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)e explicit representation for the limiting spectral moments of sample covariance matrices generated by the periodic autor-
egressive model (PAR) is established. We propose to use the moment-constrained maximum entropy method to estimate the
spectral density function.)e experiments show that the maximum entropy spectral density function curve obtained based on the
fourth-order limiting spectral moment can match histograms of the eigenvalues of the covariance matrices very well.

1. Introduction

Periodic time-series models are used for modeling stationary
time series with periodic characteristics. Periodicity refers to
wave or oscillating movements around long-term trends
presented in the time series, such as the water sector, where
the supply of water varies with seasonal rainfall. In the
economic time series, it is often accompanied by some cycle
or quasi-periodic fluctuations, such as day and night changes
of urban electricity consumption, seasonal changes of rail-
way passenger transport, and repeated acceleration, inter-
ruption, stagnation, and recovery of economic growth; see
Franses and Paap [1], Bell et al. [2], and Aliat and Hamdi [3].
)e periodic autoregressive (PAR) model is a generalisation
of the classical autoregressive (AR) model by allowing the
parameters to vary with the variables over a period:

Xip+v � 􏽘

q(v)

k�1
αk(v)Xip+v− k + εip+v. (1)

For a given v and a predetermined value p, the random
variable Xip+v denotes the value in the vth quarter of the ith
cycle, where v ∈ 1, . . . , p􏼈 􏼉 and i ∈ 1, . . . , n{ }. In the ith cycle,
Xip+v is an AR process.)emodel order is given by q(v), and

αk(v), k � 1, . . . , q(v), represents the AR model coefficients
for the vth quarter. )e error process ε � εip+v􏽮 􏽯 corre-
sponds to a periodic white noise, with E(εip+v) � 0 and
var(εip+v) � σ2(v)> 0. Let Xi � (Xip+1, . . . ,Xip+p)⊤, where
the transpose (indicated by ⊤) of a row vector is a column
vector, and we define the large-dimensional sample co-
variance matrices as Bn � (1/n) 􏽐

n
i�1 XiX⊤i , with the peri-

odic length p tends to infinity in proportion to the sample
size n, namely, p/n⟶ c ∈ (0,∞). Sample covariance
matrices are very important in multivariate statistical in-
ference since many test statistics are defined by their ei-
genvalues or functions.

Randommatrix theory (RMT) originated from the study
of the energy levels of a large number of particles in quantum
mechanics. Many of the laws of mathematical physics were
discovered through numerical studies. In the late 1950s, E. P.
Wigner formulated the problem in terms of the empirical
distribution of randommatrices [4, 5], which led to the study
of the semicircular law of Gaussian matrices. Since then,
RMT has formed an active branch in modern probability
theory. )e LSD of the sample covariance matrix of a large-
dimensional random matrix composed of independent
random variables, the MP law, was first established by
Marcenko and Pastur [6]. Further research efforts were
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conducted to estimate the LSD of a product of two random
matrices. Yin and Krishnaiah [7] proved the existence of
LSD for the matrix sequence SnTn when the two matrix
sequences Sn and Tn are standard Wishart matrices and
positive definite matrices, respectively. In particular, Bai
et al. [8] obtained a display representation of the LSD of the
matrix sequence SnTn when the twomatrix sequences Sn and
Tn are the sample covariance matrix and the Wigner matrix,
respectively. To relax the independence of the entries of Xi,
Silverstein [9] considered the case of Xi � Mxi, whereM is a
nonnegative definite matrix and xi consists of independent
and identically distribution (i.i.d.) entries, and the sample
covariance matrices take the form of
Bn � (1/n) 􏽐

n
i�1 Mxix⊤i M

⊤. Random matrices of the form Bn

were extensively investigated by many researchers, including
Yin [10], Silverstein [9], Bai and Zhou [11], Jin et al. [12],
Zhang et al. [13] and Yao [14]. Silverstein’s important work
[9] aimed to relax the independence structure between Xi

coordinates and considered random vectors of the formMxi,
assuming that the spectral norm of the matrix sequence
MM⊤ is bounded and that the ESD of the matrix sequence
MMT is convergent. Silverstein proved that the LSD of the
sample covariance matrix Bn exists, given by the LSD of
equation representation of the Stieltjes transformation.

)is paper investigates the LSD of large-dimensional
sample covariance matrices generated by the PAR model,
and the sample covariance matrices take the form of Bn. A
similar ARMA-type processes problem has been considered
by Bai and Zhou [11], Jin et al. [12], Yao [14], etc. It follows
that, in the ARMA-type processes, the covariance matrices
MM⊤ equals to the Toeplitz matrix, according to the fun-
damental eigenvalue distribution theorem for Toeplitz-type
matrices [15], the ESD of MM⊤ weakly converges to the
nonrandom distribution H. For some situations, the ESD of
MM⊤ have explicit form; then, the LSD for the sample
covariance matrix Bn can be solved explicitly. For the
random matrix generated by the first-order vector autore-
gressive (VAR(1)) model and the first-order vector moving
average (VMA(1)) model, Jin et al. [12] and Bai and Zhou
[11] obtained a display representation of this LSD. However,
in our first-order variable-coefficient PAR process, we
consider the process be interrupted by certain factors that
the odd terms and the even terms of the coefficient αv􏼈 􏼉

converge to α and β, respectively, and that
|α| ∈ (0, 1) and |β| ∈ (0, 1). )e mixing matrix Q is a lower
triangular matrix whose main diagonal elements are all 1
and subdiagonal elements differ from each other. When
α � β, the limiting form of the matrices QQ⊤ are Toeplitz
matrices, and the eigenvalues of Toeplitz matrices have been
proved by Gregory [16]; when α≠ β, the ESD of QQ⊤ has no
explicit form, see [17, 18], and the structure of the limiting
matrices Q− 1(Q− 1)⊤ are very complex. Our main contri-
butions in this paper include the following. (i) For the first-
order variable-coefficient PAR model, the explicit forms of
limiting spectral moments for Q− 1(Q− 1)⊤ are given;
through verifying the Carleman condition, we derive the
explicit spectral moments of (1/n) 􏽐

n
i�1 XiX⊤i . (ii) A

framework of the maximum entropy-based method is
provided for estimate the LSD.

)e paper is organized as follows. In Section 2, we
employ the moment method to deduce the spectral density
of sample covariance matrices. In Section 3, we use the
maximum entropy method to find the approximate solution
and analyze the convergence of the maximum entropy so-
lution. We simulate the PAR model to obtain the periodic
sample covariance matrices, and the experiment shows that
the maximum entropy spectral density function curve can
match histograms of the eigenvalues of the covariance
matrices very well.

2. Methodology and Main Results

In this section, we first derive the explicit spectral moments
form of Q− 1(Q− 1)⊤; subsequently, we verify the spectral
moments statistics satisfying the Carleman condition, and
then, we employ the moment method to deduce the spectral
density of sample covariance.

We consider first-order PAR model:

Xip+v � αvXip+v− 1 + εip+v. (2)

Let

Q �

1 0 · · · · · · 0

− α1 1 0 · · · 0

0 − α2 1 · · · 0

⋮ ⋱ ⋱ ⋱ ⋮

0 · · · · · · − αp− 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Xi � Xip+1, . . . ,Xip+p􏼐 􏼑
⊤

,

εi � εip+1, . . . , εip+p􏼐 􏼑
⊤

.

(3)

)en, the first-order PAR model can be defined as

QXi � εi⇒X
⊤
i Q
⊤

� ε⊤i , i � 1, . . . , n, (4)

where ⇒ denotes the equation on the left can push the
equation on the right. From equation (3), Q is a lower
triangular matrix whose main diagonal elements are all 1,
and therefore, the matrix Q is invertible. Hence,

QXiX
⊤
i Q
⊤

� εiε
⊤
i ⇒XiX

⊤
i � Q− 1εi εi( 􏼁

⊤ Q− 1
􏼐 􏼑

⊤

⇒
1
n

􏽘

n

i�1
XiX

T
i � Q− 1 1

n
􏽘

n

i�1
εi εi( 􏼁
⊤⎛⎝ ⎞⎠ Q− 1

􏼐 􏼑
⊤

.

(5)

)e sample covariance matrices (1/n) 􏽐
n
i�1 Xi(Xi)

⊤ and
Q− 1((1/n) 􏽐

n
i�1 εi(εi)

⊤)(Q− 1)⊤ have the same ESD. Let S �

(1/n) 􏽐
n
i�1 εi(εi)

⊤, and the ESD of Q− 1((1/n) 􏽐
n
i�1 εi

(εi)
⊤)(Q− 1)⊤ is the same as that of Q− 1(Q− 1)⊤S. Next, we

establish the existence of the LSD of the covariance matrix
sequence (1/n) 􏽐

n
i�1 Xi(Xi)

⊤.

Theorem 1. Let Xip+v be generated by a first-order PAR
model in equation (2), and the odd terms and the even terms
of the coefficient αv􏼈 􏼉 converge to α and β, respectively, and
|α| ∈ (0, 1), |β| ∈ (0, 1). /e error εip+v is independent
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random variables satisfying for any δ,
(1/δ2np)􏽐i,tE(|εi,t|

2I)(|εi,t|≥ δ
�
n

√
)⟶ 0; furthermore, we

assume that p/n⟶ c ∈ (0,∞); then, the spectral moments
of sample covariance matrix (1/n) 􏽐

n
i�1 Xi(Xi)

⊤ tend to

β
1
n

􏽘

n

i�1
Xi Xi( 􏼁

⊤⎛⎝ ⎞⎠

k

� 􏽚 λkdF(λ)⟶a.s.
􏽘

k

s�1
c

k− s

· 􏽘
i1+···+is�k− s+1

i1+···+sis�k

k!

s!
􏽙

s

m�1

μim
m

im!
,

(6)

where μm is the limit of spectral moments of Q− 1(Q− 1)⊤,
which have an explicit form:

μm �
(α + β)

2

4αβ(1 − αβ)
2m− 1 􏽘

m− 1

j�0
C

j
m− 1􏼐 􏼑

2
(αβ)

j

−
(α − β)

2

4αβ(1 + αβ)
2m− 1 􏽘

m− 1

j�0
C

j
m− 1􏼐 􏼑

2
(− αβ)

j
.

(7)

Proof. )e proof is divided into two steps. We first show the
existence of the limit of spectral moments which is defined as
limp⟶∞(1/p)tr((Q− 1)m((Q− 1)m)⊤); then, we verify the
Carleman condition. From equation (3), the inverse of
matrix Q can be written as

Q− 1
�

1 0 · · · · · · 0

α1 1 0 · · · 0

α1α2 α2 1 · · · 0

⋮ ⋱ ⋱ ⋱ ⋮

􏽙

p− 1

k�1
αk 􏽙

p− 1

k�2
αk · · · 􏽙

p− 1

k�p− 1
αk 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 0 · · · · · · 0

a21 1 0 · · · 0

a31 a32 1 · · · 0

⋮ ⋱ ⋱ ⋱ ⋮

ap1 · · · · · · ap,p− 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(8)

where aij can be written as

aij � 􏽙
i− 1

k�j

αk, j< i, aii � 1, i, j � 1, 2, . . . , p − 1. (9)

Let

c
(i)
m � C

i− 1
m− 1+i− 1 �

(m − 1 + i − 1)!

(i − 1)!(m − 1)!
. (10)

)en,

Q− 1
􏼐 􏼑

m
�

1 0 · · · · · · 0

c
(2)
m a21 1 0 · · · 0

c
(3)
m a31 c

(2)
m a32 1 · · · 0

⋮ ⋱ ⋱ ⋱ ⋮

c
(p)
m ap1 · · · · · · c

(2)
m ap,p− 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Furthermore, we obtain that

tr Q− 1 Q− 1
􏼐 􏼑

⊤
􏼒 􏼓

m

� tr Q− 1
􏼐 􏼑

m
Q− 1

􏼐 􏼑
⊤

􏼒 􏼓
m

􏼒 􏼓

� tr Q− 1
􏼐 􏼑

m
Q− 1

􏼐 􏼑
m

􏼐 􏼑
⊤

􏼒 􏼓.

(12)

Applying the trace operator, we have

1
p
tr Q− 1 Q− 1

􏼐 􏼑
⊤

􏼒 􏼓
m

� 1 + 􏽘

p

N�2

1
p

􏽘

p

k�N

c
(N)
m􏼐 􏼑

2
a
2
k k− (N− 1)

⎛⎝ ⎞⎠.

(13)

Based on the assumption that α2v+1􏼈 􏼉⟶ α,

α2v+1􏼈 􏼉⟶ β, as v⟶∞, |α| ∈ (0, 1), |β| ∈ (0, 1), we
obtain

1
p

􏽘

p

k�N

c
(N)
m􏼐 􏼑

2
a
2
k k− (N− 1)⟶ c

(N)
m􏼐 􏼑

2 (− 1)
N+1

+ 1
2

αN− 1βN− 1
􏼠

+
(− 1)

N
+ 1

2
αNβN− 2

+ αN− 2βN

2
􏼡, asp⟶∞,

(14)

and therefore,

1
p
tr Q− 1

􏼐 􏼑
m

Q− 1
􏼐 􏼑

m
􏼐 􏼑

⊤
􏼒 􏼓⟶

(α + β)
2

4αβ
􏽘

∞

k�0
c

(k+1)
m􏼐 􏼑

2
(αβ)

k

−
(α − β)

2

4αβ
􏽘

∞

k�0
c

(k+1)
m􏼐 􏼑

2
(− αβ)

k
.

(15)

Let

h(x) � 􏽘
∞

k�0
c

(k+1)
m􏼐 􏼑

2
x

k
. (16)

)en,

1
p
tr Q− 1

􏼐 􏼑
m

Q− 1
􏼐 􏼑

m
􏼐 􏼑

⊤
􏼒 􏼓⟶

(α + β)
2

4αβ
h(αβ) −

(α − β)
2

4αβ
h(− αβ).

(17)

)e following section wishes to obtain a simplified form
of the function h(x). From equations (10) and (16), we have

h(x) � 􏽘
∞

k�0

(m − 1 + k)!

k!(m − 1)!
􏼠 􏼡

2

x
k
. (18)

Define

f(x) �
1

((m − 1)!)
2 􏽘
∞

k�0
(k + 1)(k + 2), . . . , (m − 1 + k)x

m− 1− k
􏼐 􏼑.

(19)

)en, h(x) can be rewritten as

h(x) �
dm− 1

f(x)

dx
m− 1 . (20)

Let
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g(x) �
1

((m − 1)!)
2 􏽘

∞

k�0
x

m− 1+k
�

1
((m − 1)!)

2
x

m− 1

1 − x
. (21)

)erefore, f(x) can have a simplified representation as

f(x) �
dm− 1

g(x)

dx
m− 1 · x

m− 1
. (22)

By the derivation operations,

dm− 1
g(x)

dx
m− 1 �

1
((m − 1)!)

2 􏽘

m− 1

i�0
C

i
m− 1

· 􏽙
i

k�1
(m − k)⎛⎝ ⎞⎠x

m− 1− i
(m − 1 − i)!(1 − x)

− (m− i)

�
1

(m − 1)!
􏽘

m− 1

i�0
C

i
m− 1x

m− 1− i
(1 − x)

− (m− i)

�
1

(m − 1)!(1 − x)
m,

(23)

we obtain that

f(x) �
x

m− 1

(m − 1)!(1 − x)
m,

dm− 1
f(x)

dx
m− 1 �

1
(m − 1)!

􏽘

m− 1

i�0
C

i
m− 1 􏽙

i

k�1
(m − k)⎛⎝ ⎞⎠x

m− 1− i

· 􏽙
m− i− 2

r�0
(m + r)⎛⎝ ⎞⎠(1 − x)

− (2m− 1− i)
.

(24)

By partially replacing x in equation (24) with y, we
define a new function

􏽥f(x, y) �
1

(m − 1)!x
m− 1

(1 − y)
2m− 1 􏽘

m− 1

i�0
C

i
m− 1

· 􏽙

2m− i− 2

k�m− i

k⎛⎝ ⎞⎠x
2m− 2− i

(1 − y)
i
.

(25)

Define

H(x, y) � 􏽘
m− 1

i�0
C

i
m− 1(m − i)

· (m − i + 1), . . . , (2m − i − 2)x
2m− 2− i

(1 − y)
i
,

M(x, y) � 􏽘
m− 1

i�0
C

i
m− 1x

2m− 2− i
(1 − y)

i
� x

m− 1
(1 − y + x)

m− 1
,

(26)

by which

H(x, y) �
dm− 1

M(x, y)

dx
m− 1 · x

m− 1
,

dm− 1
M(x, y)

dx
m− 1 � 􏽘

m− 1

i�0
C

i
m− 1 􏽙

i

k�1
(m − k)⎛⎝ ⎞⎠x

m− 1− i

· 􏽙
m− 1− i

k�1
(m − k)⎛⎝ ⎞⎠(1 − y + x)

i

� 􏽘
m− 1

i�0
C

i
m− 1􏼐 􏼑

2
x

m− 1− i
(m − 1)!(1 − y + x)

i
,

(27)

so

H(x, y) � x
m− 1

􏽘

m− 1

i�0
C

i
m− 1􏼐 􏼑

2
x

m− 1− i
(m − 1)!(1 − y + x)

i
.

(28)

)en,

􏽥f(x, y) �
x

m− 1

(m − 1)!x
m− 1

(1 − y)
2m− 1 􏽘

m− 1

i�0
C

i
m− 1􏼐 􏼑

2
x

m− 1− i

· (m − 1)!(1 − y + x)
i

�
x

m− 1

(1 − y)
2m− 1 􏽘

m− 1

i�0
C

i
m− 1􏼐 􏼑

2
x

− i
(1 − y + x)

i
.

(29)

We use x to take place of y and obtain that

h(x) �
x

m− 1

(1 − x)
2m− 1 􏽘

m− 1

i�0
C

i
m− 1􏼐 􏼑

2
x

− i

�
1

(1 − x)
2m− 1 􏽘

m− 1

j�0
C

j
m− 1􏼐 􏼑

2
x

j
.

(30)

)erefore,

μm � lim
p⟶∞

1
p
tr Q− 1

􏼐 􏼑
m

Q− 1
􏼐 􏼑

m
􏼐 􏼑

⊤
􏼒 􏼓

�
(α + β)

2

4αβ(1 − αβ)
2m− 1 􏽘

m− 1

j�0
C

j
m− 1􏼐 􏼑

2
(αβ)

j

−
(α − β)

2

4αβ(1 + αβ)
2m− 1 􏽘

m− 1

j�0
C

j
m− 1􏼐 􏼑

2
(− αβ)

j
.

(31)

Next, we verify the Carleman condition
􏽐
∞
k�1 μ

− (1/2k)
2k �∞.

From equation (30), it follows that
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μ2k( 􏼁
− (1/2k)

�
(α + β)2

4αβ(1 − αβ)2m− 1 􏽘

m− 1

j�0
C

j
m− 1􏼐 􏼑

2
(αβ)

j
−

(α − β)2

4αβ(1 + αβ)2m− 1 􏽘

m− 1

j�0
C

j
m− 1􏼐 􏼑

2
(− αβ)

j⎛⎝ ⎞⎠

− (1/2k)

. (32)

)en, applying the equality Cn
2n � 􏽐

n
j�0 (C

j
n)2 and

|α| ∈ (0, 1), |β| ∈ (0, 1), we obtain

μ2k( 􏼁
− (1/2k) ≥

(|α| +|β|)2

2|α‖β|(1 − |αβ|)4k− 1C
2k− 1
4k− 2􏼠 􏼡

− (1/2k)

. (33)

From Stirling’s formula n! � (1 + o(1))
����
2πn

√
nne− n, we

get n!≥ nne− n. )en, C2k− 1
4k− 2 � (􏽑

2k− 2
j�0 (4k − 2 − j)/(2k − 1)!)

≤ ((4k − 2)2k− 1/(2k − 1)!)≤ ((4k − 2)e/(2k − 1))2k− 1; ap-
plying this inequality, (μ2k)− (1/2k) has a finite lower bound:

μ2k( 􏼁
− (1/2k) ≥

(1 − |αβ|)
2

2e
. (34)

)en,

􏽘

∞

k�1
μ− (1/2k)
2k ≥ 􏽘

∞

k�1

(1 − |αβ|)
2

2e
􏼠 􏼡 �∞. (35)

With the moment convergence theorem, the spectral
distribution of Q− 1(Q− 1)⊤ tends to a nonrandom proba-
bility distribution H. Let S � (1/n) 􏽐

n
i�1 εi(εi)

⊤ and
p/n⟶ c ∈ (0,∞); by the important )eorem 2.10 of Bai
[19], the ESD of (1/n) 􏽐

n
i�1 XX

⊤ tends to a nonrandom limit
distribution in probability (or almost surely). )e spectral
moments of (1/n) 􏽐

n
i�1 XX

⊤ satisfy the following equation of
Yin [10]:

β
1
n

􏽘

n

i�1
XX
⊤⎛⎝ ⎞⎠

k

� 􏽚 λkdF(λ)⟶a.s.
􏽘

k

s�1
c

k− s
􏽘

i1+···+is�k− s+1
i1+···+sis�k

k!

s!
􏽙

s

m�1

μim
m

im!
.

(36)

From the moment convergence theorem, we can obtain
that the ESD of (1/n) 􏽐

n
k�1 XX

⊤ converges with probability
close to 1 to a nonrandom distribution, determined by the
spectral moment statistic. □

Remark 1. By the proof of )eorem 1, the limiting spectral
moments of Q− 1(Q− 1)⊤ depend only on the limiting co-
efficient α and β. When α � β, the limiting form of the
matrices QQ⊤ are Toeplitz matrices, and the eigenvalues of
Toeplitz matrices have been proved, see [16].When α≠ β, the
limiting matrices of QQ⊤ are tridiagonal matrices and take
the form like the following:

− α 1 + α2 − β 0 0 0 0 · · · 0
0 − β 1 + β2 − α 0 0 0 · · · 0
0 0 − α 1 + α2 − β 0 0 · · · 0
0 0 0 − β 1 + β2 − α 0 · · · 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 · · · · · · · · · · · · · · · · · · · · · · · ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

)e eigenvalues of this limiting matrix have no explicit
form, see [18] and [17]. )e limiting form of the matrices
Q− 1(Q− 1)⊤ are very complex, and we obtain the explicit
spectral moments of Q− 1(Q− 1)⊤.

3. Estimating Spectral Density Function with
Maximum Entropy

Unfortunately, there are no explicit LSD forms of this
sample covariance matrices Bn. In this section, with the
spectral moments of β((1/n) 􏽐

n
i�1 XX⊤)k, we employ the

maximum entropy method to estimate the LSD. Mead and
Papanicolaou [20] studied the maximum entropy method to
solve the uncertainty problem. Granziol et al. [21] dem-
onstrated the equivalence between theMaxEnt principle and
the optimization of variables with constraints. Gao and Han
[22] used the maximum entropy method to solve nonlinear
expectation. Every possible event has a probability of oc-
curring, information entropy is related to all possibilities,
and a system with the highest information entropy is most
likely, when all known information, taken into account. In
mathematics, the variable is generally estimated by max-
imising the Shannon entropy of the information of the
moments of the random variable of the density function:

S � − 􏽚
Ω

p(x)ln p(x)dx, (38)

where Ω is the support of the distribution. In this paper, the
sample covariance matrices Q− 1((1/n) 􏽐

n
i�1 εi(εi)

⊤)(Q− 1)⊤

is nonnegative definite, so the estimated limiting distribu-
tion should be supported on Ω � R+ ∪ 0{ }.

Given the first N+ 1 moments β0, β1, . . . , βN, the idea of
determining the density function of a probability distribu-
tion based on the principle of maximum entropy is to find
the density function p(x) such that

􏽚
Ω

x
k
p(x)dx � βk, k � 0, 1, . . . , N, (39)

where β0 � 1.
Lagrange multiplier is a method for finding the extremes

of a multivariate function under a set of constraints. With
the help of the Lagrange multiplier method, the entropy
function is defined as

H ≡ 􏽚
Ω

− p(x)ln p(x) + 􏽘
N

k�0
λkx

k
p(x)⎡⎣ ⎤⎦dx − 􏽘

N

k�0
λkβk.

(40)

When the first-order derivative of the function H with
respect to λk and p(x) are equal to zero, the constraint
defined in equation (39) is returned; then, the first-order
derivative of the function do not provide any additional
information. )e second of these derivatives, however,
evaluate to
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ln pN(x) � − 1 + 􏽘
N

k�0
λkx

k
. (41)

)e general solution of equation (41) is

pN(x) � e
− 1+􏽐

N

k�0λkxk

� e􏽐
N

k�0λkxk

, (42)

where we have set (λ0 − 1)⟶ λ0.
We obtain the maximum entropy solution by solving for

the Lagrange multiplier λk. To do this, we must solve the
following nonlinear equation:

􏽚
Ω

e
λ0+λ1x+···+λkxN

dx � β0

􏽚
Ω

xe
λ0+λ1x+···+λkxN

dx � β1

⋮

􏽚
Ω

x
k
e
λ0+λ1x+···+λkxN

dx � βk.

(43)

When N≤ 2, we can obtain a display representation of
the Lagrange multiplier. Taking N� 2 as an example, from
equation (36), we have

μ1 �
2 + α2 + β2

2 1 − α2β2􏼐 􏼑
,

μ2 �
(α + β)

2
(1 + αβ)

4
− (α − β)

2
(1 − αβ)

4

4αβ 1 − α2β2􏼐 􏼑
3 ,

β1 � μ1,

β2 � yμ21 + μ2.

(44)

Based on equation (40), we obtain λ0, λ1, λ2 as

λ0 � − β21 + ln
����������

2π β2 − β21􏼐 􏼑

􏽱

+ 1􏼒 􏼓,

λ1 �
β1

β2 − β21
,

λ2 � −
1

2 β2 − β21􏼐 􏼑
.

(45)

)en,

p(x) � exp λ0 + λ1x + λ2x
2

􏼐 􏼑. (46)

When N≥ 3, we cannot obtain a display solution for the
Lagrange multiplier λk, but at this point, the numerical
solution for λk can be calculated using numerical optimi-
zation algorithms. From equation (40), the analytic ex-
pressions of the gradient is

zH

zλj

� βj − 􏽚
Ω

x
j exp 􏽘

m

i�0
λix

i⎛⎝ ⎞⎠dx. (47)

If we denote the maximum entropy solution obtained by
the method based on moments as

􏽥μk ≡ 􏽚
Ω

x
k
e
λ0+λ1x+···+λkxk

dx, (48)

then the Hessian matrix is given by

G �

􏽥μ0 􏽥μ1 · · · 􏽥μk

􏽥μ1 􏽥μ2 · · · 􏽥μk+1

􏽥μ2 􏽥μ3 · · · 􏽥μk+2

⋮ ⋮ ⋮ ⋮

􏽥μk 􏽥μk+1 · · · 􏽥μk+k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

􏽥μk is the kth moment of the simulated distribution, and
the Newton iteration is done by searching λk until the
termination criterion |􏽥μk − μk|< ε holds. We obtain the
spectral density p(x) through Algorithm 1.

We can obtain that the maximum entropy solution
pN(x) is weakly convergent, i.e.,

lim
N⟶+∞

􏽚
Ω

pN(x)ln pN(x)dx � 􏽚
Ω

p(x)ln p(x)dx. (50)

In our simulations, we use the Newton method from the
Python-based SciPy package to solve for minimisation
|􏽥μk − μk|. It computes the gradient within a ending accuracy
ε as well as the Hessian matrix. To give the Hessian matrix a
faster rate of convergence, we symmetrize it and add a
disturbance of intensity η � 10− 4 along the diagonal. In the
simulation of the algorithm, we observe that the algorithm is
not too sensitive to these choices.

From equations (31) and (36), we obtain the four lim-
iting spectral moments (1/n) 􏽐

n
i�1 Xi(Xi)

⊤ of the sample
covariance matrices as follows:

β1 � μ1,

β2 � yμ21 + μ2,

β3 � y
2μ31 + 3yμ1μ2 + μ3,

β4 � y
3μ41 + 3y

2μ21μ2 + 2y μ22 + 2μ1μ3􏼐 􏼑 + μ4.

(51)

)e authors of [23, 24] state that, as the number of
moments increases (especially when n≥ 5), the maximum
entropy method becomes sensitive to numerical differences
between the order moments, the gradient, and the state of the
Hessian matrix, as well as improper arithmetic accuracy
becomes very sensitive and can be improved by introducing
different basis functions, such as a drift with Chebyshev
polynomial basis functions with drift to overcome these ef-
fects. In this section, to simplify the operations, we estimate
the maximum entropy density function in terms of 4th-order
spectral moments. )e value of (d; n; a; b) determines the
value of each spectral moment. Figures 1–6 show histograms
of eigenvalues and maximum entropy spectral density curves
(MaxEntPDF) for different values of (d; n; a; b). From these
plots, it can be seen that the maximum entropy spectral
density function curve can match histograms of the eigen-
values of the covariance matrices very well.
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Figure 1: d� 200, n� 100, alpha� 0.5, and beta� 0.3.
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Figure 2: d� 200, n� 200, alpha� 0.5, and beta� 0.3.

Input: β � (β0, . . . , βN), Ending accuracy ε, Diitter variance in Hessian η � 10− 4;
Output: Coefficients λi􏼈 􏼉;
initial λ0 � (− ln(

���
2π

√
), 0, . . . , 0), k� 0;

repeat
Compute gradient g � (g0, . . . , gN): gj � βj − 􏽒Ωx

j exp(􏽐
N
i�0 λkix

i)dx;
Compute Hessian G;
Direction of Newton’s law: dk � − (G + ηI)− 1 · g;
Next iteration point: λk+1 � λk + dk;
k� k+1;

until ‖β − 􏽥μ‖2 < ε.

ALGORITHM 1: )e proposed algorithm.
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Figure 3: d� 200, n� 400, alpha� 0.5, and beta� 0.3.
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Figure 4: d� 1000, n� 500, alpha� 0.5, and beta� 0.3.
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4. Conclusion

In this paper, we investigate the LSD of large-dimensional
sample covariance matrix generated by the first-order var-
iable-coefficient PAR process. We consider the process be
interrupted by certain factors that the odd terms and the
even terms of the coefficient αv􏼈 􏼉 converge to α and β, re-
spectively, and that |α| ∈ (0, 1) and |β| ∈ (0, 1). )e main
contributions in this paper include the following. (i) For the
first-order variable-coefficient PAR model, the explicit form
of limiting spectral moments for Q− 1(Q− 1)⊤ is given;
through verifying the Carleman condition, we derive the
explicit spectral moments of (1/n) 􏽐

n
i�1 XiX⊤i . (ii) A

framework of the maximum entropy-based method is
provided for estimate the LSD. We have some ideas for the
next step of the research. On the one hand, when gener-
alizing the convergence of the coefficients of the PAR model
to a more general structure, how about obtaining an ex-
pression for the spectral moments of the limiting covariance

matrix? On the other hand, it is of importance to extend the
method presented in this paper to PAR with larger order.
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