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Let G be a graph and H⊆G be subgraph of G. 'e graph G is said to be (a, d)-H antimagic total graph if there exists a bijective
function f: V(H)∪E(H)⟶ 1, 2, 3, . . . , |V(H)| + |E(H)|{ } such that, for all subgraphs isomorphic to H, the total H weights
W(H) � W(H) � 􏽐x∈V(H)f(x) + 􏽐y∈E(H)f(y) forms an arithmetic sequence a, a + d, a + 2d, . . . , a + (n − 1)d, where a and d

are positive integers and n is the number of subgraphs isomorphic toH. An (a, d)-H antimagic total labelingf is said to be super if
the vertex labels are from the set 1, 2, . . . , |V(G){ }. In this paper, we discuss super (a, d)-C3-antimagic total labeling for generalized
antiprism and a super (a, d)-C8-antimagic total labeling for toroidal octagonal map.

1. Introduction

All the graphs that we consider in this works are finite,
simple, and connected. Let G be a graph with vertex set and
edge set denoted by V(G) and E(G), respectively. For the
cardinality of vertex set and edge set, we use the notation
|V(G)| and |E(G)|, respectively. For basic definitions and
terminology related to graph theory, the readers can see the
book by Gross et al. [1].

A graph labeling is a map f that sends some of the graph
elements (vertices or edges or both) to the set of positive
integers. If the domain set of f is the set of vertices (edges),
then f is called vertex (edge) labeling. If the domain set is
V(G)∪E(G), then f is called total labeling. Let G be a graph
and H1, H2, . . . , Hk be subgraphs of G. We say that the
graph G has an H1, H2, . . . , Hk covering if each edge of G

belongs to at least one of the subgraph Hi, where 1≤ i≤ k. If
all Hi, i � 1, 2, . . . , k, are isomorphic to a graph H, then such
a covering is called H covering of G. Suppose that a graph G

admits an H covering. 'e graph G is called (a, d)H

antimagic if there exists a bijective function
f: V(H)∪E(H)⟶ 1, 2, 3, . . . , |V(H)| + |E(H)|{ } such
that, for all subgraphs isomorphic to H, the total H weights,

W(H) � W(K) � 􏽘
x∈V(K)

f(x) + 􏽘
y∈E(K)

f(y),
(1)

form an arithmetic sequence a, a + d, a + 2d, . . . ,

a + (n − 1)d, where a and d are positive integers and n is the
number of subgraphs isomorphic to H. An (a, d)-H anti-
magic total labeling f is said to be super if the vertex labels
are from the set 1, 2, . . . , |V(G){ }. If d � 0, then H is called
(a, d)-H antimagic.

Kotzig and Rosa [2] and Enomoto et al. [3] introduced
the concept of edge-magic and super edge-magic labeling.
Gutierrez and Llado [4] first studied the H (super) magic
coverings of a graph G. 'ey proved that the cycle Cn and
path Pn are Pm super magic for some m. 'e cycle (super)
magic behavior of some classes of connected graphs is
studied in Llado et al. [5]. 'ey proved that prisms,
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windmills, wheels, and books are Cm-magic for some m.
Maryati et al. [6] investigated the G-supermagicness of a
disjoint union of c copies of a graph G and showed that the
disjoint union of any paths is cPm-supermagic for some c

and m. Maryati et al. [7] and Salman et al. [8] proved that
certain families of trees are path-supermagic. Ngurah et al.
[9] proved that triangles, chains, ladders, wheels, and grids
are cycle-supermagic.

Inaya et al. [10] firstly introduced the concept of
H-magic decomposition and H-antimagic decomposition.
'ey showed that, for any graceful tree T with n edges, the
complete graph K2n+1 admits (a, d) − T antimagic decom-
position for some a and all even differences 0≤ d≤ n + 1.
'ey also proved that if any tree T with n edges admits α
labeling, then the complete bipartite graph Kn,n admits an
(a, d) − T antimagic decomposition for some a and d having
same parity as n. 'e condition on the existence of C2k super
magic decomposition of complete n partite graph and its
copies were given by Lian [11]. 'e H-supermagic de-
composition of antiprisms is described by Hendy in [12] and
the H-supermagic decompositions of the lexicographic
product of graphs are discussed by Hendy et al. in [13]. In
[14], Hendy et al. examined the existence of super (a, d) − H

magic labeling for toroidal grids and toroidal triangulations.
Recently, Fenovcikova et al. [15] proved that wheels are cycle
antimagic.

In this paper, we discuss the Super (a, d)-C3-antimagic
total labeling for generalized antiprism and a Super
(a, d)-C8-antimagic total labeling for toroidal octagonal
map. We proved that the generalized antiprism As

r admits
(a, d)-C3-antimagic total labeling for d � 0, 1 and the to-
roidal octagonal map Or

s admits a Super (a, d)-C8-antimagic
total labeling, for d � 1, 2, . . . , 7.

2. Results on Super (a, d)-C3-Antimagic Total
Covering of Generalized Antiprism As

r

An r-sided generalized antiprism As
r is defined as a poly-

hedron which is composed of s parallel copies of some
particular r-sided polygon and connected by an alternating
band of triangles. Figure 1 represents the labeled graph of
generalized antiprism As

r. We denote its vertex set and edge
set by V(As

r) and E(As
r), respectively. 'e vertex set and the

edge set of the generalized antiprism As
r can be defined as

follows:

V A
s
r( 􏼁 � x

j
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 1􏽮 􏽯,

E A
s
r( 􏼁 � x

j
i x

j
i+1, for 0≤ i≤ r − 1, 0≤ j≤ s − 1􏽮 􏽯

∪ x
j
i x

j+1
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 2􏽮 􏽯

∪ x
j

i x
j+1
i+1 , for 0≤ i≤ r − 1, 0≤ j≤ s − 2􏽮 􏽯.

(2)

'e generalized antiprism As
r admits a C3 covering. Let

z
j
i and f

j
i be the C3 cycles which coverAs

r, where 0≤ i≤ r − 1
and 0≤ j≤ s − 2. 'e cycles z

j
i and f

j
i can be defined as

z
j
i � x

j
i x

j
i+1x

j+1
i+1 x

j
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 2,

f
j
i � x

j
i x

j+1
i+1 x

j+1
i x

j
i , for 0≤ i≤ r − 1, 0≤ j≤ s − 2.

(3)

It is easy to observe that |V(As
r)| � rs and

|E(As
r)| � 3rs − 2r. We first give an upper bound for d such

that As
r admits a super (a, d)-C3-antimagic covering.

Theorem 1. Let r, s≥ 3 and As
r be generalized antiprism

graph. 6en, there is no super (a, d)-C3-antimagic covering
with d≥ 6.

Proof. Suppose that As
r has a super (a, d)-C3-antimagic

covering. Let f: V(As
r)∪E(As

r)⟶ 1, 2, 3, . . . , 4rs − 2r{ }

be a super (a, d)-C3-antimagic covering and a3, a3 + d, a3 +􏼈

2d, . . . , a3 + (2rs − 2r − 1)d} be the set of C3 weights. 'e
minimum weight on cycle C3 is at least 12 + 3rs which is the
sum of the smallest vertex labels (1, 2, 3) and sum of smallest
edge labels (rs + 1, rs + 2, rs + 3). 'us,

a3 ≥ 12 + 3rs. (4)

On the contrary, the maximum possible C3-weight is the
sum of three largest possible vertex labels, namely,
rs − 2, rs − 1, rs, and three the largest possible edge labels
from the set, 4rs − 2r − 2, 4rs − 2r − 1, 4rs − 2r{ }. Hence, we
have

a3 +(2rs − 2r − 1)d≤ 15rs − 6r − 6. (5)

From (4) and (5), an upper bound for the parameter d

can be obtained as

d≤
12rs − 16r − 18
2rs − 2r − 1

,

d≤ 6 −
4r + 6

2rs − 2r − 1
,

d≤ 6.

(6)

'us, we have arrived at the desired result. □

Theorem 2. Let r, s≥ 3; then, the generalized antiprism As
r

admits a super (9rs − 3r + 4, o)-C3-antimagic total covering.

Proof. Let ϕ: V(As
r)∪E(As

r)⟶ 1, 2, 3, . . . , 4rs − 2r{ } be a
total labeling of generalized antiprism As

r defined as follows:

ϕ x
j
i􏼐 􏼑 � jr + 1 + i, for 0≤ i≤ r − 1, 0≤ j≤ s − 1 ,􏼈

ϕ x
j

i x
j

i+1􏼐 􏼑 � (2s − j)r − i, for 0≤ i≤ r − 1, 0≤ j≤ s − 1􏼈 ,

ϕ x
j

i x
j+1
i􏼐 􏼑 � (3s − 2 − j)r + r − i, for 0≤ i≤ r − 1, 0≤ j≤ s − 2 ,􏼈

ϕ x
j
i x

j+1
i+1􏼐 􏼑 �

(4s − 3 − j)r + r − i, for 0≤ i≤ r − 2, 0≤ j≤ s − 2,

(4s − 3 − j)r + 1, for i � r − 1, 0≤ j≤ s − 2.
􏼨

(7)

Under the labeling ϕ, the weights of 3- cycles z
j
i are
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W z
j
i􏼐 􏼑 � ϕ x

j
i􏼐 􏼑 + ϕ x

j
i+1􏼐 􏼑 + ϕ x

j+1
i+1􏼐 􏼑 + ϕ x

j
i x

j
i+1􏼐 􏼑 + ϕ x

j
i+1x

j+1
i+1􏼐 􏼑 + ϕ x

j
i x

j+1
i+1􏼐 􏼑,

W z
j
i􏼐 􏼑 � 9rs − 3r + 4, for 0≤ i≤ r − 1, 0≤ j≤ s − 2􏼈

(8)

And, the weights of 3-cycles f
j

i are

W f
j
i􏼐 􏼑 � ϕ x

j
i􏼐 􏼑 + ϕ x

j+1
i+1􏼐 􏼑 + ϕ x

j+1
i􏼐 􏼑 + ϕ x

j
i x

j+1
i+1􏼐 􏼑 + ϕ x

j+1
i+1 x

j+1
i􏼐 􏼑 + ϕ x

j+1
i x

j
i􏼐 􏼑,

W f
j
i􏼐 􏼑 � 9rs − 3r + 4, for 0≤ i≤ r − 1, 0≤ j≤ s − 2.􏼈

(9)

Xi

X1
j

X2
j

X0
j

X0
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X3
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Figure 1: Generalized antiprism As
r.
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Observe that the weights W(z
j
i ) and W(f

j
i ) of all cycles

z
j
i and f

j
i are equal, and therefore, the resulting labeling is

super (9rs − 3r + 4, 0)-C3 total labeling. □

Theorem 3. Let r, s≥ 3; then, the generalized antiprism As
r

admits a super (7rs + 4, 2)-antimagic total covering.

Proof. Let χ: V(As
r)∪E(As

r)⟶ 1, 2, 3, . . . , 4rs − 2r{ } be a
total labeling of generalized antiprism As

r defined as follows.
For j � even, the label on vertices x

j

i is defined as

χ x
j
i􏼐 􏼑 �

1 + i, for 0≤ i≤ r − 1, j � 0,

(j + 1)r, for i � 0, 2≤ j≤ s − 1,

jr + i, for 1≤ i≤ r − 1, 2≤ j≤ s − 1.

⎧⎪⎪⎨

⎪⎪⎩
(10)

For j � odd, the label on vertices x
j
i is defined as

χ x
j
i􏼐 􏼑 �

jr + 1, for i � 0, 1≤ j≤ s − 1,

(j + 1)r + 1 − i, for 1≤ i≤ r − 1, 1≤ j≤ s − 1.
􏼨

(11)

For j � even, the label on edges (x
j
i x

j
i+1) is defined as

χ x
j
i x

j
i+1􏼐 􏼑 �

rs + 1 + i, for 0≤ i≤ r − 1, j � 0,

rs +(j + 1)r, for i � 0, 2≤ j≤ s − 1,

rs + jr + i, for 1≤ i≤ r − 1, 2≤ j≤ s − 1.

⎧⎪⎪⎨

⎪⎪⎩

(12)

For j � odd, the label on edges (x
j
i x

j
i+1) is defined as

χ x
j

i x
j

i+1􏼐 􏼑 �
rs + jr + 1, for i � 0, 1≤ j≤ s − 1,

rs +(j + 1)r + 1 − i, for 1≤ i≤ r − 1, 1≤ j≤ s − 1.
􏼨

(13)

'e label on edges (x
j
i x

j+1
i ) is defined as

χ x
j
i x

j+1
i􏼐 􏼑 �

(3s − 2)r + 1 + i, for 0≤ i≤ r − 1, j � 0,

(3s − 1 − j)r, for i � 0, 1≤ j≤ s − 1,

(3s − 2 − j)r + i, for 1≤ i≤ r − 1, 1≤ j≤ s − 1.

⎧⎪⎪⎨

⎪⎪⎩

(14)

And, the label on edges (x
j
i x

j+1
i+1 ) is defined as

χ x
j
i x

j+1
i+1􏼐 􏼑 � 3rs + jr − i, for 0≤ i≤ r − 1, 0≤ j≤ s − 2.

(15)

Under the labeling χ, the weights of 3-cycle z
j
i are

W z
j
i􏼐 􏼑 � χ x

j
i􏼐 􏼑 + χ x

j
i+1􏼐 􏼑 + χ x

j+1
i+1􏼐 􏼑 + χ x

j
i x

j
i+1􏼐 􏼑

+ χ x
j
i+1x

j+1
i+1􏼐 􏼑 + χ x

j
i x

j+1
i+1􏼐 􏼑.

(16)

For j � even, we have

W z
j

i􏼐 􏼑 �

7rs + 8 + 2i, for 0≤ i≤ r − 2, j � 0,

7rs + 4, for i � r − 1, j � 0,

7rs + 4jr + 2r + 2, for i � 0, 2≤ j≤ s − 2,

7rs + 4jr + 2 + 2i, for 1≤ i≤ r − 1, 2≤ j≤ s − 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

For j � odd, we have

W z
j
i􏼐 􏼑 �

7rs + 4jr + 4, for i � 0, 1≤ j≤ s − 2,

7rs + 4jr + 2r + 4 − 2i, for 1≤ i≤ r − 1, 1≤ j≤ s − 2.
􏼨

(18)

'e weight of 3-cycle f
j
i are

W f
j

i􏼐 􏼑 � χ x
j

i􏼐 􏼑 + χ x
j+1
i+1􏼐 􏼑 + χ x

j+1
i􏼐 􏼑 + χ x

j

i x
j+1
i+1􏼐 􏼑

+ χ x
j+1
i+1 x

j+1
i􏼐 􏼑 + χ x

j+1
i x

j
i􏼐 􏼑.

(19)

For j � even, we have

W f
j

i􏼐 􏼑 �

7rs + 2r + 4, for i � 0, j � 0,

7rs + 4r + 4 − 2i, for 1≤ i≤ r − 1, j � 0,

7rs + 4jr + 4r + 2 − 2i, for 0≤ i≤ r − 1, 2≤ j≤ s − 2.

⎧⎪⎪⎨

⎪⎪⎩

(20)

For j � odd, we have

W f
j
i􏼐 􏼑 �

7rs + 4jr + 4r + 2, for i � 0, 1≤ j≤ s − 2,

7rs + 4jr + 2r + 2 + 2i, for 1≤ i≤ r − 1, 1≤ j≤ s − 2.
􏼨

(21)

Observe that the weights W(z
j
i ) and W(f

j
i ) form an

arithmetic progressionwith commondifference 2 starting from
7rs + 4, 7rs + 6 and ending at 11rs − 4r + 2. 'is implies that
the defined labeling is a super (7rs + 4, 2)-C3-antimagic total
covering. □

3. Results on Super (a, d)-C8-Antimagic Total
Covering of Toroidal Octagonal Planner
Map Or

s

A planar octagonal map is a graph obtained by joining
octagons and squares in such a way that they cover the plane.
To obtain the toroidal octagonal map, we apply torus
identification on octagonal planner map. We denote the
toroidal octagonal map with r rows and s column of oc-
tagons by Or

s , where s, r≥ 2. 'e planar representation of Or
s

is depicted in Figure 2. 'e vertex set V(Or
s) and the edge set

E(Or
s) of octagonal planner map Or

s can be defined as
follows:

V O
r
s( 􏼁 � u

j
i , v

j
i , w

j
i , x

j
i ; 0≤ i≤ r − 1 and 0≤ j≤ s − 1􏽮 􏽯,

E O
r
s( 􏼁 � u

j
i v

j
i , w

j
i x

j
i ; 0≤ i≤ r − 1 and 0≤ j≤ s − 1􏽮 􏽯

∪ w
j

i u
j−1
i ; 1≤ i≤ s − 1 and 0≤ j≤ r − 1􏽮 􏽯

∪ w
0
i u

s−1
i ; 0≤ i≤ r − 1􏽮 􏽯

∪ v
j

i w
j+1
i+1 ; 0≤ i≤ r − 1 and 0≤ j≤ s − 2􏽮 􏽯

∪ v
n−1
i w

0
i+1; 0≤ i≤ r − 1􏽮 􏽯

∪ v
j

i x
j

i+1; 0≤ i≤ r − 1 and 0≤ j≤ s − 1􏽮 􏽯

∪ u
j
i x

j
i ; 0≤ i≤ r − 1 and 0≤ j≤ s − 1􏽮 􏽯.

(22)
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From the above sets, we have |V(Or
s)| � 4rs and

|E(Or
s)| � 6rs. We can cover the toroidal octagonal map Or

s

by the 8-sided cycles C
j
8,i. For 0≤ j≤ s − 1 and 0≤ i≤ r − 1,

the vertex set and edge set of 8-sided cycles C
j
8,i can be

defined as

V C
j
8,i􏼐 􏼑 � w

j
i , u

j−1
i , v

j−1
i , w

j
i+1, x

j
i+1, v

j
i , u

j
i , x

j
i ; 0≤ i≤ r − 1, 1≤ j≤ s − 1􏽮 􏽯,

E C
j
8,i􏼐 􏼑 � w

j
i u

j−1
i , u

j−1
i v

j−1
i , v

j−1
i w

j
i+1, w

j
i+1x

j
i+1, v

j
i x

j
i+1, u

j
i v

j
i , x

j
i u

j
i , x

j
i w

j
i ; 0≤ i≤ r − 1, 1≤ j≤ s − 1􏽮 􏽯,

V C
0
8,i􏼐 􏼑 � w

0
i , u

s−1
i , v

s−1
i , w

0
i+1, x

0
i+1, v

0
i , u

0
i , x

0
i ; 0≤ i≤ r − 1,􏽮 􏽯,

E C
0
8,i􏼐 􏼑 � w

0
i u

s−1
i , u

s−1
i v

s−1
i , v

s−1
i w

0
i+1, w

0
i+1x

0
i+1, v

0
i x

0
i+1, u

0
i v

0
i , x

0
i u

0
i , x

0
i w

0
i ; 0≤ i≤ s − 1􏽮 􏽯.

(23)

We start by giving an upper bound for d such that Or
s

admits a super (a, d)-C8-antimagic covering.

Theorem 4. Suppose Or
s admits a super (a, d)-C8-antimagic

covering; then, d≤ 80.

Proof. Suppose Or
s admits a super (a, d)-C8-antimagic

covering. 'en, the weight on cycle C8 is atleast

􏽘

8

i�1
i + 􏽘

8

i�1
(4rs + i) � 32rs + 72, (24)

and the largest weight of C8 is atmost

􏽘

8

i�1
(4rs + 1 − i) + 􏽘

8

i�1
(10rs + 1 − i) � 112rs − 56. (25)

'us, we have

a +(rs − 1)d≤ 112rs − 56,

(rs − 1)d≤ 112rs − 56 − 32rs − 72,

d≤
80rs − 128

rs − 1
,

d≤ 80.

(26)

□

In the next two theorems, we show that toroidal oc-
tagonal map Or

s admits a super (a, d)-C8-antimagic covering
for d � 1, 2, . . . 7.

Theorem 5. Let r, s≥ 2; then, the toroidal octagonal map Or
s

is super (a, d)-C8-antimagic for d ∈ 1, 3, 5, 7{ }.

u0
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0
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0

v0
1 v1

1 v2
1

u1
r–2 u1
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0x0

0
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Figure 2: Toroidal octagonal map identification Or
s
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Proof. Define a total labeling φd: V(Or
s)∪E(Or

s)⟶
1, 2, 3, . . . , |V(Or

s)| + |E(Or
s)|􏼈 􏼉 , where d ∈ 1, 3, 5, 7{ } as

follows:

φd u
j

i􏼐 􏼑 � jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd v
j

i􏼐 􏼑 � rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd x
j
i􏼐 􏼑 � 3rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd w
j
i􏼐 􏼑 � 2rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd u
j
i v

j
i􏼐 􏼑 � 4rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ x
j
i w

j
i􏼐 􏼑 � 5mn + +2jm + 1 + 2i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ1 v
j
i x

j
i+1􏼐 􏼑 � φ3 v

j
i x

j
i+1􏼐 􏼑 � 8rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ5 v
j

i x
j

i+1􏼐 􏼑 � φ7 v
j

i x
j

i+1􏼐 􏼑 � 8rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φd u
j

i w
j+1
i􏼐 􏼑 � 5rs + 2(s − 1 − j)r + 2r − 2i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ1 v
j
i w

j+1
i􏼐 􏼑 � 7rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ3 v
j
i w

j+1
i􏼐 􏼑 � φ5 v

j
i w

j+1
i􏼐 􏼑 � φ7 v

j
i w

j+1
i􏼐 􏼑 � 7rs + rj + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ1 x
j
i u

j
i􏼐 􏼑 � φ3 x

j
i u

j
i􏼐 􏼑 � φ5 x

j
i u

j
i􏼐 􏼑 � 9rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

φ7 x
j
i u

j
i􏼐 􏼑 � 9rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1.

(27)

'e total labeling φd labels the vertices u
j

i , v
j

i , w
j

i , x
j

i from
the set 1, 2, . . . , 4rs{ } and the edges from the set

4rs + 1, 4rs + 2, . . . , 10rs{ }. For 0≥ i≥ r − 1 and 0≥ j≥ s − 1,
the weight of cycles C

j
8,i under φd is

Wd C
j
8,i􏼐 􏼑 � φd u

j−1
i􏼐 􏼑 + φd v

j−1
i􏼐 􏼑 + φd u

j−1
i v

j−1
i􏼐 􏼑 + φd w

j
i+1􏼐 􏼑 + φd w

j
i􏼐 􏼑 + φd w

j
i+1v

j−1
i􏼐 􏼑

+ φd x
j
i+1􏼐 􏼑 + φd x

j
i+1w

j
i+1􏼐 􏼑 + φd v

j
i􏼐 􏼑 + φd v

j
i x

j
i+1􏼐 􏼑 + φd u

j
i􏼐 􏼑

+ φd u
j
i v

j
i􏼐 􏼑 + φd x

j
i􏼐 􏼑 + φd x

j
i u

j
i􏼐 􏼑 + φd x

j
i w

j
i􏼐 􏼑 + φd w

j
i u

j−1
i􏼐 􏼑,

Wd C
j
8,i􏼐 􏼑 �

68rs + 2r + 10 + jr + i, for d � 1,

67rs + r + 11 + 3jr + 3i, for d � 3,

66rs + r + 12 + 5jr + 5i, for d � 5,

65rs + 13 + 7jr + 7i, for d � 7.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

For the case d � 1, we have weights’ set
68rs + 2r + 10, 68rs + 2r + 11, . . . , 69rs + 2r + 9{ }; similarly,
for cases d � 3, 5, 7, we get the weights from the sets
67rs + r + 11, 67rs + 2r + 12, . . . , 70rs + r + 8{ }, 66rs + r +{

12, 66rs + r + 17, . . . , 71rs + r + 7}, and 65rs + r +{

13, 65rs + r + 20, . . . , 72rs + r + 5}, respectively. Hence, the
weights of cycles C

j
8,i form an arithmetic sequence with

difference 1, 3, 5, and 7. □
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Theorem 6. Let r, s≥ 2; then, the toroidal map Or
s is super

(a, d)-C8-antimagic for d ∈ 2, 4, 6{ }.
Proof. Let d ∈ 2, 4, 6{ } and 0≤ i≤ r − 1, 0≤ j≤ s − 1. We
define a total labeling ϕd of Or

s as follows:

ϕd u
j
i􏼐 􏼑 � jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd v
j
i􏼐 􏼑 � rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd x
j
i􏼐 􏼑 � 3rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd w
j

i􏼐 􏼑 � 2rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd u
j
i v

j
i􏼐 􏼑 � 8rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ2 x
j

i w
j

i􏼐 􏼑 � φ4 x
j

i w
j

i􏼐 􏼑 � 9rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ6 x
j
i w

j
i􏼐 􏼑 � 9rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ2 v
j
i x

j
i+1􏼐 􏼑 � φ4 v

j
i x

j
i+1􏼐 􏼑 � 6rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ6 v
j
i x

j
i+1􏼐 􏼑 � 6rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd u
j
i w

j+1
i􏼐 􏼑 � 4rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕd v
j

i w
j+1
i􏼐 􏼑 � 5rs + rj + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ2 x
j
i u

j
i􏼐 􏼑 � 7rs +(s − 1 − j)r + r − i, 0≤ i≤ r − 1, 0≤ j≤ s − 1,

ϕ4 x
j
i u

j
i􏼐 􏼑 � ϕ6 x

j
i u

j
i􏼐 􏼑 � 7rs + jr + 1 + i, 0≤ i≤ r − 1, 0≤ j≤ s − 1.

(29)

'e total labeling ϕd labels the vertices u
j
i , v

j
i , w

j
i , x

j
i from

the set 1, 2, . . . , 4rs{ } and edges from the set
4rs + 1, 4rs + 2, . . . , 10rs{ }. 'is show that φd is a bijection

from set V(Or
s)∪E(Or

s) to set 1, 2, . . . , 10rs{ }. For 1≥ i≥ l

and i≥ j≥ k, the weights of C
j
8,i under the labeling ϕd are

Wd C
j

8,i􏼐 􏼑 � ϕd u
j−1
i􏼐 􏼑 + ϕd v

j−1
i􏼐 􏼑 + ϕd u

j−1
i v

j−1
i􏼐 􏼑 + ϕd w

j

i+1􏼐 􏼑 + ϕd w
j

i􏼐 􏼑 + ϕd w
j

i+1v
j−1
i􏼐 􏼑

+ ϕd x
j

i+1􏼐 􏼑 + ϕd x
j

i+1w
j

i+1􏼐 􏼑 + ϕd v
j

i􏼐 􏼑 + ϕd v
j

i x
j

i+1􏼐 􏼑 + ϕd u
j

i􏼐 􏼑

+ ϕd u
j
i v

j
i􏼐 􏼑 + ϕd x

j
i􏼐 􏼑 + ϕd x

j
i u

j
i􏼐 􏼑 + ϕd x

j
i w

j
i􏼐 􏼑 + ϕd w

j
i u

j−1
i􏼐 􏼑,

Wd C
j

8,i􏼐 􏼑 �

75rs − 4r + 8 + 2jr + 2i, for d � 2,

74rs − 4r + 9 + 4jr + 4i, for d � 4,

73rs − 4r + 12 + 6jr + 6i, for d � 6.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

For the case d � 2, we have weights from the set
75rs − 4r + 8, 75rs − 4r + 10, . . . , 77rs − 4r + 6{ }. Similarly,
for cases d � 4, 6, we get weights from the sets
74rs − 4r + 9, 74rs − 4r + 13, . . . , 78rs − 4r + 5{ } and 73rs −{

4r + 12, 73rs − 4r + 18, . . . , 79rs − 4r + 6}, respectively. 'is
showed that weights of the cycles C

j
8,i form an arithmetic

sequence with difference 2, 4, and 6. □

4. Conclusion

In the present paper first, we constructed an upper bound for
the parameter d for super (a, d)-C3-antimagic covering.
Secondly, we examined the existence of super
(a, d)-C3-antimagic labeling of generalized antiprism As

r.
We showed that, for r, s≥ 3 the generalized antiprism As

r had
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(a, d)-C3-antimagic covering for d ∈ 0, 2{ }. 'irdly, we
constructed an upper bound for the parameter d for super
(a, d)-C8-antimagic covering. Finally, we examined the
existence of super (a, d)-C8-antimagic labeling of torodial
map Or

s . We showed that, for m, n≥ 2, the torodial octagonal
map Or

s had (a, d)-C8-antimagic covering for
d ∈ 1, 2, 3, 4, 5, 6, 7{ }. We conclude the paper with the fol-
lowing open problems.

Open problem 1: find other possible bound for pa-
rameter d under (a, d)-C3-antimagic total covering and
the corresponding remaining labeling of d for gener-
alized antiprism As

r

Open problem 2: find other possible bound for pa-
rameter d under (a, d)-C8-antimagic total covering and
the corresponding remaining labeling of d for torodial
octagonal map Or

s
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