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(e present analysis explores an analytical treatment for the computation of Poiseuille flow of a micropolar fluid in a channel
placed in between two horizontal parallel plates. Both the plates are placed at constant wall temperatures. (erefore, the flow
region is portioned into two different zones named zone I and zone II. Eringen’s micropolar fluid flow phenomena are taking place
assuming no-slip conditions at the interface. Suitable nondimensional variables are imposed for the transformation of governing
equations. Analytical treatment is carried out employing the in-house symbolic command using the MAPLE software. (e
behavior of several contributing parameters such as material parameters, the couple stresses for both the zones on the velocity, and
microrotation profiles are investigated and presented via graphs. (e volume flow rate is also calculated and presented via the
tabular form.(e major outcomes of the results are presented as the higher the Reynolds number, the rate increases significantly.
(e profile is tiled near the central region with a pick starting from the lower plate region to the central region in zone I and retards
from the central region to the upper plate in the zone II, and the profiles of angular momentum seem to be symmetric in nature
about the central region that is shown in both the zones.

1. Introduction

(e knowledge of micropolar fluid has great applicability in
many industrial areas and the field of biological research.
Recent studies cross over these phenomena on the micro-
polar fluid by several researchers. (e augmentation of both
the influences of rotation and inertial between the micro-
elements has been initiated by Eringen [1]. Furthermore,
Eringen [2–4] used parallel plates through which the polar
fluid past to develop the second law analysis. Eringen
proposed a theory for polar fluids which exhibit the rotation
of particles in conjunction with the vorticity vector inde-
pendently and also the action of couple stress. However,
such suspended particles into a viscous medium are made of
hard particles. In particular, the blood flows in the human
body. Ferro fluids are the best examples of micropolar fluids.

Moreover, as described earlier in the field of biological re-
search studies, i.e., the blood flows, colloidal elucidation and
their movement, and solutions using the suspension, their
application is vital. More precisely, the suspended dumbbell-
shaped stiff cylindrical components are found in the
micropolar fluid, and the governing equations for the fluid
flow are based upon the conservation laws of mass, mo-
mentum, and constitutive relations.(e investigation for the
features of several components that characterize the flow
using a semiinfinite plate is obtained by Ahmadi [5].
However, they have employed numerical solutions to get the
results from the nonlinear ODEs. Recent development
carries out the interest for the significant application for the
enhancement of heat transfer properties in the polar fluid.
(e study of certain polymer solutions and the suspension of
colloidal particles is vital for chemical engineering
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researchers. Moreover, in the biomedical sciences, complex
biological structures are obtained using micropolar fluids. In
comparison to conventional fluids, the properties of heat
transfer are enhanced by using nanofluid, a new class of heat
transfer fluids. (e nanoparticles of size 1–100 nm are
suspended into the base fluid to form such nanofluids. Due
to the higher thermal conductivity of metallic nanoparticles,
the conductivity of the nanofluid is also enhanced. (e
influence of various thermophysical parameters in the
permeable medium for the mixed convection in a nanofluid
has been conducted by Ellahi et al. [6]. (e characteristics of
Brownian motion for the heat transfer properties in a
nanofluid are governed by Dogonchi and Ganji [7]. In a
conclusive remark, they got that the fluid temperature rises
due to an increase in the heat source, and the impact is
reversed for thermal radiation. Jena and Mathur [8] worked
on similarity solutions for the laminar-free convection flow
of the micropolar fluid. (ey used the shooting method to
establish the relationship between various parameters.
Murthy and Srinivas [9] discussed entropy generation in
steady Poiseuille flow of two immiscible micropolar fluids
between two horizontal parallel plates of a channel with
constant wall temperatures. (e behaviors of several pa-
rameters, i.e., micropolarity, couple stress on the velocity,
microrotation, and temperature, are discussed. In recent
times, many researchers gave attention to micropolar fields
[10–14].

Micropolar fluid flow and heat transfer over a non-
linearly stretching plate with viscous dissipation was dis-
cussed by Ahmad and Ishak [15]. It is noteworthy that for
polymer processing, the role of viscous dissipation is im-
portant. (e fact is, it behaves like an energy source for the
preparation of heat which in turn delays the process of
solidification, which is treated as a coolant for the final
product.(e phenomena of heat and mass transfer are based
on the involvement of thermal radiation and chemical re-
action. Authors [16] evaluated in their study the interaction
of Newtonian heat and mass processes in Walters-B fluid
bounded by a moving surface. In past investigations, only
the Newtonian heating of heat transfer has been used to
examine the features of different fluid models under various
aspects and flow geometries. Mathur and Mishra [17] cal-
culated the heat and mass transfer of MHD-free convection
through two infinite plates embedded with porous materials.
Authors have studied the thermodiffusion effect which is not
considered in the previous research. A numerical study for
the two-dimensional steady incompressible mixed convec-
tive flow of an electrically conductive micro-nanofluid in a
stretchable channel was reported by Rauf et al. [18]. (ey
used the Runge–Kutta–Fehlberg fourth-fifth order (RKF45)
method to solve the algebraic system of equations with
boundary conditions. Mathur and Mishra [19] discussed the
problem of MHD boundary layer flow in the presence of
radiation and magnetic field over an exponentially
stretching sheet. A semianalytical approach was applied by
the authors [20] to study the Williamson nanofluid flow
through a porous medium in the presence of melting heat
transfer boundary conditions [21]. Sundar et al. have given a
review on hybrid nanofluids preparation, thermal

properties, heat transfer, and friction. To understand the
behaviors of melts and many polymer solutions, the Car-
reau–Yasuda model was established successfully. Hussain
et al. [22] performed a numerical study on the Carreau-
–Yasuda nanofluid model over a convective heated surface
near a stagnation point. Many researchers [23, 24] work on
entropy generation of nanofluids in a different scenario. (e
numerical and graphical justification was given to
strengthen their work. Bioconvection was imposed to study
the rheology of MHD bioconvective nanofluid containing
motile microorganisms by Muhammad Awais et al. [25].
Homogeneous and heterogeneous reactions of the 3D flow
of Cu-water and AL2O3-water nanofluid and entropy gen-
eration estimation along stretching cylinder were investi-
gated by Siddiqui and his fellow researchers [26, 27].

(e present model is developed for the study on the
plane Poiseuille flow of micropolar fluid within a channel
formed to be the two horizontal parallel plates. Analytical
treatment is carried out for the flow phenomena to get the
result using the symbolic routine code by MAPLE. (e
behavior of no-slip and hyperstick conditions plays a vital
role in the velocity and the angular momentum profiles. (e
computation for the several pertinent parameters is obtained
and presented.(e numerical results of the volume flow rate,
shear stress, and couple stress coefficients are presented via
the tabular form.

2. Problem Formalism

(e plane Poiseuille flow of a micropolar fluid between the
two horizontal parallel plates within a channel is considered.
Both the plates are extended along the x-direction with a
fixed distance between them as 2 h. Here, the x-axis is treated
as the axial, and the y-axis is represented as transverse di-
rection with a center of the channel mentioned as the origin
(Figure 1).(e lower half of the channel is equipped with the
region − h<y< 0 called zone I and the upper half region is
0<y< h is known as zone II. It is assumed that the density of
the fluid in zone I is heavier than the fluid present in zone II.
(e governing equations for the incompressible micropolar
fluid in both the zones are described following Eringen [2, 4].

Conservation of mass is given as

zρ
zt

+ ∇.(ρ q
→

) � 0. (1)

Conservation of momentum is given as

ρ
zq

zt
� ρf − ∇P − κ∇ × v

− (μ + k)∇ × ∇ × q +(λ + 2μ + κ)∇(∇ · q).

(2)

Conservation of angular momentum is given as

ρj
zv

zt
� ρl − ∇P + κ∇ × q + c∇ × ∇ × v +(α + β + c)∇(∇ · v).

(3)

Here, the fluid density ρ and the gyration coefficient j are
treated as constants, and P is the fluid pressure at any point.
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Also, λ, μ, and κ are the material constants known as vis-
cosity coefficients, and α, β, c are the gyroviscosity coeffi-
cients. From equation (3), it is very clear for vanishing
κ, α, β, c and along with l and f, the microrotation vanishes.
Furthermore, for vanishing κ, equation (2) for the velocity
profiles becomes Newtonian. (e stress tensor and the
couple stress tensor are given by

tij � (− P + λ∇ · q)δij +(2μ + κ)dij + κ∈ijm ωm − vm( 􏼁,

mij � αvr,rδij + βvi,j + cvi,j,

(4)

where vi is the microrotating vector,ωi is the vorticity vector,
dij is the rate of shear strain component, and δij is the
Kronecker symbol.

In particular, the Levi–Civita symbol ∈ijm is defined as

∈ijm �

− 1, if i, j, m are cyclic,

0, if any two of i, j, m are equal,

1, if i, j, m are acyclic.

⎧⎪⎪⎨

⎪⎪⎩
(5)

Also, comma denotes covariant differentiation.
(e present model is designed assuming steady, one-

dimensional incompressible micropolar fluid with a negli-
gible gravity effect.

(e velocity and microrotation vector field components
are assumed to be q � (U(Y, 0), 0, 0) and v � (0, 0, C(Y)),
respectively.

(e following nondimensional quantities are introduced
to transform the governing equations into a dimensionless
form:

x �
X

h
,

y �
X

h
,

u ��
U

U0
,

p �
P

ρ1U
2
0
,

C �
CU0

h
.

(6)

where within the channel, the maximum fluid velocity is U0.
Employing the aforesaid nondimensional quantities, equa-
tion (1) satisfies automatically, and equations (2) and (3) are
expressed for the different zones in the following form.

3. Governing Equations

(e velocity profiles are

u(y) �
u1(y), − 1≤y≤ 0 (zone − I),

u2(y), 0≤y≤ 1 (zone − II),
􏼨 (7)

and the microrotation profile is

ω(y) �
ω1(y), − 1≤y≤ 0 (zone − I),

ω2(y), 0≤y≤ 1 (zone − II).
􏼨 (8)

3.1. Zone I. In zone I, the transformed equations are

d2u1

dy
2 +

δ1
1 + δ1

􏼠 􏼡
dω1

dy
�

1
1 + δ1

􏼠 􏼡Re
dp

dx
, (9)

d2ω1

dy
2 − s1

du1

dy
− 2s1ω1 � 0. (10)

3.2. Zone II. Similarly, in zone II, the transformed equations
are

d2u2

dy
2 +

δ2
1 + δ2

􏼠 􏼡
dω2

dy
�

1
1 + δ2

􏼠 􏼡
np

nμ
− Re

dp

dx
, (11)

d2ω2

dy
2 − s2

du2

dy
− 2s2ω2 � 0, (12)

where Re� ρ1U0h/μ1,δi � κi/μi, si � κih
2/c1, i � 1,2 and nμ �

μ2/μ1.
It is clear to understand from the transformed equations

that the velocity and microrotation profiles in both the zones
are coupled in nature. Since we have considered the

Poiseuille flow, both the plates are fixed and a constant
pressure gradient is an act through which the flow is
maintained. Here, dp/dx � B is a constant. Due to no-slip
and hyperstick conditions, the boundary conditions are
assumed as

Y
h

–h

0 X

U – 0

U – 0

Figure 1: Geometrical configuration.
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u1 � 0, ω1 � 0, aty � − 1

u1 � u2 andω1 � ω2,

zu1

zy
+ 2

δ1
1 + δ1

􏼠 􏼡ω1􏼢 􏼣
y�o

�
zu2

zy
+ 2

δ2
1 + δ2

􏼠 􏼡ω2􏼢 􏼣
y�o

,

dω1

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
�
dω2

dy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

aty � 0

u2 � 0, ω2 � 0, aty � 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

3.3. Engineering Coefficients. (e shear stress coefficients at
the fluid interfaces are expressed as

τxy �
zui

zy
+ 2

δi

1 + δi

􏼠 􏼡ωi􏼢 􏼣
y�o

, i � 1, 2. (14)

However, the shear stresses near the lower and upper
plates are

τxy �
zu1

zy
􏼢 􏼣

y�− 1
,

τxy �
zu2

zy
􏼢 􏼣

y�1
.

(15)

Similarly, the couple stress coefficients are expressed as

mxy|zone− I �
dω1

dy
|y�0, andmxy|zone− II � nβ

dω2

dy
|y�0. (16)

3.4. Volumetric Flow Rate. (e volumetric flow rate is
computed as

q � q1 + q2 � 􏽚
0

− 1
u1(y)dy + 􏽚

1

0
u2(y)dy. (17)

4. Solution of the Problem

Eliminating ω1from equations (9) and (10) of zone I, the
transformed equations are of the form

d4u1

dy
4 +

2 + δ1
1 + δ1

􏼠 􏼡s1
d2u1

dy
2 � −

2s1

1 + δ1
􏼠 􏼡ReB, (18)

ω1 � −
1
2
du1

dy
−
1 + δ1
2s1δ1

d3u1

dy
3 . (19)

Similarly, eliminating ω2 from equations (11) and (12) of
zone II, we get

d4u2

dy
4 +

2 + δ2
1 + δ2

􏼠 􏼡s2
d2u2

dy
2 � −

2s2

1 + δ2
􏼠 􏼡

nρ

nμ
ReB, (20)

ω2 � −
1
2
du2

dy
−
1 + δ2
2s2δ2

d3u2

dy
3 . (21)

However, solving equations (18) and (20), using a
symbolic routine command of MAPLE, we get

u1 � C1B1 exp B2y( 􏼁 + C2B1 exp − B2y( 􏼁 + C3y + C4 + B3y
2
,

(22)

u2 � C5B4 exp B5y( 􏼁 + C6B4 exp − B5y( 􏼁 + C7y + C8 + B6y
2
.

(23)

Using the expression of (22) and (23), the results of (19)
and (21) can be obtained as

ω1 � C1B7 exp B2y( 􏼁 + C2B8 exp − B2y( 􏼁 − 0.5C3 − B3y, (24)

ω2 � C5B9 exp B5y( 􏼁 + C6B10 exp − B5y( 􏼁 − 0.5C7 − B6y. (25)
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where the eight unknowns Ci
′s, i � 1, . . . , 8 are to be

determined.
Employing the boundary conditions (13) in equations

(22)–(25), we get the following matrix to get the unknowns.

B1e
− B2 B1e

B2 − 1 1 0 0 0 0

B7e
− B2 B8e

B2 − 0.5 0 0 0 0 0

B1 B1 0 1 − B4 − B4 0 − 1

B7 B8 − 0.5 0 − B9 − B10 0.5 0

B13 B14 − 0.5B11 0 − B15 − B16 0.5B12 0

B2B7 − B2B8 − 1 0 − B5B9 B5B10 0 0

0 0 0 0 B4e
B5 B4e

− B5 1 1

0 0 0 0 B9e
B5 B10e

− B5 − 0.5 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C1

C2

C3

C4

C5

C6

C7

C8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

− B3

− B3

0

0

0

− B6

− B6

− B6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

where the known values Bi
′s, i � 1, . . . , 16 are presented in

the appendix.

5. Results and Discussion

A computational study on the flow of second law Poiseuille
flow for a micropolar fluid within a channel is carried out in
the current problem. (e non-Newtonian fluid passed
through two horizontal plates that were partitioned into two
zones separated by the central region. (e pressure gradient
is assumed to be the constant.(e crux of the investigation is
the assumption of no-slip and hyperstick boundary con-
ditions. (e transformed governing equations for the ve-
locity and the microrotation profiles in both the zones are
coupled in nature, and a symbolic routine is handled by the
MAPLE to solve the differential equations. (e computed
results for different characterizing parameters on the flow
profiles are presented via graphs, and the numerical com-
putations for the volume flow rate are obtained and dis-
played through a table. (roughout the computation, the
following values are considered to be fixed, except the
variation of the particular parameter displayed in the cor-
responding graphs. (e velocity distributions for several
parameters are deployed in Figures 2–7, and the micro-
rotation profiles are presented through Figures 8–13. In all
the figures, the dotted line indicates the variation of the
parameters in the zone I and the bold line represents the
variation in zone II.

5.1. Velocity Profiles. Figure 2 elaborates the behavior of the
cross-viscosity parameter δ1 on the velocity profiles. From
the governing equations, it is clear to see that for large δ1, the
fluid particles rotate about themselves with high angular
velocity. (erefore, the velocity profile retards both the
regions resulted in the channel thickness increase. It is in-
teresting to observe that the profile picks near the lower plate
up to the central region, and thereafter, the fall in the profile
is marked from the central region to the upper plate region.
(e profile behavior validates with the work of Umavati et al.
[28]. (e trend of the graph in both the regions is a very
similar pattern to that of the earlier study. Finally, it is

concluded that increasing cross-viscosity or the micro-
polarity suitably reduces the velocity profiles in both zones.
(e influence of the couple stress parameter s1 on the ve-
locity profiles for fixed values of other pertinent parameters
is displayed in Figure 3. (e distributions in both zones are
displayed significantly. It is clearly visible that increasing
couple stress parameter, the profile increases, showing the
channel with decreases at both the plates. (e large value of
couple stress characterizes the Newtonian case. (e couple
stress tensor occurs due to the rotation of the particles.
Figures 4 and 5, respectively, present the variation of cross-
viscosity δ2 and the couple stress parameter s2 on the velocity
distributions. As described earlier, for the increasing
micropolarity parameter, the velocity profile retards sig-
nificantly in both the zones, whereas the reverse impact is
rendered for the increasing couple stress. However, the
increasing couple stresses the increase in the velocity dis-
tribution is insignificant. Reynolds number characterizes the
relation between the inertial and the viscous force. From the
mathematical form of the Reynolds number, it is observed
that as inertial force increases, the Reynolds number in-
creases. (e role of Reynolds number is an important aspect
of the velocity distribution that is presented in Figure 6. (e
higher the Reynolds number, the rate increases significantly.
(e profile is tiled near the central region with a pick starting
from the lower plate region to the central region in zone I
and retards from the central region to the upper plate in zone
II. (e physical behavior of the Reynolds number shows as a
controlling parameter for the flow phenomena. Dual
characteristics of the constant pressure gradient are marked
on the velocity distribution in both the zones that are re-
flected in Figure 7. Flow separation occurs due to a change in
pressure gradient. Adverse pressure gradient presents, if the
pressure is acted along the direction of flow. In zone I, for an
increase in negative pressure gradient, the rise in velocity
profile is marked, whereas the backflow occurs with in-
creasing pressure gradient. A similar observation is reflected
in zone II for various values of a pressure gradient.

5.2. Angular Velocity Profiles. (e characteristics of perti-
nent physical parameters on the angular velocity are
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displayed in Figures 8–13. (e behavior of cross-viscosity
δ1 is displayed in Figure 8. In zone I, the profile behaves in
the opposite phenomenon from the point of inflection.
(e increase in micropolarity increases the profile in the
first half, whereas the reverse impact is observed in the
second half. However, the backflow occurs in zone I. Due
to the rotation of the particles, in zone II, the increase in
cross-viscosity retards the angular velocity significantly.
Near the central region, the pick in the profile is marked,
and with a successive fall, the profile leads towards the
upper plate. Figure 9 exhibits the variation of couple stress
s1 on the angular velocity profiles. Initiation with a
backflow, the profile enhances irrespective the values of s1
towards the central region, but for the increasing s1, the
profiles of angular velocity retards. Moreover, in zone II,
the profile behaves with a similar trend in the positive
domain. (e variation of the cross-viscosity δ2 and the
couple stress s2on the angular velocity is displayed in
Figures 10 and 11, respectively. (e profile behaves op-
positely in different zones. Exhibiting a backflow in zone I,
the angular velocity enhances with increasing δ2, and
retardation is marked throughout the positive domain in
zone II. For the variation s2 in zone I, the change in
angular velocity is very negligible. In a close remark, it is
seen that with a backflow, the dual behavior is highlighted.
However, in zone II, the attenuate in angular velocity is
shown with enhancing couple stress parameter. Figure 12
portrays the contribution of the Reynolds number on the
profiles for the fixed values of other parameters. As de-
scribed earlier about the physical significance of the
Reynolds number, the increasing value retards the angular
momentum drastically in zone I. However, in zone II, the
profile enhances in similar magnitude in the positive
domain. (e characteristics of the pressure gradient are
exhibited on the angular velocity that is presented in
Figure 13. (e profiles of angular momentum seem to be
symmetric in nature about the central region that is shown
in both the zones. It is clear to see that for the increase in
pressure gradient from negative to positive, the profile
enhances significantly in zone I and in zone II, and the

impact is reversed. (erefore, the symmetricity in the
profiles is rendered.

5.3. Engineering Coefficients. Finally, the shear stress coef-
ficients, as well as the couple stress coefficients at the fluid
interface, are computed for various parameters and are
displayed in Table 1. It is seen that the increase in cross-
viscosity/micropolarity parameters retards the rate of shear
stress and couple stress near the fluid interface. Whereas,
reverse impact is observed with the increase in couple stress
parameters s1, i.e., the rate coefficients are enhanced. It is
also pointed that the rate of shear stress coefficient increases,
but the rate of couple stress coefficient decreases for in-
creasing couple stress parameter s2. Also, the Reynolds
number parameter enhances both the rate coefficients sig-
nificantly. Table 2 displays the rate of shear stress coefficients
at the lower as well as the upper plate for different con-
tributing parameters. (e rate of shear stress at the lower
plate attenuates in magnitude with the increasing cross-
viscosity parameter, whereas the retardation is marked at the
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Table 1: Rate of shear stress coefficients and the couple stress coefficients at the fluid interfaces.

δ1 s1 δ2 s2 Re (zu1/zy) + 2(δ1/(1 + δ1))ω1 (zu2/zy) + 2(δ2/(1 + δ2))ω2 zω1/zy nβzω2/zy

1 5 1 5 1.5 − 0.209728562 − 0.209728562 − 0.042152147 − 0.033721718
2 − 0.170874742 − 0.181053192 − 0.03053535 − 0.02442828
3 − 0.150570191 − 0.161806471 − 0.022472561 − 0.017978049
4 − 0.138921138 − 0.148996849 − 0.016792852 − 0.013434281
1 1 − 0.149083602 − 0.149083602 − 0.089612426 − 0.071689941

2 − 0.173254566 − 0.173254566 − 0.070460517 − 0.056368414
3 − 0.189489377 − 0.189489377 − 0.057741527 − 0.046193222
4 − 0.201078539 − 0.201078539 − 0.048768797 − 0.039015037
5 1 − 0.209728562 − 0.209728562 − 0.042152147 − 0.033721718

2 − 0.156947658 − 0.142742409 − 0.042615749 − 0.034092599
3 − 0.125755595 − 0.10486528 − 0.04178063 − 0.033424504
4 − 0.105594402 − 0.081018393 − 0.040960015 − 0.032768012
1 1 − 0.210613768 − 0.210613768 − 0.032808813 − 0.02624705

2 − 0.208181944 − 0.208181944 − 0.038287983 − 0.030630386
3 − 0.207801688 − 0.207801688 − 0.040910744 − 0.032728595
4 − 0.208481457 − 0.208481457 − 0.041979635 − 0.033583708
5 1 − 0.139819042 − 0.139819042 − 0.028101432 − 0.022481145

2 − 0.279638083 − 0.279638083 − 0.056202863 − 0.04496229
3 − 0.419457125 − 0.419457125 − 0.084304295 − 0.067443436
4 − 0.559276166 − 0.559276166 − 0.112405726 − 0.089924581

Table 2: (e rate of shear stress coefficients at the lower and upper plates, respectively.

δ1 s1 δ2 s2 Re zu1/zy zu2/zy

1 5 1 5 1.5 − 2.22E − 16 5.55E − 17
2 8.33E − 17 0
1 1 − 5.55E − 17 − 5.55E − 17

2 8.60E − 16 6.66E − 16
5 1 − 2.22E − 16 5.55E − 17

2 3.61E − 16 − 2.78E − 17
1 1 2.22E − 16 3.05E − 16

2 0.00E+ 00 2.22E − 16
5 1 − 1.39E − 16 5.55E − 17

2 − 2.78E − 16 1.11E − 16
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upper plate. A distinct characteristic is marked in the rate of
shear stress for a couple of stress parameters. An increase in
s1 creases the shear stress at both the plates, whereas in-
creasing s2 retardation is marked. With the increasing
Reynolds number, the rate increases in magnitude at the
lower plate, and the effect is opposite at the upper plate.
Moreover, Table 3 escalates the volumetric flow rate for
various contributing parameters. (e flow rate decreases
with the increase in micropolarity parameters as well as the
couple stress parameter s1, and increasing s2, the flow rate
increases significantly.

6. Conclusive Remarks

(e present investigation was carried out for the second
law analysis of the plane Poiseuille flow of micropolar
fluid within two horizontal plates. Analytical treatment is
obtained with the help of symbolic command of MAPLE
software, and computation of the flow phenomena
characterized by various parameters is displayed and
elaborated. However, the conclusive remarks are laid as
follows.

An increase in channel thickness is marked for the
increase in cross-viscosity parameters
(e reverse impact is rendered for an increasing couple
of stress parameters
Reynolds number is favorable for the attenuation in the
velocity profiles
Dual character is attributed in the profiles of angular
momentum for increasing Reynolds number in both
zones
Retardation in the rate of shear stress is marked for the
increment in the cross-viscosity parameters
(e volume flow rate decreases for increasing viscosity
parameters

Last but not least, several interesting studies can be
developed using the same model to carry out further
investigation. Various applications depend upon the
second law analysis since no process can transfer heat
from a cooler body to a hotter body on its own. (e
process of refrigeration and cooling engine is based on
second law analysis. (ough we have considered the

constant viscosity properties, therefore, one can assume
variable viscosity along with thermal conductivity for
their investigation.

Appendix

B1 �
1 + δ1

s1 2 + δ1( 􏼁
,

B2 �

���������
s1 2 + δ1( 􏼁

1 + δ1

􏽳

,

B3 �
B

2 + δ1( 􏼁
,

B4 �
1 + δ2

s2 2 + δ2( 􏼁
,

B5 �

���������
s2 2 + δ2( 􏼁

1 + δ2

􏽳

,

B6 �
npB

ng 2 + δ2( 􏼁
,

B7 � −
1
2
B1B2 −

1 + δ1
2δ1s1

B1B
3
2,

B8 �
1
2
B1B2 +

1 + δ1
2δ1s1

B1B
3
2,

B9 � −
1
2
B4B5 −

1 + δ2
2δ2s2

B4B
3
5,

B10 �
1
2
B4B5 +

1 + δ2
2δ2s2

B4B
3
5,

B11 �
2δ1
1 + δ1( 􏼁

,

B12 �
2δ2

1 + δ2
,

B13 � B1B2 + B11B7.

B14 � − B1B2 + B11B8,

B15 � B4B5 + B12B9,

B16 � − B4B5 + B12B10,

(A.1)

Table 3: (e computation of volumetric flow rate.

δ1 s1 δ2 s2 Re q � q1 + q2

1 5 1 5 1.5 0.335686766
2 0.249661868
1 1 0.351164688

2 0.344302096
5 1 0.335686766

2 0.302175536
1 1 0.305201271

2 0.312959388
5 1 0.223791177

2 0.223791177
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Nomenclature

Be: Bejan number
Br: Brinkman number
q: Velocity vector
aj: Microinertia parameter
Bi: Biot number
Br/Ω: Viscous dissipation parameter
D: Deformation tensor
Cp: Specific heat
Gr: Grashof number
h: Channel width
kf: (ermal conductivity
m2: Micropolar parameter
N: Coupling number
Nh: Entropy generation (heat transfer)
Ns: Entropy generation number
Nv: Entropy generation (viscous dissipation)
Re: Reynolds number
T: Dimensional temperature
nβ: Ratio of couple stress viscosity coefficients
nk: Ratio of thermal conductivities
nμ: Ratio of viscosities
T1: Ambient temperature
T2: Fluid temperature
u: Dimensional axial velocity
X: Flow direction
Y: Normal to the flow direction.
Greek Symbols
α: Inclined angle
α1: Slip parameter
β, c: Gyration viscosity coefficients
κ: Vortex viscosity
ρ: Density of the fluid
θ: Dimensionless temperature
μ: Viscosity of the fluid
σ: Microrotational component
f: Velocity profile.

Data Availability

No data were used to support this study.

Conflicts of Interest

(e authors declare that there are no conflicts of interest.

Acknowledgments

(is work was supported by the Competitive Research
Scheme (CRS) Project funded by TEQIP-III (ATU) of
Rajasthan Technical University, Kota (TEQIP-III/RTU
(ATU)/CRS/2019-20/03).

References

[1] A. C. Eringen, “Simple microfluids,” International Journal of
Engineering Science, vol. 2, no. 2, pp. 205–217, 1964.

[2] A. Eringen, “(eory of micropolar fluids,” Indiana University
Mathematics Journal, vol. 16, no. 1, pp. 1–18, 1966.

[3] G. Lukaszewicz, Micropolar Fluids: Heory and Applications,
Brikhauser, Basel, Switzerland, 1999.

[4] A. C. Eringen, Microcontinuum Field Heories II: Fluent
Media, Springer, New York, NY, USA, 2001.

[5] G. Ahmadi, “Self-similar solution of imcompressible micro-
polar boundary layer flow over a semi-infinite plate,” Inter-
national Journal of Engineering Science, vol. 14, no. 7,
pp. 639–646, 1976.

[6] R. Ellahi, M. Hassan, A. Zeeshan, and A. A. Khan, “(e shape
effects of nanoparticles suspended in HFE-7100 over wedge
with entropy generation and mixed convection,” Applied
Nanoscience, vol. 6, no. 5, pp. 641–651, 2016.

[7] A. S. Dogonchi and D. D. Ganji, “Study of nanofluid flow and
heat transfer between non-parallel stretching walls consid-
ering Brownian motion,” Journal of the Taiwan Institute of
Chemical Engineers, vol. 69, pp. 1–13, 2016.

[8] S. K. Jena and M. N. Mathur, “Similarity solutions for laminar
free convection flow of a thermomicropolar fluid past a non-
isothermal vertical flat plate,” International Journal of Engi-
neering Science, vol. 19, no. 11, pp. 1431–1439, 1981.

[9] J. V. Ramana Murthy and J. Srinivas, “Second law analysis for
Poiseuille flow of immiscible micropolar fluids in a channel,”
International Journal of Heat and Mass Transfer, vol. 65,
pp. 254–264, 2013.

[10] J. Peddieson, “An application of the micropolar fluid model to
the calculation of a turbulent shear flow,” International
Journal of Engineering Science, vol. 10, no. 1, pp. 23–32, 1972.

[11] D. A. S. Rees and A. P. Bassom, “(e Blasius boundary-layer
flow of a micropolar fluid,” International Journal of Engi-
neering Science, vol. 34, no. 1, pp. 113–124, 1996.

[12] K. Bhattacharyya, S. Mukhopadhyay, G. C. Layek, and I. Pop,
“Effects of thermal radiation on micropolar fluid flow and
heat transfer over a porous shrinking sheet,” International
Journal of Heat and Mass Transfer, vol. 55, no. 11-12,
pp. 2945–2952, 2012.

[13] S. Paoletti, F. Rispoli, and E. Sciubba, “Calculation exergetic
loses in compact heat exchanger passages,” ASME AES,
vol. 10, pp. 21–29, 1989.

[14] R. S. R. Gorla, “Second law analysis of mixed convection in a
laminar, non-Newtonian fluid flow through a vertical chan-
nel,” ISRN Applied Mathematics, vol. 2011, Article ID 287691,
13 pages, 2011.

[15] K. Ahmad, A. Ishak, and R. Nazar, “Micropolar fluid flow and
heat transfer over a nonlinearly stretching plate with viscous
dissipation,”Mathematical Problems in Engineering, vol. 2013,
Article ID 257161, 5 pages, 2013.

[16] S. Qayyum, T. Hayat, S. A. Shehzad, and A. Alsaedi, “Effect of
a chemical reaction on magnetohydrodynamic (MHD)
stagnation point flow of Walters-B nanofluid with Newtonian
heat and mass conditions,” Nuclear Engineering and Tech-
nology, vol. 49, no. 8, pp. 1636–1644, 2017.

[17] P. Mathur and S. R. Mishra, “Free convective Poiseuille flow
through porous medium between two infinite vertical plates
in slip flow regime,” Pramana, vol. 94, no. 1, 2020.

[18] A. Rauf, S. A. Shahzad, M. K. Siddiq, J. Raza, and M. A. Meraj,
“Mixed convective thermally radiative micro nanofluid flow
in a stretchable channel with porous medium and magnetic
field,” AIP Advances, vol. 6, no. 3, Article ID 035126, 2016.

[19] P. Mathur and S. Mishra, “Free convective magnetohydro-
dynamic flow over an exponentially stretching sheet with
radiation,” Heat Transfer-Asian Research, vol. 48, no. 7, 2019.

[20] S. R. Mishra and P. Mathur, “Williamson nanofluid flow
through porous medium in the presence of melting heat
transfer boundary condition: semi-analytical approach,”

12 Journal of Mathematics



Multidiscipline Modeling in Materials and Structures, vol. 17,
no. 1, pp. 19–33, 2020.

[21] L. S. Sundar, K. V. Sharma, M. K. Singh, and A. C. M. Sousa,
“Hybrid nanofluids preparation, thermal properties, heat
transfer and friction factor - a review,” Renewable and Sus-
tainable Energy Reviews, vol. 68, pp. 185–198, 2017.

[22] A. Hussain, A. Rehman, S. Nadeem et al., “A combined
convection carreau-Yasuda nanofluid model over a convec-
tive heated Surface near a stagnation point: a numerical
study,” Mathematical Problems in Engineering,
vol. 202114 pages, 2021.

[23] Z.-W. Tong, “NC-ND license nonlinear thermal radiation and
activation energy significances in slip flow of bioconvection of
oldroyd-B nanofluid with cattaneo-christov theories,” 2021.

[24] S. Batool, M. Y. Malik, A. S. Alqahtani, and Q. Mahmood ul
Hassan, “Double diffusion in stretched flow over a stretching
cylinder with activation energy and entropy generation,” Case
Studies in Hermal Engineering, vol. 26, Article ID 101119,
2021.

[25] M. Awais, S. E. Awan, M. A. Zahoor Raja et al., “Effects of
variable transport properties on heat and mass transfer in
MHD bioconvective nanofluid rheology with gyrotactic mi-
croorganisms: numerical approach,” Coatings, vol. 11, no. 2,
pp. 1–19, 2021.

[26] B. K. Siddiqui, S. Batool, Q. mahmood ul Hassan, and
M. Y. Malik, “Repercussions of homogeneous and hetero-
geneous reactions of 3D flow of Cu-water and AL2O3-water
nanofluid and entropy generation estimation along stretching
cylinder,” Ain Shams Engineering Journal, 2021.

[27] M. Hemmat Esfe and S. Esfandeh, “A new generation of
hybrid-nanofluid: thermal properties enriched lubricant
fluids with controlled viscosity amount,” SN Applied Sciences,
vol. 2, p. 1154, 2020.

[28] J. C. Umavathi, A. J. Chamkha, A. Mateen, and A. Al-Mudhaf,
“Unsteady two-fluid flow and heat transfer in a horizontal
channel,” Heat and Mass Transfer, vol. 42, no. 2, pp. 81–90,
2005.

Journal of Mathematics 13


