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For backward stochastic differential equations (BSDEs), we construct variable step size Adams methods by means of Itô–Taylor
expansion, and these schemes are nonlinear multistep schemes. It is deduced that the conditions of local truncation errors with
respect to Y and Z reach high order. *e coefficients in the numerical methods are inferred and bounded under appropriate
conditions. A necessary and sufficient condition is given to judge the stability of our numerical schemes. Moreover, the high-order
convergence of the schemes is rigorously proved. *e numerical illustrations are provided.

1. Introduction

In 1973, Bismut [1] introduced the linear BSDEs. Until 1990,
the well-posedness result of nonlinear BSDEs was rigorously
proved by Pardoux and Peng [2–4]. After boomingly de-
veloped for three past decades, BSDEs become a vital tool to
formulate many problems such as mathematical finance [5],
partial differential equations [4], actuarial and financial [6],
risk measures [7], and finance [8]. However, the theory of
nonlinear BSDEs indicates that a majority of nonlinear
BSDEs do not have analytical solutions [9]. *us, the main
purpose of this paper is to design a new numerical scheme to
solve the following BSDE:

Yt � Φ WT( 􏼁 + 􏽚
T

t
f s, Ys, Zs( 􏼁ds − 􏽚

T

t
ZsdWs, (1)

where T> 0 denotes a fixed terminal time and W is a
d-dimensional Brownian motion defined on a filtered
complete probability space (Ω,F, (Ft)0≤t≤T,P);
Φ(WT): Rd⟶ Rm is a given terminal condition of BSDE,
and f(t, y, z): [0, T] × Rm × Rm×d⟶ Rm is the generator
function. In addition, they satisfy the following.

Assumption 1. f(t, Y, Z) ∈ Ck
b, k ∈ N+, and Φ(WT) ∈ C1

b

where Ck
b are the set of all k-times continuously differential

functions with all partial derivatives bounded.

*e papers with respect to numerical solutions of
BSDEs are unlikely to list exhaustively because there is a
vast literature. *erefore, we recommend milestone papers
to readers with respect to time-discretization of BSDEs.*e
paper [10] was the first work of designing efficient algo-
rithms for BSDEs. After that, a modified and imple-
mentable numerical scheme was adopted to calculate
BSDEs in [11]. In the meantime, the Malliavin calculus and
Monte Carlo methods were utilized by [12] to discretize
BSDEs. *e empirical regression method was constructed
by [13] for BSDEs. *e papers [14, 15] presented the
θ-scheme to discretize BSDEs. *e forward Picard itera-
tions method was designed by [16]. *e cubature method
was used to solve BSDEs in [14, 17]. In [15], authors
proposed the BCOS method based on the Fourier cosine
series expansions to approximate the solutions of BSDEs.
*e stochastic grid binding method [18] was introduced to
solve BSDEs. *e authors in [19] proposed the branching
diffusion method for BSDEs, and the branching techniques
do not suffer from the curse of dimensionality. A deep
learning method was constructed to solve BSDEs in
[20, 21]. *is method could also overcome the curse of
dimensionality and deal with the numerical solutions of
BSDEs via the Euler scheme under the condition of
minimizing the global loss function. *e papers [22, 23]
improved the deep learning method via solving the fixed
point problem.
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If the Euler scheme (explicit, implicit, or generalized) is
utilized to discretize BSDEs, the order of discretization error
is 1/2 (see [11, 13, 18, 24]). *e θ-schemes [14, 15] are
adopted to discretize BSDEs, and the corresponding rate of
convergence is 2. To obtain higher-order schemes, the
multistep schemes [16, 25–27] are developed to solve BSDEs.

From the above review, the time-discretization of BSDEs
can adopt low-order schemes or high-order schemes. Notice
that the Euler schemes, the θ-schemes, and the multistep
schemes are constant variable step size. And there are a large
number of documents about the constant variable step size
schemes. *is implies that the theory of implementable
numerical methods of BSDEs is booming. *e variable step
size numerical methods play a vital role in the field of
numerical methods of stochastic differential equations (see
[28, 29]) while they are not seen in the field of numerical
theory of BSDEs. *us, for this motivation, this paper is to
provide novel high-order nonlinear discretization schemes
called variable step size Adams scheme (14) by utilizing
Itô–Taylor expansion. Note that our high-order nonlinear
scheme is always explicit with respect to Z. We provide
conditions of local truncation errors with respect to Y and Z

reaching high order (see Lemmas 3 and 4). Moreover, a
sufficient and necessary condition for the stability of our
schemes is derived (see *eorem 1). Finally, we derive the
convergence of our schemes (see *eorem 3). To the best of
our knowledge, this is the first attempt to come up with a
variable step size numerical scheme for BSDEs. Note that the
developed schemes can be also applied to solve decoupled
forward-backward stochastic differential equations, and the
forward stochastic differential equation can be approxi-
mated by using an appropriate scheme.

*e main contributions are as follows. (i) We derive the
variable step size Adams scheme for BSDEs by means of
Itô–Taylor expansion. And this scheme is a novel high-order
nonlinear time-discretization scheme. (ii) *e stability and
high-order discretization property of our schemes are rig-
orously proved. Note that we present a sufficient and nec-
essary condition for the stability of our schemes. (iii) *e
constant variable one-step size schemes [11, 15, 18, 24] and
the constant variable multistep size schemes [16, 26, 27] are
the particular cases of our variable step size Adams scheme.

An outline of this paper is as follows. In Section 2, we
present two lemmas that can be used in the following
sections. *e variable step size Adams schemes of BSDEs are
demonstrated in Section 3. Section 4 shows the stability and
convergence of the variable step size Adams scheme. In
Section 5, numerical experiments are carried out to illustrate
the theoretical consequences. In the end, Section 6 is devoted
to the conclusion of this paper.

2. Preliminaries

For readers’ convenience, here we present two lemmas
which will be utilized in the sequel part.

Lemma 1 (see [3, 4]). Assume that functions f and Φ are
uniformly Lipschitz with respect to (y, z) and 1/2-Hölder
continuous with respect to t. In addition, assume Φ is of class

C2+κ
b for some κ ∈ (0, 1). ,en, the solution (Yt, Zt) of the

BSDE in (4) can be represented as

Yt � u t, Xt( 􏼁, Zt � ∇xu t, Xt( 􏼁􏼁, t ∈ [0, T], (2)

where u ∈ C1,2
b ([0, T] × Rd) satisfies the parabolic PDE as

follows:

L
(0)

u(t, x) + f t, x, u(t, x),∇xu(t, x)σ(t, x)( 􏼁 � 0, (3)

with the terminal condition u(T, x) � Φ(x) where
L(0) � (z/zt) + (1/2) 􏽐

d
i,j�1(z2/zxizxj).

For readers’ convenience, we introduce some symbols
before providing the lemma. For a multi-index with finite
length α, let ℓ(α) be the length of a multi-index of α; Aα is
the set of all functions v: [0, T] × Rd⟶ R for whichLαv is
well defined and continuous; Aα

b denotes the subset of all
functions v ∈ Aα such that the functionLαv is bounded; for
positive integer n, An

b is the set of functions v such that
vα ∈ Aα

b for all α ∈ α|ℓ(α)≤ n{ }∖ ⊘{ }.

Lemma 2 (see Proposition 2.2 in [30]). Let n≥ 0. ,en, for a
function v ∈ An+1

b , Et[v(t + h, Xt+h)] � vt + hv
(0)
t + h2/2v

(0,0)
t

+ · · · + hn/n!v
(0)n

t + O(hn+1), where Et[·] � E[·|Ft]; v(0) �

L(0)v, v(0,0) � L(0)°L(0)v, . . ., v(0)n � L
(0)°· · ·°L

(0)

􏽼√√√√√√􏽻􏽺√√√√√√􏽽
n

v.

3. Variable Step Size Adams Methods

In this part, we introduce the variable step size Adams
schemes of BSDEs in detail.

Now, we deduce the variable step size Adams schemes of
BSDEs with respect to Y. A discretization π � t0, t1, . . . , tN􏼈 􏼉

of the time interval [0, T] is defined with step size
hi � ti+1 − ti and h � max0≤i≤N− 1hi; then, we can restate the
BSDE (1) as follows:

Yti
� Yti+1

+ 􏽚
ti+1

ti

f s, Ys, Zs( 􏼁ds − 􏽚
ti+1

ti

ZsdWs. (4)

Taking conditional expectations on both sides of (4), we
get the result as follows:

Yti
� Ei Yti+1

􏽨 􏽩 + 􏽚
ti+1

ti

Ei f s, Ys, Zs( 􏼁􏼂 􏼃ds, (5)

where Ei[·] � E[·|Fti
]. It is straightforward that the inte-

grand Ei[f(s, Ys, Zs)] in the above equation is a deter-
ministic function of time s. Naturally, we can replace the
function Ei[f(s, Ys, Zs)] in (5) by using multistep methods
through the support points (tn,Ei[fn])|n � i, i + 1,􏼈 . . . , i +

k} where k is a given positive integer and satisfies 0≤ k<N,
namely,

􏽚
ti+1

ti

Ei f s, Ys, Zs( 􏼁􏼂 􏼃ds � hi 􏽘

k

j�0
Γj,iEi f ti+j, Yi+j, Zi+j􏼐 􏼑􏽨 􏽩 + R

y
i ,

(6)

where coefficients Γj,i depend on hi for i � N − 1, . . . , 0
and will be given soon; R

y
i � 􏽒

ti+1

ti
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Ei[f(s, Ys, Zs)] − 􏽐
k
j�0 Γj,iEi[f(ti+j, Yi+j, Zi+j)]􏽮 􏽯ds. Insert-

ing (6) into (5), we obtain

Yti
� Ei Yti+1

􏽨 􏽩 + hi 􏽘

k

j�0
Γj,iEi f ti+j, Yi+j, Zi+j􏼐 􏼑􏽨 􏽩 + R

y

i . (7)

Hence, the time-discretization of Y is, for
i � N − k, N − k − 1, . . . , 0,

Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hi 􏽘

k

j�0
Γj,iEi f ti+j, Y

π
i+j, Z

π
i+j􏼐 􏼑􏽨 􏽩. (8)

In what follows, we demonstrate the expression with
respect to Z. Multiplying (4) by
ΔWi,n: � Wti+n

− Wti
, n ∈ N+ and then taking conditional

expectation on the derived equation, we obtain

0 � Ei Yti+1
ΔW⊤i,1􏽨 􏽩 + 􏽚

ti+1

ti

Ei f s, Ys, Zs( 􏼁ΔW⊤i,s􏽨 􏽩ds

− 􏽚
ti+1

ti

Ei Zs􏼂 􏼃ds,

(9)

where ΔWi,s � Ws − Wti
. Analogously, we approximate the

two integral terms on right-hand side of (9) by themanner as
calculating Yti

, namely,

􏽚
ti+1

ti

Ei f s, Ys, Zs( 􏼁ΔW⊤i,s􏽨 􏽩ds

� hi 􏽘

k

j�1
Γ∗j,iEi f ti+j, Yi+j, Zi+j􏼐 􏼑ΔW⊤i,j􏽨 􏽩 + R

z
1,i,

(10)

􏽚
ti+1

ti

Ei Zs􏼂 􏼃ds � hi 􏽘

k

j�0
Γ∗∗j,i Ei Zti+j

􏼔 􏼕 + R
z
2,i, (11)

where Rz
1,i � 􏽒

ti+1

ti
Ei[f(s, Ys, Zs)ΔW⊤i,s]ds − hi 􏽐

k
j�1 Γ
∗
j,iEi

[f(ti+j, Yi+j, Zi+j)ΔW⊤i,j] and Rz
2,i � 􏽒

ti+1

ti
Ei[Zs]ds −

hi 􏽐
k
j�0 Γ
∗∗
j,i Ei[Zti+j

]. Plugging (10) and (11) into (9), we
deduce

0 � Ei Yti+1
ΔW⊤i,1􏽨 􏽩 + hi 􏽘

k

j�1
Γ∗j,iEi f ti+j, Yi+j, Zi+j􏼐 􏼑ΔW⊤i,j􏽨 􏽩

− hi 􏽘

k

j�0
Γ∗∗j,i Ei Zti+j

􏼔 􏼕 + R
z
i ,

(12)
where Rz

i � Rz
1,i − Rz

2,i. Hence, the time-discretization of Z is,
for i � N − k, N − k − 1, . . . , 0,

Γ∗∗0,i Ei Z
π
i􏼂 􏼃 � Ei Y

π
i+1
ΔW⊤i,1

hi

􏼢 􏼣 + 􏽘

k

j�1
Γ∗j,iEi f ti+j, Y

π
i+j, Z

π
i+j􏼐 􏼑ΔW⊤i,j􏽨 􏽩

− 􏽘
k

j�1
Γ∗∗j,i Ei Z

π
i+j􏽨 􏽩,

(13)

*us, from the two equations (8) and (13), we propose
the explicit Adams schemes to solve BSDE (1) as follows.

Giving the initial values (Yπ
N− l, Yπ

N− l)􏼈 􏼉
k− 1
l�0 , we solve

random variables (Yπ
i , Zπ

i ) for i � N − k, N − k − 1, . . . , 0
from

Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hi 􏽘

k

j�0
Γj,iEi f

π
i+j􏽨 􏽩,

0 � Ei Y
π
i+1
ΔW⊤i,1

hi

􏼢 􏼣 + 􏽘

k

j�1
Γ∗j,iEi f

π
i+jΔW

⊤
i,j􏽨 􏽩 − 􏽘

k

j�0
Γ∗∗j,i Ei Z

π
i+j􏽨 􏽩,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where fπ
i � f(ti, Yπ

i , Zπ
i ) for i � N − 1, N − 2, . . . , 0; coef-

ficients Γj,i, Γ∗j,i, and Γ
∗∗
j,i depend on hi for i � N − 1, . . . , 0.

Remark 1. If Γ0,i � 0, the scheme with respect to Y is explicit
and Γj,i � Γ∗j,i for j � 1, 2, . . . , k. If Γ0,i ≠ 0, the scheme with
respect to Y is implicit and Γj,i � Γ∗∗j,i for j � 1, 2, . . . , k.

4. Theoretical Analysis

Before showing the stability and convergence analysis of the
variable step size Adams scheme (14), we first provide a few
lemmas.

Lemma 3. Under Assumption 1, assume that the parameters
Γj,i􏽮 􏽯0≤j≤k satisfy the relation as follows:

1 � 􏽘
k

p�0
Γp,i, q � 1,

1
q

� 􏽘
k

p�1

􏽐
p− 1
ℓ�0 hi+ℓ􏼐 􏼑

q− 1

h
q− 1
i

Γp,i, q≥ 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

,en,

R
y
i �

O h
k

􏼐 􏼑, Γ0,i � 0,

O h
k+1

􏼐 􏼑, Γ0,i ≠ 0.

⎧⎪⎨

⎪⎩
(16)

Proof. By Assumption 1, the integrand
Et[f(s, Ys, Zs)], s> t, is a continuous function with respect
to s (see *eorem 2.2.1 of [31]). *en, by taking derivative
with respect to s on

Et Ys􏼂 􏼃 � Et Φ WT( 􏼁􏼂 􏼃 + 􏽚
T

s
Et f s, Ys, Zs( 􏼁􏼂 􏼃ds,∀s ∈ [t, T],

(17)

we obtain the following reference ordinary differential
equation:

dEt Ys􏼂 􏼃

ds
� − Et f s, Ys, Zs( 􏼁􏼂 􏼃, s ∈ [t, T]. (18)
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*us, from the definition of R
y
i , we have

R
y

i � 􏽚
ti+1

ti

Ei f s, Ys, Zs( 􏼁􏼂 􏼃 − 􏽘
k

j�0
Γj,iEi f ti+j, Yi+j, Zi+j􏼐 􏼑􏽨 􏽩

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
ds

� Yti
− Ei Yti+1

􏽨 􏽩 − hi 􏽘

k

j�0
Γj,iEi f ti+j, Yi+j, Zi+j􏼐 􏼑􏽨 􏽩.

(19)

Substituting (18) into (19) and utilizing Itô–Taylor ex-
pansion at (ti, Wti

), we have

R
y
i � Ei uti

− uti+1
− hi 􏽘

k

j�0
Γj,if ti+j, Yi+j, Zi+j􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

� Ei uti
− uti+1

+ hi 􏽘

k

j�1
Γj,iu

(0)
ti+j

⎡⎢⎢⎣ ⎤⎥⎥⎦

� Ei hiu
(0)
ti

− 1 + Γ1,i + Γ2,i + · · · + Γk,i􏼐 􏼑􏽨

+ h
2
i u

(0,0)
ti

−
1
2

+ Γ1,i +
hi + hi+1

hi

Γ2,i + · · · +
􏽐

k− 1
ℓ�0 hi+ℓ

hi

Γk,i􏼠 􏼡

+ h
3
i u

(0,0,0)
ti

−
1
6

+
1
2
Γ1,i +

hi + hi+1( 􏼁
2

h
2
i

Γ2,i + · · · +
􏽐

k− 1
ℓ�0 hi+ℓ􏼐 􏼑

2

h
2
i

Γk,i
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+ · · ·

+ h
q
i u

(0)q

ti
−
1
q!

+
1

(q − 1)!
Γ1,i +

hi + hi+1( 􏼁
q− 1

h
q− 1
i

Γ2,i + · · · +
􏽐

k− 1
ℓ�0 hi+ℓ􏼐 􏼑

q− 1

h
q− 1
i

Γk,i
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + · · ·⎤

⎥⎥⎥⎥⎦

� Ei hiu
(0)
ti

− 1 + 􏽘

k

p�0
Γp,i

⎛⎝ ⎞⎠ + 􏽘
q≥2

h
q

q!
u

(0)q

ti
− 1 + q 􏽘

k

p�1

􏽐
p− 1
ℓ�0 hi+ℓ)

q− 1

h
q− 1
i Γp,i

⎛⎝ ⎞⎠],⎛⎝⎡⎢⎢⎣

(20)

where uti
� u(ti, Wti

). *e conclusion is obvious with the
help of equation (20). *e proof is completed. □

Lemma 4. Under Assumption 1, assume that the parameters
Γj,i􏽮 􏽯0≤j≤k satisfy

1 � 􏽘
k

j�0
Γ∗∗j,i , 0≠ Γ∗∗0,i ,

1 � 􏽘
k

j�1

􏽐
j− 1
ℓ�0 hi+ℓ􏼐 􏼑

q

h
q
i

qΓ∗j,i + Γ∗∗j,i􏼐 􏼑, q≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

,en, Rz
i � O(hk+1).

Proof. By Assumption 1, the two integrands
Et[f(s, Ys, Zs)ΔW⊤t,s] and Et[Zs], s> t, are continuous
function of s (see *eorem 2.2.1 of [31]). Taking derivative
with respect to s, we have the ordinary differential equation
as follows:

dEt YsΔW
⊤
t,s􏽨 􏽩

ds
� − Et f s, Xs, Ys, Zs( 􏼁ΔW⊤t,s􏽨 􏽩 + Et Zs􏼂 􏼃,

s ∈ [t, T].

(22)
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*us,

R
z
i

Γ∗∗0,i hi

� Zti
− Ei Yti+1

ΔW⊤i,1
Γ∗∗0,i hi

􏼢 􏼣 − 􏽘
k

j�1

Γ∗j,i

Γ∗∗0,i

Ei f ti+j, Yi+j, Zi+j􏼐 􏼑ΔW⊤i,j􏽨 􏽩 + 􏽘
k

j�1

Γ∗∗j,i

Γ∗∗0,i

Ei Zti+j
􏼔 􏼕

� Zti
− Ei Yti+1

ΔW⊤i,1
Γ∗∗0,i hi

􏼢 􏼣 + 􏽘

k

j�1

Γ∗j,i

Γ∗∗0,i

Ei Yti+j
ΔW⊤i,j􏼒 􏼓

(0)

􏼢 􏼣 + 􏽘

k

j�1

Γ∗∗j,i − Γ∗j,i

Γ∗∗0,i

Ei Zti+j
􏼔 􏼕

� Zti
−

1
Γ∗∗0,i

Ei Zti+1
􏽨 􏽩 + 􏽘

k

j�1

Γ∗j,i

Γ∗∗0,i

Ei ti+j − ti􏼐 􏼑Z
(0)
ti+j

+
Γ∗∗j,i

Γ∗j,i

Zti+j

⎡⎣ ⎤⎦,

(23)

where the last equality can be verified via relation (2) and
integration by parts. Substituting (22) into (23) and utilizing
Itô–Taylor expansion at (ti, Wti

), we have

R
z
i

Γ∗∗0,i hi

� Ei Zti
1 −

1
Γ∗∗0,i

+ 􏽘
k

j�1

Γ∗∗j,i

Γ∗∗0,i

⎛⎝ ⎞⎠ + hiZ
(0)
ti

−
1
Γ∗∗0,i

+ 􏽘
k

j�1

􏽐
j− 1
ℓ�0 hi+ℓ

Γ∗∗0,i hi

Γ∗j,i + Γ∗∗j,i􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣

+
h
2
i

2
Z

(0,0)
ti

−
1
Γ∗∗0,i

+ 􏽘
k

j�1

􏽐
j− 1
ℓ�0 hi+ℓ􏼐 􏼑

2

Γ∗∗0,i h
2
i

2Γ∗j,i + Γ∗∗j,i􏼐 􏼑⎛⎝ ⎞⎠ +
h
3
i

6
Z

(0,0,0)
ti

−
1
Γ∗∗0,i

+ 􏽘
k

j�1

􏽐
j− 1
ℓ�0 hi+ℓ􏼐 􏼑

3

Γ∗∗0,i h
3
i

3Γ∗j,i + Γ∗∗j,i􏼐 􏼑⎛⎝ ⎞⎠

+ · · · +
h

q
i

q!
Z

(0)q

ti
−

1
Γ∗∗0,i

+ 􏽘
k

j�1

􏽐
j− 1
ℓ�0 hi+ℓ􏼐 􏼑

q

Γ∗∗0,i h
q
i

qΓ∗j,i + Γ∗∗j,i􏼐 􏼑⎛⎝ ⎞⎠ + · · ·⎤⎥⎥⎦

� Ei Zti
1 −

1
Γ∗∗0,i

+ 􏽘

k

j�1

Γj,i

Γ∗∗0,i

⎛⎝ ⎞⎠ + 􏽘
q≥1

h
q
i

q!
Z

(0)q

ti
−

1
Γ∗∗0,i

+ 􏽘

k

j�1

􏽐
j− 1
ℓ�0 hi+ℓ􏼐 􏼑

q

Γ∗∗0,i h
q

i

qΓ∗j,i + Γ∗∗j,i􏼐 􏼑⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(24)

*e conclusion is obvious with the help of equation (24).
*e proof is completed.

In what follows, we list the numerical expressions with
respect to Y and Z by utilizing Lemmas 3 and 4.

(1) If Γ0,i � 0, the numerical schemes of Y for k � 1, 2, 3
with respect to time are

k � 1, Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hiEi f

π
i+1􏼂 􏼃,

k � 2, Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hiEi f

π
i+1 +

hi

2hi+1
f
π
i+1 − f

π
i+2( 􏼁􏼢 􏼣,

k � 3, Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hiEi f

π
i+1 +

hi

2hi+1
f
π
i+1 − f

π
i+2( 􏼁 +

2hi + 3hi+1

6 hi + hi+1( 􏼁

hi hi + hi+1( 􏼁

hi+1 + hi+2( 􏼁hi+1
f
π
i+1􏼠􏼢

−
hi hi + hi+1( 􏼁

hi+1hi+2
f
π
i+2 +

hi hi + hi+1( 􏼁

hi+1 + hi+2( 􏼁hi+2
f
π
i+3􏼡􏼣.

(25)
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(2) If Γ0,i ≠ 0, the numerical schemes of Y for k � 0, 1, 2
with respect to time are

k � 0, Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hif

π
i ,

k � 1, Y
π
i � Ei Y

π
i+1􏼂 􏼃 +

hi

2
Ei f

π
i + f

π
i+1􏼂 􏼃,

k � 2, Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hiEi

2hi + 3hi+1

6 hi + hi+1( 􏼁
f
π
i +

hi + 3hi+1

6hi+1
f
π
i+1 −

h
2
i

6 hi + hi+1( 􏼁hi+1
f
π
i+2􏼢 􏼣.

(26)

(3) *e numerical expressions with respect to Z are
provided for k � 0, 1, 2, namely,

k � 0, Z
π
i � Ei Y

π
i+1
ΔW⊤i,1

hi

􏼢 􏼣,

k � 1,
1
2
Z
π
i � Ei Y

π
i+1
ΔW⊤i,1

hi

􏼢 􏼣 + Ei f
π
i+1ΔW

⊤
i,1􏽨 􏽩 −

1
2
Ei Z

π
i+1􏼂 􏼃,

k � 2,
2hi + 3hi+1

6 hi + hi+1( 􏼁
Z
π
i � Ei Y

π
i+1
ΔW⊤i,1

hi

􏼢 􏼣 + Ei f
π
i+1ΔW

⊤
i,1 +

hi

2hi+1
f
π
i+1ΔW

⊤
i,1 − f

π
i+2ΔW

⊤
i,2􏼐 􏼑􏼢 􏼣

− Ei

4hi + 3hi+1

6 hi + hi+1( 􏼁
Z
π
i+1 +

h
2
i

6hi+1 hi + hi+1( 􏼁
Z
π
i+1 − Z

π
i+2( 􏼁􏼢 􏼣.

(27)

Lemma 5. If constraints (15) and (21) and
(hi/hi+j)≤M, M ∈ (0, +∞) are satisfied, then the coefficients
Γj,i, Γ∗j,i, and Γ∗∗j,i in scheme (14) are bounded.

Proof. From Lemma 3, we know that the coefficients Γj,i are
composed of products and sums of hi/hi+j for j � 1, 2, . . . , k.
Under the condition hi/hi+j ≤M, it is clear that the coeffi-
cients Γj,i are bounded. Analogously, we derive that coef-
ficients Γ∗j,i and Γ

∗∗
j,i are bounded.

In what follows, two definitions are introduced to serve
the stability of scheme (14). □

Definition 1. *e characteristic polynomials of (14) are
given by

Py(ζ) � ζ − 1, (28)

Pz(ζ) � ζk− 1
− 􏽘

k

j�0
Γj,iζ

k− j
. (29)

and Equation (14) is said to fulfil Dahlquist’s root
condition if

(i) *e roots ofPy(ζ) and Pz(ζ) lie on or within the unit
circle

(ii) *e roots on the unit circle are simple

Definition 2. Let (Yπ
i , Zπ

i ), i � 0, 1, . . . , N − k, be the time-
discretization approximate solution given by (14) and
(Y

π
i , Z

π
i ) be the solution of its perturbed form (see (31)).

*en, scheme (14) is said to be L2-stable if

max
0≤i≤N− k

E Y
π
i − Y

π
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Z
π
i − Z

π
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼔 􏼕

≤C max
N− k+1≤ℓ≤N

E Y
π
i − Y

π
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Z
π
i − Z

π
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼔 􏼕􏼠

+ 􏽘
N− k

ℓ�0
E |εY

ℓ |
2

+ |εZ
ℓ |

2
􏽨 􏽩⎞⎠,

(30)
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where C denotes a constant which changes from line to line;
(Y

π
i , Z

π
i ) satisfies a perturbed form of (14) for

i � N − k, N − k − 1, . . . , 0:

Y
π
i � Ei Y

π
i+1􏽨 􏽩 + hi 􏽘

k

j�0
Γj,iEi f

π
i+j􏽨 􏽩 + εY

i ,

0 �
1
hi

Ei Y
π
i+1ΔW

⊤
i,1􏽨 􏽩 + 􏽘

k

j�1
Γ∗j,iEi f

π
i+jΔW

⊤
i,j􏽨 􏽩 − 􏽘

k

j�0
Γ∗∗j,i Ei Z

π
i+j􏽨 􏽩 + εZ

i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

where f
π
i � f(ti, Y

π
i , Z

π
i ); sequences εY

i and εZ
i which belong

to L2(Fi) are random variables.
*e following theorem is devoted to analyze the stability

of scheme (14).

Theorem 1. Suppose Assumption 1 and the condition of
Lemma 5 hold. ,en, the variable step size explicit Adams
methods (that is, the coefficient Γ0,i � 0) is numerically stable
if and only if its characteristic polynomial (29) satisfies
Dahlquist’s root condition.

Proof (sufficiency). Let ΔYi � Yπ
i − Y

π
i ,ΔZi � Zπ

i − Z
π
i ,

andΔfi � f(ti, Yπ
i , Zπ

i ) − f(ti, Y
π
i , Z

π
i ) for i � N − k,

N − k − 1, . . . , 0. We complete the proof of the theorem in
three steps.

Step 1. From (14) and (31) with respect toY, one obtains

ΔYi � Ei ΔYi+1 + hi 􏽘

k

j�1
Γj,iΔfi+j

⎡⎢⎢⎣ ⎤⎥⎥⎦ − εY
i . (32)

Furthermore,

ΔYi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ Ei ΔYi+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + hi 􏽘

k

j�1
Γj,iEi Δfi+j􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + εY
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌π,

≤ Ei ΔYi+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + hiLf 􏽘

k

j�1
Γj,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Ei ΔYi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ΔZi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕

+ εY
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(33)

where Lf denotes the Lipschitz constant. Squaring
equation (33), then from the inequalities
(􏽐

n
i�1 ai)

2 ≤ n 􏽐
n
i�1 a2

i and (a + b)2 ≤ δ(1 + δ)a2 + (1+

1/δ)b2, δ > 0, one deduces

ΔYi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ Ei ΔYi+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
3 +

�
5

√

2
hiLf 􏽘

k

j�1
Γj,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌Ei ΔYi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ΔZi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕 + εY
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠

2

≤ Ei ΔYi+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+
3 +

�
5

√

2
(2k + 1)L

2
fh

2
i max
1≤j≤k
Γj,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏽘

k

j�1
Ei ΔYi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ ΔZi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕

+
3 +

�
5

√

2
(2k + 1) εY

i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(34)

Summing over the above inequality from i to N − k, we
have

ΔYi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 ≤ Ei ΔYN− k+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
3 +

�
5

√

2
(2k + 1)L

2
fh

2 max
1≤j≤k
Γj,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏽘

N− k

ℓ�i

􏽘

k

j�1
Ei ΔYℓ+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ ΔZℓ+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕

+
3 +

�
5

√

2
(2k + 1) 􏽘

N− k

ℓ�i

εY
ℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(35)
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Step 2. Subtracting (31) from (14) with respect to Z, we
obtain

ΔZi �
1
Γ∗∗0,i hi

Ei ΔYi+1ΔW
⊤
i,1􏽨 􏽩 + 􏽘

k

j�1

Γ∗j,i

Γ∗∗0,i

Ei Δfi+jΔW
⊤
i,j􏽨 􏽩

− 􏽘
k

j�1

Γ∗∗j,i

Γ∗∗0,i

Ei ΔZi+j􏽨 􏽩 −
εZ

i

Γ∗∗0,i

.

(36)

By (2) and (3), one can verify that

Ei Yti+1

ΔW⊤i,1
hi

􏼢 􏼣 �
1

hi

����

2πhi

􏽱 􏽚
+∞

− ∞
u ti+1, x + v( 􏼁ve

− v2/2hi dv

�
1

����
2πhi

􏽰 􏽚
+∞

− ∞

zu

zx
ti+1, x + v( 􏼁e

− v2/2hi dv

� Ei Zti+1
􏽨 􏽩.

(37)

Plugging (37) into (36), we have

ΔZi �
1 − Γ∗∗1,i

Γ∗∗0,i

Ei ΔZi+1􏼂 􏼃 − 􏽘
k

j�2

Γ∗∗j,i

Γ∗∗0,i

Ei ΔZi+j􏽨 􏽩

+ 􏽘
k

j�1

Γ∗j,i

Γ∗∗0,i

Ei Δfi+jΔW
⊤
i,j􏽨 􏽩 −

εZ
i

Γ∗∗0,i

.

(38)

We rearrange the k-step recursion to a one-step re-
cursion as follows:

Ei Zi􏼂 􏼃 � Ei AZi+1 + Fi + Ri􏼂 􏼃, (39)

where

Zi �

ΔZi

ΔZi+1

⋮

ΔZi+k− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A �

1 − Γ∗∗1,i

Γ∗∗0,i

−
Γ∗∗2,i

Γ∗∗0,i

· · · −
Γ∗∗k,i

Γ∗∗0,i

1 0

⋱ ⋱

1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Fi �

􏽘

k

j�1

Γ∗j,i

Γ∗∗0,i

Ei Δfi+jΔW
⊤
i,j􏽨 􏽩

0

⋮

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ri �

−
εZ

i

Γ∗∗0,i

0

⋮

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

To ensure the stability of the k-step scheme, the norm of
the matrix A in equation (39) is not more than 1 (see
Chapter III.4, Lemma 4.4 in [32]). *is can be satisfied
if the eigenvalues eig(A) of the matrix A make
|eig(A)|≤ 1 and the eigenvalues are simple if
|eig(A)| � 1. In addition, the eigenvalues of A satisfy
the root condition by Definition 1. By Dahlquist’s root
condition, it is possible that there exists a nonsingular
matrixD such that ‖D− 1AD‖2 ≤ 1 where ‖ · ‖2 denotes
the spectral matrix norm induced by Euclidian vector
norm inRk×m×d. Hence, we can choose a scalar product
for A, 􏽥A ∈ Rk×m×d as 〈A, 􏽥A〉∗: � 〈D− 1A,D− 1 􏽥A〉 �

A
⊤

(D− 1)⊤D− 1 􏽥A. And we have |A|
2
∗: � 〈A, A〉∗ with

the induced vector norm on Rk×m×d. Let
‖A‖∗ � ‖D− 1AD‖2 be the induced matrix norm.

Owing to the norm equivalence, we know that there
exist positive constants c1 and c2 such that

c1|A|
2
2 ≤ |A|

2
∗ ≤ c2|A|

2
2, ∀A ∈ R

k×m×d
, (41)

where |A|
2
2 � 􏽐j�1,2,...,m|aj|

2 for A � (a⊤1 , . . . , a⊤m)⊤.

Applying | · |∗ to equation (39), we have

Ei Zi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∗ � Ei AZi+1 + Fi + Ri􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∗

� ‖A‖∗ Ei Zi+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∗ + Ei Fi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∗ + Ei Ri􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∗

≤ Ei Zi+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∗ + Ei Fi􏼂 􏼃|∗ + Ei Ri􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∗.

(42)
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Squaring equation (42), then from the inequalities
(􏽐

n
i�1 ai)

2 ≤ n 􏽐
n
i�1 a2

i and (a + b)2 ≤ δ(1 + δ)a2+

(1 + 1/δ)b2, δ > 0, one deduces

Ei Zi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ ≤ Ei Zi+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
∗ +

3 +
�
5

√

2
Ei Fi􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∗ + Ei Ri􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∗􏼐 􏼑

2

≤ Ei Zi+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ +(k + 1)c2

3 +
�
5

√

2
􏽘

k

j�1
Ei

Γ∗j,i

Γ∗∗0,i

Δfi+jΔW
⊤
i,j􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
(k + 1)c23 +

�
5

√
/2

Γ∗∗0,i􏼐 􏼑
2 Ei εZ

i􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(43)

By the Lipschitz condition of f with respect to (y, z),
(43) can be restated as

Ei Zi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ ≤ Ei Zi+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
∗ +(k + 1)c2

3 +
�
5

√

2
L
2
f 􏽘

k

j�1

Γ∗j,i

Γ∗∗0,i

􏼠 􏼡

2

Ei ΔYi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ΔZi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓ΔW⊤i,j􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+
(k + 1)c23 +

�
5

√
/2

Γ∗∗0,i􏼐 􏼑
2 Ei εZ

i􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(44)

By the Cauchy–Schwarz inequality, we have the fol-
lowing estimates:

Ei Zi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ ≤ Ei Zi+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
∗ +

3 +
�
5

√

2
k(k + 1)c2L

2
fh

max1≤j≤k Γ
∗
j,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

Γ∗∗0,i􏼐 􏼑
2 􏽘

k

j�1
Ei ΔYi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ ΔZi+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕

+
(k + 1)c23 +

�
5

√
/2

Γ∗∗0,i􏼐 􏼑
2 Ei εZ

i􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(45)

Summing over the above inequality from i to N − k, we
have

Ei Zi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ ≤ Ei ZN− k+1􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
∗ +

3 +
�
5

√

2
k(k + 1)c2L

2
fh

max1≤j≤k Γ
∗
j,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

Γ∗∗0,i􏼐 􏼑
2 􏽘

N− k

ℓ�i

􏽘

k

j�1
Ei ΔYℓ+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ ΔZℓ+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕

+
(k + 1)c23 +

�
5

√
/2

Γ∗∗0,i􏼐 􏼑
2 􏽘

N− k

ℓ�i

Ei εZ
ℓ􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

≤ Ei ZN− k+1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ +

3 +
�
5

√

2
k(k + 1)

c2

c1
L
2
fh

max1≤j≤k Γ
∗
j,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

Γ∗∗0,i􏼐 􏼑
2 􏽘

N− k

ℓ�i

􏽘

k

j�1
c1Ei ΔYℓ+j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕 + 􏽘

N− k+1

ℓ�i+1
Ei Zℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
∗􏽨 􏽩⎛⎝ ⎞⎠

+
(k + 1)c23 +

�
5

√
/2

Γ∗∗0,i􏼐 􏼑
2 􏽘

N− k

ℓ�i

Eiε
Z
ℓ􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
.

(46)
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Step 3. Adding (35) to (46), we obtain

ΔYi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Ei Zi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ ≤C h + h

2
􏼐 􏼑 􏽘

N− k+1

ℓ�i+1
Ei ΔYℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Zℓ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗􏽨 􏽩 + C 􏽘

N

ℓ�N− k+1
Ei ΔYℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Zℓ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽨 􏽩

+
3 +

�
5

√

2
(2k + 1) 􏽘

N− k

ℓ�i

εY
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+
(k + 1)c23 +

�
5

√
/2

Γ∗∗0,i􏼐 􏼑
2 􏽘

N− k

ℓ�i

Ei εZ
ℓ􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

.

(47)

From the discrete Gronwall inequality, we have

ΔYi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Ei Zi􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗ ≤C max

i+1≤ℓ≤N− k+1
khEi ΔYℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Zℓ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
∗􏽨 􏽩 + 􏽘

N

ℓ�N− k+1
Ei ΔYℓ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Zℓ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽨 􏽩 + 􏽘
N− k

ℓ�i

Ei εY
ℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ εZ
ℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕⎛⎝ ⎞⎠. (48)

Moreover,

max
0≤i≤N− k

E ΔYi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ ΔZi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤C max
N− k+1≤ℓ≤N

E ΔYℓ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ ΔZℓ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽨 􏽩 + 􏽘

N− k

ℓ�0
E εY

ℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ εZ
ℓ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕⎛⎝ ⎞⎠. (49)

Necessity. *e proof is analogous to ordinary differential
equations (see *eorem 6.3.3 in [33]). So, we omit it. □

Theorem 2. Suppose Assumption 1 and the condition of
Lemma 5 hold. ,en, the variable step size implicit Adams
methods (that is, the coefficient Γ0,i ≠ 0) is numerically stable if
and only if its characteristic polynomial (29) satisfies Dahl-
quist’s root condition.

Proof. *e proof of this theorem is analogous to that of
*eorem 1. *us, we omit it here.

Next, the convergence property of scheme (14) is given
in the theorem as below. □

Theorem 3. Suppose Assumption 1 and the condition of
Lemma 5 hold. Let (Yti

, Zti
) and (Yπ

i , Zπ
i ) be solutions of the

BSDE in (1) and solutions of the variable step size Adams
methods (14), respectively. ,e terminal values satisfy
E[supN− k<i≤N|Yπ

i − Yti
|2 + |Zπ

i − Zti
|2]1/2 ≤Chk. ,en, as h is

small enough,

E sup0≤i≤N− k Y
π
i − Yti

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ Z
π
i − Zti

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼔 􏼕

1
2 ≤Ch

k
,

(50)

where C is a constant changing from line to line.

Proof. *e proof is obvious with the help of *eorem 1 and
Lemmas 3 and 4. □

5. Numerical Experiments

In this section, we demonstrate the theory results of scheme
(14) via numerical examples. First, we choose a method to
approximate the conditional mathematical expectations
numerically. Among the popular methods, we focus on the
least squares Monte Carlo (LSMC) method (see [13, 27]).
Next, we review how to approximate mathematical expec-
tations by the LSMC method.

For i ∈ 0, 1, . . . , N{ }, let Ci:� W(i,􏽥m): 􏽥m � 1, 2,􏽮

. . . , 􏽥M ∈ N+} be independently generated copies of Wti
. *e

empirical probability measure of the Ci-simulations is

denoted by ]
i, 􏽥M � 1/ 􏽥M 􏽐

􏽥M
􏽥m�1 δ(W

(i,􏽥m)

i+1 ,...,W
(i,􏽥m)

i+k
)
where δx is the

Dirac measure on x. Denote byKY,i andKZ,i vector spaces

of functions, i.e., KY,i :� span p
(1)
Y,i , p

(2)
Y,i , . . . , p

(KY,i)

Y,i􏼚 􏼛

where KY,i is a nonnegative integer; p
(k)
Y,i : Rd⟶ Rm

such that E[|p
(k)
Y,i (Wi)|

2]< +∞; KZ,i :�

p
(1)
Z,i (·), p

(2)
Z,i (·), . . . , p

(KZ,i)

Z,i (·)􏼚 􏼛 where KZ,i is a positive in-

teger; p
(k)
Z,i : Rd⟶ Rm×d such that E[|p

(k)
Z,i (Xi)|

2]< +∞.
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From ordinary least squares, numerical solutions Y
π,( 􏽥M)
i and

Z
π,( 􏽥M)
i are obtained by the following manner:

Y
π,( 􏽥M)
i � arg inf

ϕ∈KY,i

1
􏽥M

􏽘

􏽥M

􏽥m�1

ϕ W
(􏽥m)
i􏼒 􏼓 − SY,i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
, (51)

Z
π,( 􏽥M)
i � arg inf

ϕ∈KZ,i

1
􏽥M

􏽘

􏽥M

m�1
ϕ W

(􏽥m)
i􏼒 􏼓 − SZ,i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
, (52)

where SZ,i � Y
π,( 􏽥M)
i+1 ΔW⊤i,i+1/Γ

∗∗
0,i hi + 􏽐

k
j�1 Γ
∗
j,i/ Γ

∗∗
0,i f(ti+j,

Y
π,( 􏽥M)
i+j , Z

π,( 􏽥M)
i+j )ΔW⊤i,i+j − 􏽐

k
j�1 Γ
∗∗
j,i /Γ
∗∗
0,i Z

π,( 􏽥M)
i+j and SY,i �

Y
π,( 􏽥M)
i+1 + hi 􏽐

k
j�0 Γj,if(ti+j, Y

π,( 􏽥M)
i+j , Z

π,( 􏽥M)
i+j ).

To obtain the numerical solutions of BSDE (1.1), we have
to determine the parameters in the numerical scheme (14).
*e coefficients Γj,i, Γ∗j,i, and Γ

∗∗
j,i are obtained by means of

Lemmas 3 and 4 as the value of k is given. In what follows, we
discuss the numerical schemes according to the following
two cases with the nonuniform time grid
ti � T(1 − (1 − i/N)2):

Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hiEi f

π
i+1􏼂 􏼃,

Z
π
i � Ei Y

π
i+1
ΔW⊤i,1

hi

􏼢 􏼣,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(53)

Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hiEi f

π
i+1 +

hi

2hi+1
f
π
i+1 − f

π
i+2( 􏼁􏼢 􏼣,

1
2
Z
π
i � Ei Y

π
i+1
ΔW⊤i,1

hi

􏼢 􏼣 + Ei f
π
i+1ΔW

⊤
i,1􏽨 􏽩 −

1
2
Ei Z

π
i+1􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)

To compare the performance of scheme (53) and scheme
(54), we also provide the corresponding constant variable
step numerical schemes, namely,

Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hEi f

π
i+1􏼂 􏼃,

Z
π
i � Ei Y

π
i+1
ΔW⊤i,1

h
􏼢 􏼣,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(55)

Y
π
i � Ei Y

π
i+1􏼂 􏼃 + hEi

3
2
f
π
i+1 −

1
2
f
π
i+2􏼔 􏼕,

1
2
Z
π
i � Ei Y

π
i+1
ΔW⊤i,1

h
􏼢 􏼣 + Ei f

π
i+1ΔW

⊤
i,1􏽨 􏽩 −

1
2
Ei Z

π
i+1􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(56)

where the constant step size h � T/N. Before we apply our
scheme (14) to the following BSDEs, we first introduce the
notations. Let N be the number of time points; 􏽥M represents
the number of simulation paths. *e basis functions which

are spanned by polynomials whose degree is less than or
equal to the order of discretization error are applied to
compute the value of Y

π,( 􏽥M)
i . *e error of both the numerical

solution and the exact solution of the BSDE (1) at the time
t � 0 is denoted by |Y0 − Y

π,( 􏽥M)
0 |.

and

Example 1. Consider the BSDE as follows:

Yt � 1 + η + sin τ1⊤d WT( 􏼁

+ 􏽚
T

t
min 1, Ys − η − 1 −

sin τ1⊤d Ws( 􏼁

exp τ2d(T − t)/2( )
􏼠 􏼡

2⎧⎨

⎩

⎫⎬

⎭ds

− 􏽚
T

t
ZsdWs,

(57)

which appears in [26] and is used to illustrate the variance
reduction problem with closed-form solutions. Here, η> 0;
τ > 0; 1d is a d-dimensional vector with components all 1.
Now, the solution to the above BSDE is

Yt � 1 + η +
sin τ1⊤d Wt( 􏼁

exp τ2d(T − t)/2􏼐 􏼑
. (58)

Take T � 1, η � 0.6, τ � 1/
��
d

√
, d � 9, and 􏽥M � 100000.

Figure 1 presents the relationship of the absolute error
between the numerical solution and the exact solution of
BSDE (57) with respect to Y at time 0 and the number of
time points via the variable step size scheme (53), the
variable step size scheme (54), the constant variable step size
scheme (55), and the constant variable step size scheme (56).
To be specific, Figure 1 implies that (i) on the whole, the
error of Y becomes smaller as N gets bigger in scheme (53),
scheme (54), scheme (55), and scheme (56); (ii) if the the
absolute error |Y0 − Y

π,( 􏽥M)
0 |π is fixed, the number of steps of

the constant variable step size schemes is bigger than that of
the variable step size schemes; and (iii) the absolute error
with respect to Y obtained by schemes (54) and (56) is
smaller than the absolute error of Y obtained by schemes
(53) and (55).

Example 2. We consider the BSDE as follows:

Yt �
exp T + 􏽐

d
k�1 Wk􏼐 􏼑

1 + exp T + 􏽐
d
k�1 Wk􏼐 􏼑

+ 􏽚
T

t
􏽘

d

k�1
Zk,s

⎛⎝ ⎞⎠ Ys −
2 + d

d
􏼠 􏼡ds

− 􏽚
T

t
ZsdWs.

(59)

*erefore, the exact solutions of BSDE (59) can be
represented in the following form:

Yti
�

exp ti + 􏽐
d
k�1 Wk􏼐 􏼑

1 + exp ti + 􏽐
d
k�1 Wk􏼐 􏼑

. (60)
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Take T � 1, d � 5, and 􏽥M � 100000.
Figure 2 presents the relationship of the absolute error

between the numerical solution and the exact solution of
BSDE (59) with respect to Y at time 0 and the number of
time points via the variable step size scheme (53), the
variable step size scheme (54), the constant variable step size
scheme (55), and the constant variable step size scheme (56).
Figure 2 implies that the variable step size schemes possess
almost the same convergence rates as the constant variable
step size scheme, but the number of steps of the variable step
size schemes is smaller than that of the constant variable step
size schemes.

6. Conclusions

We design in this article the variable step size Adams
schemes to calculate the solution of BSDEs. To enrich the
numerical schemes with high-order convergence, we infer
the conditions with respect to the coefficients in the nu-
merical method by means of Itô–Taylor expansion. We then
provide a sufficient and necessary condition for the stability
of our variable step size Adams schemes via Dahlquist’s root
condition. *e convergence of the proposed scheme is
analyzed too. We illustrate the theory results of our

numerical algorithms with two examples. Finally, note that
the constant variable one-step size schemes [11, 15, 18, 24]
and the constant variable multistep size schemes [16, 26, 27]
are the particular cases of our variable step size Adams
schemes.
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