇g ∇g∗ αn∇g un( 􏼁 + 1 − αn( 􏼁∇g Tun( 􏼁( 􏼁( 􏼁( 􏼁
����

����

� βn ∇g un( 􏼁 − ∇g Tun( 􏼁( 􏼁 + 1 − βn( 􏼁 1 − αn( 􏼁 ∇g un( 􏼁 − ∇g Tun( 􏼁( 􏼁
����

����

� 1 − αn 1 − βn( 􏼁􏼂 􏼃 ∇g un( 􏼁 − ∇g Tun( 􏼁􏼁
����

����.

(128)

By equations (127) and (128) and lim
n⟶∞

αn � 0, we get

lim
n⟶∞
∇g un( 􏼁 − ∇g Tun( 􏼁

����
���� � 0. (129)

Moreover, we have from equation (129) that

lim
n⟶∞

un − Tun

����
���� � 0. (130)

Step 5. x ∈ Ω.
First, we prove that x ∈ F(T). As xn􏼈 􏼉 is bounded, ∃ a

subsequence xnk
􏽮 􏽯⊆ xn􏼈 􏼉 such that xnk

⇀x ∈ C as k⟶∞.

By equations (106), (117), (124), and (125), xn􏼈 􏼉, un􏼈 􏼉, wn􏼈 􏼉,
and zn􏼈 􏼉 have the same asymptotic behaviour and thus ∃
subsequences unk

􏽮 􏽯 of un􏼈 􏼉, wnk
􏽮 􏽯 of wn􏼈 􏼉, and znk

􏽮 􏽯 of zn􏼈 􏼉

such that unk
⇀x, wnk

⇀x, and znk
⇀x as k⟶∞. Using

unk
⇀x and equation (130), we get

lim
k⟶∞

unk
− Tunk

�����

����� � 0. (131)

By the concept of T, x ∈ 􏽢F(T) � F(T).
Next, prove that x ∈ Sol(GMVLIP(1)). As

zn � resg

G,bwn, we have

G v, znk
; znk

􏼐 􏼑 +〈∇g znk
􏼐 􏼑 − ∇g wnk

􏼐 􏼑, v − znk
〉 + b v, znk

􏼐 􏼑 − b znk
, znk

􏼐 􏼑≥ 0, ∀v ∈ C. (132)

Using generalized relaxed α-monotonicity of G, we have

〈∇g znk
􏼐 􏼑 − ∇g wnk

􏼐 􏼑, v − znk
〉 ≥ − G v, znk

; znk
􏼐 􏼑 − b v, znk

􏼐 􏼑 + b znk
, znk

􏼐 􏼑, ∀v ∈ C,

≥ α znk
, v􏼐 􏼑 − G v, znk

; v􏼐 􏼑 − b v, znk
􏼐 􏼑 + b znk

, znk
􏼐 􏼑.

(133)

Using the concept of G, b, equation (126), and k⟶∞
in equation (133), we obtain

α(x, v) − G(v, x; v) + b(x, x) − b(x, v)≤ 0, for all v ∈ C.

(134)

For t ∈ (0, 1) and v ∈ C, let vt � tv + (1 − t)x. Since
vt ∈ C, we have

αi x, vt( 􏼁 − G vt, x; vt( 􏼁 + b(x, x) − b x, vt( 􏼁≤ 0, (135)

which implies that

α x, vt( 􏼁≤G vt, x; vt( 􏼁 − b(x, x) + b x, vt( 􏼁

≤ tG v, x; vt( 􏼁 +(1 − t)G x, x; vt( 􏼁 − b(x, x) + tb(x, v) +(1 − t)b(x, x)

≤ t G v, x; vt( 􏼁 + b(x, v) − b(x, x)􏼂 􏼃.

(136)

Since G(v, x; ·) is hemicontinuous, we have

lim
t⟶0

G v, x; vt( 􏼁 + b(x, v) − b(x, x)􏼈 􏼉≥ lim
t⟶0

α x, vt( 􏼁

t
, (137)

which implies

G(v, x; x) + b(x, v) − b(x, x)≥ 0. (138)

Hence, x ∈ Sol(GMVLIP(1)). ,us, x ∈ Ω.

Step 6. We prove that xn⟶ x � projgΩx0.
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Proof of Step 6. Let 􏽥u � projgΩx0. As xn􏼈 􏼉 is weakly con-
vergent, xn+1 � projgΩx0 and projgΩx0 ∈ Ω ⊂ Cn ∩Qn. By
equation (100), we have

Dg xn+1, x0( 􏼁≤Dg projgΩx0, x0( 􏼁. (139)

Using Lemma 6, xn􏼈 􏼉 is strongly convergent to
􏽥u � projgΩx0. Hence, by the uniqueness of the limit, xn􏼈 􏼉

converges strongly to x � projgΩx0. □

5. Consequences

Finally, we get the following consequences of ,eorem 2.

Corollary 1. Let C⊆X with C⊆int(domg), where
g: X⟶ (− ∞, +∞] be a coercive Legendre function which
is bounded, uniformly Frechet differentiable, and totally
convex on bounded subsets of X. Let G: C × C × C⟶ R

satisfy conditions (i), (ii), and (iii) of )eorem 1 and G be
monotone, i.e.,

G(y, x; y) − G(y, x; x)≥ 0, for any x, y ∈ C. (140)

Let b: C × C⟶ R satisfy Assumption 1, and Let
T: C⟶ C be a Bregman relatively nonexpansive mapping.
Let Ω � Sol(GMVLIP(1))∩F(T)≠∅. Let xn􏼈 􏼉, zn􏼈 􏼉 be
generated by Iterative 1 and θn􏼈 􏼉⊆(0, 1) and αn􏼈 􏼉, βn􏼈 􏼉⊆[0, 1]

with lim
n⟶∞

αn � 0. )en, xn􏼈 􏼉 converges strongly to projgΩx0.
Moreover, if GMVLIP equation (1)� C and by the concept

of Example 1 for A: X⟶ 2X∗ , we have the maximal
monotone operator.

Corollary 2. Let C⊆X with C⊆int(domg), where
g: X⟶ (− ∞, +∞] be a coercive Legendre function which
is bounded, uniformly Frechet differentiable, and totally
convex on bounded subsets of X. Let A: X⟶ 2X∗ be a
maximal monotone operator with A− 1(0)≠∅. Let
xn􏼈 􏼉, zn􏼈 􏼉⊆C generated by

x0, x− 1 ∈ C,

un � xn + αn xn − xn− 1( 􏼁,

vn � ∇g∗ αn∇g un( 􏼁 + 1 − αn( 􏼁∇g resg

Aun( 􏼁( 􏼁,

zn � ∇g∗ βn∇g resg

Aun( 􏼁 + 1 − βn( 􏼁∇g vn( 􏼁( 􏼁,

Cn � z ∈ C: Dg z, zn( 􏼁≤Dg z, un( 􏼁􏽮 􏽯,

Qn � z ∈ C: 〈∇g x0( 􏼁 − ∇g xn( 􏼁, z − xn〉 ≤ 0􏼈 􏼉,

xn+1 � projgCn∩Qn
x0,∀n≥ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(141)

where θn􏼈 􏼉⊆(0, 1) and αn􏼈 􏼉, βn􏼈 􏼉⊆[0, 1] with lim
n⟶∞

αn � 0.
)en, xn􏼈 􏼉 converges strongly to projA− 1(0)x0.

Remark 4. If g(x) � (1/2)‖x‖2, ∀x ∈ X, then ,eorem 2 is
reduced to the strong convergence theorem for finding the
common solution of GMVLIP equation (1) and fixed-point
problem of a relatively nonexpansive mapping in reflexive
Banach space.

6. Numerical Example

Finally, to support our main theorem, we now give an ex-
ample in infinitely dimensional spaces L2[0, 1] such that ‖ · ‖

is L2-norm defined by ‖x‖ �

����������

􏽒
1
0 |x(t)|2 dt

􏽱

where x(t) ∈
L2[0, 1].

Example 3. Let X � L2[0, 1] and C � x(t) ∈ L2[0, 1]:􏼈

􏽒
1
0 tx(t) dt≤ 2}. Define mappings as follows:

(i) Coercive Legendre function g: X⟶ (− ∞, +∞]

by g(x) � (1/2) ‖x‖2, ∀x ∈ X

(ii) ∀x,y,z∈C, Function G: C × C × C⟶ R by G(x,

y, z) � (1/2)(‖y‖2 − ‖x‖2), with α: C × C⟶ R

such that α(x, y) � 0, ∀x, y ∈ C

(iii) Bifunction b: C × C⟶ R by b(x, y) � − 〈x, y〉,
∀x, y ∈ C

(iv) Bregman relatively nonexpansive mapping
T: C⟶ C with respect to g by Tx � (x/2), ∀x ∈ C

It is obvious that G: C × C × C⟶ R satisfies all con-
ditions of ,eorem 1 with continuous G(y, ·; y) and b: C ×

C⟶ R satisfies Assumption 1, respectively. On the other
hand, we consider
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u ∈ res
g

G,b(w)⟺G(u, y, y) +〈∇g(u) − ∇g(w), y − u〉 + b(u, y) − b(u, u)≥ 0, ∀y ∈ C

⟺
1
2

‖y‖
2

− ‖u‖
2

􏼐 􏼑 +〈u − w, y − u〉 − 〈u, y〉 +〈u, u〉≥ 0, ∀y ∈ C

⟺
1
2

‖y‖
2

− ‖u‖
2

􏼐 􏼑 − 〈w, y − u〉≥ 0, ∀y ∈ C

⟺
1
2

‖y‖
2

− ‖u‖
2

􏼐 􏼑 − 〈w, y − w〉 +〈w, u − w〉≥ 0, ∀y ∈ C

⟺
1
2

‖u‖
2

− ‖w‖
2

􏼐 􏼑 − 〈w, u − w〉≤
1
2

‖y‖
2

− ‖w‖
2

􏼐 􏼑 − 〈w, y − w〉, ∀y ∈ C

⟺Dg(u, w)≤Dg(y, w), ∀y ∈ C

⟺u � Proj
g

C(w).

(142)

Table 1: Numerical results of the difference εn.

εn (1/n + 1) (1/2n + 1) (1/n2 + 1) (1/2n2 + 1) (1/n3 + 1)

x− 1 � (sin(t)/2), x0 � sin(t)
No. of iter. 9 15 19 20 20
CPU time (s) 7.59932 12.22748 14.71024 15.57306 15.66219

x− 1 � (2 sin(t) − t/2), x0 � 2 sin(t) − t
No. of iter. 10 15 20 20 21
CPU time (s) 8.75820 12.24971 15.65068 15.78607 17.30471

x− 1 � t + log2(t + 1), x0 � log(t + 1)
No. of iter. 11 15 21 20 22
CPU time (s) 9.06217 10.15574 16.53084 15.81738 17.65972

Table 2: Numerical results of the difference θ.

θ 0.1 0.3 0.5 0.7 0.9

x− 1 � (sin(t)/2), x0 � sin(t)
No. of iter. 9 9 9 9 9
CPU time (s) 7.75878 7.50740 7.67907 7.59864 7.60107

x− 1 � (2 sin(t) − t/2), x0 � 2 sin(t) − t
No. of iter. 10 10 10 10 10
CPU time (s) 8.53362 8.82150 8.62202 8.82075 8.64536

x− 1 � t + log2(t + 1), x0 � log(t + 1)
No. of iter. 11 11 11 11 11
CPU time (s) 9.61967 9.06217 9.56274 9.47570 9.10264

Table 3: Numerical results of the difference αn.

αn (1/2n + 1) (1/10n + 1) (1/100n + 1) (1/2n2 + 1) (1/10n2 + 1)

x− 1 � sin(t)/2, x0 � sin(t)
No. of iter. 9 6 5 7 5
CPU time (s) 7.53828 5.63066 4.78461 6.19290 4.80899

x− 1 � (2 sin(t) − t/2), x0 � 2 sin(t) − t
No. of iter. 10 6 5 7 6
CPU time (s) 8.51165 5.84207 5.10883 6.47365 5.94383

x− 1 � t + log2(t + 1), x0 � log(t + 1)
No. of iter. 11 6 5 7 6
CPU time (s) 8.87843 5.52223 4.95105 6.23286 5.59795

Table 4: Numerical results of the difference βn.

βn (1/2n + 1) (1/10n + 1) (1/100n + 1) (1/2n2 + 1) (1/10n2 + 1)

x− 1 � (sin(t)/2), x0 � sin(t)
No. of iter. 5 5 5 5 5
CPU time (s) 4.80889 4.75128 4.79156 4.75109 4.76763

x− 1 � (2 sin(t) − t/2), x0 � 2 sin(t) − t
No. of iter. 5 5 5 5 5
CPU time (s) 4.97311 5.09668 5.03153 4.99385 4.98385

x− 1 � t + log2(t + 1), x0 � log(t + 1)
No. of iter. 5 5 5 5 5
CPU time (s) 5.16031 4.97200 4.83550 5.49581 5.47782
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For the experiments in this section, we use the Cauchy
error ‖xn+1 − xn‖2 < 10− 5 for the stopping criterion. We will
start with the initialization x− 1 and x0 in two cases. We split
considering all of the performances of our algorithm in four
cases by considering all of the parameters that have an effect
on the convergence of the algorithm.

Case 1. We start computation by comparison of the algo-
rithm with different parameters ϵn where

θn �

min
ϵn

xn − xn− 1
����

����
, θ􏼨 􏼩, if n≤N,

ϵn, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(143)

where N is the number of iterations that we want to stop,
limn⟶∞εn � 0, and θ ∈ (0, 1). We choose θ � 0.3,
αn � (1/2n + 1), and βn � αn. ,en, the results are presented
in Table 1.
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Case 2. We compare the performance of the algorithm with
different parameters θ by setting ϵn � (1/n + 1),
αn � (1/2n + 1), and βn � αn. ,en, the results are presented
in Table 2.

Case 3. We compare the performance of the algorithm with
different parameters αn by setting εn � (1/n + 1), βn � αn,
and θ � 0.3 for the initialization
x− 1 � (sin(t)/2), x0 � sin(t) and x− 1 � t + log2(t + 1), x0 �

log(t + 1) and θ � 0.1 for the initialization

x− 1 � (2 sin(t) − t/2), x0 � 2 sin(t) − t. ,en, the results
are presented in Table 3.

Case 4. We compare the performance of the algorithm with
different parameters βn by setting εn � (1/n + 1),
αn � (1/100n + 1), and θ � 0.3 for the initialization x− 1 �

(sin(t)/2), x0 � sin(t) and
x− 1 � t + log2(t + 1), x0 � log(t + 1) and θ � 0.1 for the
initialization x− 1 � (2 sin(t) − t/2), x0 � 2 sin(t) − t. ,en,
the results are presented in Table 4.
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From Tables 1–4 and Figures 1–12, we noticed that in all
the above 4 cases, choosing θ � 0.3, εn � (1/n + 1),
αn � (1/100n + 1), and βn � (1/2n2 + 1) yields the best re-
sults for the initialization x− 1 � (sin(t)/2), x0 � sin(t).

Choosing θ � 0.1, εn � (1/n + 1), αn � (1/100n + 1), and
βn � (1/2n + 1) yields the best results for the initialization
x− 1 � (2 sin(t) − t/2), x0 � 2 sin(t) − t, and choosing
θ � 0.3, εn � (1/n + 1), αn � (1/100n + 1), and
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βn � (1/100n + 1) yields the best results for the initialization
x− 1 � t + log2(t + 1), x0 � log(t + 1).

7. Conclusion

In this paper, we established an inertial hybrid iterative
algorithm involving Bregman relatively nonexpansive
mapping to find a common solution of GMVLIP equation
(1) and FPP in Banach space. Moreover, we study the

convergence analysis for the main result. At last, we list some
consequences and computational example to emphasize the
efficiency and relevancy of the main result. From the the-
oretical and application point of view, the inertial method
via Bregman relatively nonexpansive mapping has a great
importance on data analysis and some imaging problems.
,e inertial method has been studied by various researchers
due to its importance (see for details [19, 24–28, 30,
31, 33–36, 39]).
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Abbreviations.

GMVLIP: Generalized mixed variational-like inequality
problem

GVLIP: General variational-like inequality problem
MVLIP: Mixed variational-like inequality problem
VLIP: Variational-like inequality problem
VIP: Variational inequality problem
FPP: Fixed-point problem.
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