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Multiple attribute group decision-making (MAGDM) issues may involve quantitative and qualitative attributes. In inconsistent
and indeterminate decision-making issues, current assessment information of quantitative and qualitative attributes with respect
to alternatives only contains either numerical neutrosophic values or linguistic neutrosophic values as the single information
expression. However, existing neutrosophic techniques cannot perform the mixed information denotation and aggregation
operations of numerical neutrosophic values and linguistic neutrosophic values in neutrosophic decision-making issues. To solve
the puzzles, this article presents the information denotation, aggregation operations, and MAGDM models of single-valued
neutrosophic and linguistic neutrosophic hybrid sets/elements (SVNLNHSs/SVNLHEs) as new techniques to perform MAGDM
issues with quantitative and qualitative attributes in the environment of SVNLNHEs. In this study, we �rst propose a SVNLNHS/
SVNLNHE notion that consists of a single-valued neutrosophic element (SVNE) for the quantitative argument and a linguistic
neutrosophic element (LNE) for the qualitative argument. According to a linguistic and neutrosophic conversion function and its
inverse conversion function, we present some basic operations of single-valued neutrosophic elements and linguistic neutrosophic
elements, the SVNLNHE weighted arithmetic mean (SVNLNHEWAMN) and SVNLNHE weighted geometric mean
(SVNLNHEWGMN) operators (forming SVNEs), and the SVNLNHEWAML and SVNLNHEWGML operators (forming LNEs).
Next, MAGDM models are established based on the SVNLNHEWAMN and SVNLNHEWGMN operators or the
SVNLNHEWAML and SVNLNHEWGML operators to realize MAGDM issues with single-valued neutrosophic and linguistic
neutrosophic hybrid information, and then their applicability and availability are indicated through an illustrative example in the
SVNLNHE circumstance. By comparison with the existing techniques, our new techniques reveal obvious advantages in themixed
information denotation, aggregation algorithms, and decision-making methods in handlingMAGDM issues with the quantitative
and qualitative attributes in the setting of SVNLNHSs.

1. Introduction

In general, there exist both quantitative attributes and
qualitative attributes in multiple attribute (group) decision-
making (MADM/MAGDM) issues. In the assessment pro-
cess, the assessment information of quantitative attributes is
usually represented by numerical values because numerical
values are more suitable to the denotation form of quan-
titative arguments, while the assessment information of

qualitative attributes is usually assigned by linguistic term
values because the linguistic value is more suitable to human
judgment and thinking/expression habits. Generally
speaking, it is di�cult to represent qualitative arguments by
numeric values, but they are easily represented by linguistic
values. In inconsistent and indeterminate situations, a
simpli�ed neutrosophic set (SNS) [1], including an interval-
valued neutrosophic set/element (IVNS/IVNE) [2] and a
single-valued neutrosophic set/element (SVNS/SVNE) [3],
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is depicted by the truth, falsity, and indeterminacy mem-
bership degrees, while a linguistic neutrosophic set/element
(LNS/LNE) [4] is depicted by the truth, falsity, and inde-
terminacy linguistic values. Since the neutrosophic set
theories [5], including SNS, SVNS, IVNS, and LNS, are vital
mathematical tools to denote and handle indeterminate and
inconsistent issues in the real world, they have been widely
applied in decision-making issues [6–14]. In the setting of
SNSs, some researchers presented various aggregation op-
erators and their MADM/MAGDM models to solve neu-
trosophic MADM/MAGDM problems [10, 15–20]. (en,
other researchers introduced various extended versions of
SNSs, including single-valued neutrosophic rough sets [21],
normal neutrosophic sets [22], bipolar neutrosophic sets
[23], simplified neutrosophic indeterminate sets [24], and
neutrosophic Z-numbers [25], and used them in MADM/
MAGDM issues. In the setting of LNEs, some researchers
proposed several aggregation operators of LNEs and their
MAGDM models to carry out linguistic neutrosophic
MAGDM problems [26, 27]. (en, some extended linguistic
sets, such as linguistic neutrosophic uncertain sets and
linguistic neutrosophic cubic sets, were also presented to
perform some linguistic neutrosophic MAGDM problems
[28]. Unfortunately, the existing neutrosophic theories and
MADM models [28, 29] cannot yet resolve the denotation,
operations, and MADM issues of the mixed information of
SVNEs and LNEs. However, the existing assessment in-
formation of the quantitative or qualitative attributes with
respect to alternatives only gives either numerical neu-
trosophic information or linguistic neutrosophic informa-
tion as a single information expression. In the case of single-
valued neutrosophic and linguistic neutrosophic mixed
information, existing neutrosophic technologies cannot
represent the mixed information of SVNE and LNE nor can
they perform mixed operations of the two. (erefore, the
mixed information representation and aggregation opera-
tions and decision-making problems pose challenges in this
study, which motivates our research to address them. To
solve these problems, the aims of this article are as follows:
(1) to propose a single-valued neutrosophic and linguistic
neutrosophic hybrid set/element (SVNLNHS/SVNLNHE)
for the mixed information representation of both SVNE and
LNE, (2) to present basic operations of SVNEs and LNEs
according to a linguistic and neutrosophic conversion
function and its inverse conversion function, (3) to propose
the single-valued neutrosophic and linguistic neutrosophic
hybrid element weighted arithmetic mean (SVNLNHE-
WAMN) and single-valued neutrosophic and linguistic
neutrosophic hybrid element weighted geometric mean
(SVNLNHEWGMN) operators for the aggregated SVNEs
and the SVNLNHEWAML and SVNLNHEWGML operators
for the aggregated LNEs, (4) to establish MAGDM models
based on the SVNLNHEWAMN and SVNLNHEWGMN
operators or the SVNLNHEWAML and SVNLNHEWGML
operators in the setting of SVNLNHSs, and (5) to apply the
established MAGDM models to an illustrative example on
the selection problem of industrial robots that contain both
quantitative and qualitative attributes in a SVNLNHS
circumstance.

Generally, the main contributions of this article are
summarized as follows:

(i) (e proposed SVNLNHS/SVNLNHE solves the
representation problem of single-valued neu-
trosophic and linguistic neutrosophic mixed
information.

(ii) (e proposed weighted aggregation operators of
SVNLNHEs based on the linguistic and neu-
trosophic conversion function and its inverse
conversion function provide the effective aggrega-
tion algorithms of SVNLNHEs.

(iii) (e established MAGDM models can solve
MAGDM issues with quantitative and qualitative
attributes in a SVNLNHS circumstance.

(iv) (e established MAGDM models can solve the
selection problem of industrial robots that contain
both quantitative and qualitative attributes and
show the availability and rationality of the new
techniques in a SVNLNHS circumstance.

(e remaining structure of this article consists of the
following sections. Section 2 reviews the basic concepts and
operations of SVNEs and LNEs as the preliminaries of this
study. (e notions of SVNLNHS and SVNLNHE and some
basic operations of SVNEs and LNEs based on the linguistic
and neutrosophic conversion function and its inverse
conversion function are proposed in Section 3. In Section 4,
the SVNLNHEWAMN, SVNLNHEWGMN, SVNLNHE-
WAML, and SVNLNHEWGML operators are presented in
terms of the basic operations of SVNEs and LNEs. In Section
5, two new MAGDM models are established by the
SVNLNHEWAMN and SVNLNHEWGMN operators or the
SVNLNHEWAML and SVNLNHEWGML operators. Sec-
tion 6 presents an illustrative example on the selection
problem of industrial robots that contains both quantitative
and qualitative attributes and then gives a comparative
analysis with the existing techniques to show the availability
and rationality of the new techniques. Finally, conclusions
and future research are summarized in Section 7.

2. Preliminaries of SVNEs and LNEs

(is part reviews the basic notions and operations of SVNEs
and LNEs.

2.1. Basic Notions and Operations of SVNEs. Set U= {u1, u2,
. . ., um} as a universal set. (en, a SVNS ZN in U can be
represented as [1, 3]

ZN � 〈ui, xZN ui( 􏼁, yZN ui( 􏼁, zZN ui( 􏼁〉|ui ∈ U􏼈 􏼉, (1)

where< ui, xZN(ui), yZN(ui), zZN(ui)> (i= 1, 2, . . ., m) is
SVNE in ZN for uj∈ U and xZN(ui), yZN(ui), zZN(ui)∈ [0, 1],
and then it is simply denoted as zni =< xZNi, yZNi, zZNi> .

For two SVNEs, zn1 =< xZN1, yZN1, zZN1>, ZN2=< xZN2,
yZN2, zZN2

>, and β> 0, and their relations are contained as
follows [17]:
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(1) zn1⊕zn2 � 〈xZN1 + xZN2 − xZN1xZN2, yZN1yZN2,

zZN1zZN2〉

(2) zn1 ⊗ zn2 � 〈xZN1xZN2, yZN1 + yZN2 − yZN1yZN2,

zZN1 +zZN2 − zZN1zZN2〉

(3) β · zn1 � 〈1 − (1− xZN1)
β, y

β
ZN1,z

β
ZN1〉

(4) zn
β
1 � 〈x

β
ZN1, 1 − (1 − yZN1)

β, 1 − (1 − zZN1)
β〉

Suppose that there is a group of SVNEs zni =< xZNi
, y

ZNi
,

z
ZNi
> (i= 1, 2, . . ., m) with their related weights βi∈ [0, 1] for

􏽐
m
i�1 βi � 1. (en, the SVNE weighted arithmetic mean

(SVNEWAM) operator and the SVNE weighted geometric
mean (SVNEWGM) operator are introduced, respectively,
as follows [17]:

SVNEWAM zn1, zn2, . . . , znm( 􏼁 � 􏽘
m

i�1
βi · zni � 〈1 − 􏽙

m

i�1
1 − xZNi( 􏼁

βi , 􏽙
m

i�1
y
βi

ZNi, 􏽙
m

i�1
z
βi

ZNi〉, (2)

SVNEWGM zn1, zn2, . . . , znm( 􏼁 � 􏽙
m

i�1
zn

βi

i � 〈􏽙
m

i�1
x
βi

ZNi, 1 − 􏽙
m

i�1
1 − yZNi( 􏼁

βi , 1 − 􏽙
m

i�1
1 − zZNi( 􏼁

βi〉. (3)

To compare SVNEs, the score and accuracy functions of
SVNEs and their ranking laws are introduced below [17].

Set zni �< xZNi
, y

ZNi
, z

ZNi
> as any SVNE. (e score and

accuracy functions of zni are presented, respectively, as
follows:

F zni( 􏼁 �
2 + xZNi − yZNi − zZNi( 􏼁

3
forF zni( 􏼁 ∈ [0, 1], (4)

G zni( 􏼁 � xZNi − zZNi( 􏼁forG zni( 􏼁 ∈ [− 1, 1]. (5)

(en, the sorting laws based on the score values of F(zni)
and the accuracy values ofG(zni) (i= 1, 2) are as follows [17]:

(a) zn1> zn2 for F(zn1)> F(zn2)
(b) zn1> zn2 for F(zn1) = F(zn2) and G(zn1)>G(zn2)
(c) zn1 = zn2 for F(zn1) = F(zn2) and G(zn1) =G(zn2)

2.2. Basic Notions and Operations of LNEs. Let U= {u1, u2,
. . ., um} be a universal set and S � sp|p � 0, 1, . . . , r􏽮 􏽯 be a
linguistic term set (LTS) with an odd cardinality r+ 1. (us,
a LNS LH is defined as follows [4]:

LH � 〈ui, sa ui( ), sb ui( ), sc ui( )〉|ui ∈ U􏼚 􏼛, (6)

where 〈ui, sa(ui)
, sb(ui)

, sc(ui)
〉 for ui∈U is LNE in LH and

sa(ui)
, sb(ui)

, sc(ui)
∈ S are the truth, indeterminacy, and falsity

linguistic variables, respectively. For convenience, LNE is
simply denoted as lhi � 〈sai

, sbi
, sci

〉.
For two LNEs, lh1 � 〈sa1

, sb1
, sc1

〉, lh2 � 〈sa2
, sb2

, sc2
〉, ,

and β> 0, and their operational relations are as follows [4]:

(1) lh1⊕lh2 � 〈sa1+a2− a1a2/r, sb1b2/r, sc1c2/r〉

(2) lh1 ⊗ lh2 � 〈sa1a2/r, sb1+b2− b1b2/r, sc1+c2− c1c2/r〉

(3) β · lh1 � 〈sr− r(1− a1/r)β, sr(b1/r)β, sr(c1/r)β〉

(4) lh
β
1 � 〈s

r(a1/r)β, s
r− r(1− b1/r)β, s

r− r(1− c1/r)β〉

Suppose that there is a group of LNEs lhi � 〈sai
, sbi

, sci
〉

(i� 1, 2, . . ., m) with their related weights βi ∈ [0, 1] for
􏽐

m
i�1 βi � 1. (en, the LNE weighted arithmetic mean

(LNEWAM) and LNE weighted geometric mean
(LNEWGM) operators are introduced as follows [4]:

LNEWAM lh1, lh2, . . . , lhm( 􏼁 � 􏽘
m

i�1
βi · lhi �〈s

r− r 􏽑
m

i�1
1− ai/r( )

βi
, s

r 􏽑
m

i�1
bi/r( )

βi
, s

r 􏽑
m

i�1
ci/r( )

βi
〉, (7)

LNEWGM lh1, lh2, ..., lhm( 􏼁 � 􏽙
m

i�1
lh

βi

i �〈s
r 􏽑

m

i�1
ai/r( )

βi
, s

r− r 􏽑
m

i�1
1− bi/r( )

βi
, s

r− r 􏽑
m

i�1
1− ci/r( )

βi
〉. (8)

Set lhi � 〈sai
, sbi

, sci
〉 as any LNE. (e score and accuracy

functions of lhi are defined, respectively, as follows [4]:

P lhi( 􏼁 �
2r + ai − bi − ci( 􏼁

3r
forP lhi( 􏼁 ∈ [0, 1], (9)

Q lhi( 􏼁 �
ai − ci( 􏼁

r
forQ lhi( 􏼁 ∈ [− 1, 1]. (10)

(en, the sorting laws based on the score values of P(lhi)
and the accuracy values of Q(lhi) (i= 1, 2) are given as
follows [4]:

(a) lh1> lh2 for P(lh1)> P(lh2)
(b) lh1> lh2 for P(lh1) = P(lh2) and Q(lh1)>Q(lh2)
(c) lh1 = lh2 for P(lh1) = P(lh2) and Q(lh1) =Q(lh2)
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3. SVNLNHSs and SVNLNHEs

(is section proposes SVNLNHS/SVNLNHE for the mixed
information representation of both SVNE and LNE and then
presents some basic operations of SVNEs and LNEs
according to a linguistic and neutrosophic conversion
function and its inverse conversion function.

Definition 1. Let U� {u1, u2, . . ., um} be a universe set and
S� {sp|p� 0, 1, . . ., r} be LTS with an odd cardinality r+ 1.
(en, a SVNLNHS ML is defined by

ML � 〈ui, TLML ui( 􏼁, ILML ui( 􏼁, FLML ui( 􏼁〉|ui ∈ U􏼈 􏼉, (11)

where TLML(ui), ILML(ui), and FLML(ui) are the truth, in-
determinacy, and falsity membership functions, and their
values are either the fuzzy values for TLML(ui), ILML(ui),
FLML(ui) ∈ [0, 1] or the linguistic values for TLML(ui)
ILML(ui), FLML(ui) ∈ S and ui ∈U. Moreover, the SVNLNHS
ML is composed of the q SVNEs zni � 〈xZNi, yZNi, zZNi〉 for
x
ZNi
, y

ZNi
, z

ZNi
∈ [0, 1] (i� 1, 2, . . ., q) and the m − q LNEs lhi �

〈sai
, sbi

, sci
〉 for sai

, sbi
, sci
∈ S and ai, bi, ci ∈ [0, r] (i� q+ 1,

q+ 2, . . ., m).

Definition 2. Suppose that ML1 and ML2 are two
SVNLNHSs, which contain q SVNEs zn1i �< xZN1i, yZN1i,
zZN1i> (i� 1, 2, . . ., q) and m − q LNEs lh1i � 〈sa1i

, sb1i
, sc1i

〉

for sa1i
, sb1i

, sc1i
∈ S (i� q+ 1, q+ 2, . . ., m) and q SVNEs zn2i

�< xZN2i, yZN2i, zZN2i> (i� 1, 2, . . ., q) andm − q LNEs lh2i �

〈sa2i
, sb2i

, sc2i
〉 for sa2i

, sb2i
, sc2i
∈ S (i� q+ 1, q+ 2, . . .,m).(us,

ML1 and ML2 imply the following relations:

(1) ML1 ⊆ML2⇔ zn1i ⊆ zn2i (i� 1, 2, . . ., q) and lh1i ⊆ lh2i
(i� q+1, q+2, . . .,m), i.e., xZN1i≤ xZN2i, yZN2i≤ yZN1i,
and zZN2i≤ zZN1i for i� 1, 2, . . ., q and sa1i

≤ sa2i
,

sb1i
≥ sb2i

, and sc1i
≥ sc2i

for i� q+ 1, q+2, . . ., m;
(2) ML1 �ML2⇔ zn1i ⊆ zn2i, zn1i ⊇ zn2i, lh1 ⊆ lh2, and lh2
⊆ lh1, i.e., xZN1i � xZN2i, yZN2i � yZN1i, and zZN2i � zZN1i
for i� 1, 2, . . ., q and sa1i

� sa2i
, sb1i

� sb2i
, and sc1i

� sc2i

for i� q+ 1, q+ 2, . . ., m.

Definition 3. Set zni �< x
ZNi
, y

ZNi
, z

ZNi
> and lhi � 〈sai

, sbi
, sci

〉

as any SVNE and any LNE, respectively.(en, let a linguistic

and neutrosophic conversion function be
f(lhi) � 〈ai/r, bi/r, ci/r〉 for ai, bi, ci ∈ [0, r], and then its
inverse conversion function is f− 1(zni) � 〈xZNir,

yZNir, zZNir〉 for x
ZNi
, y

ZNi
, z

ZNi
∈ [0, 1]. (us, some basic

operations of SVNEs and LNEs are given as follows:

(1) f− 1(zni)⊕lhi � 〈xZNir + ai − xZNiai, yZNibi, zZNici〉

(2) zni⊕f(lhi) � 〈xZNi + ai/r − xZNiai/r, yZNibi/r,

zZNici/r〉

(3) f− 1(zni)⊗ lhi � 〈xZNiai,yZNir + bi − yZNibi,zZNir+

ci− zZNici〉

(4) βf− 1(zni) � 〈r − r(1 − xZNi)
β, ry

β
ZNi, rz

β
ZNi〉 for

β> 0
(5) βf(lhi) � 〈1 − (1 − ai/r)β, (bi/r)β, (ci/r)β〉 for β> 0
(6) (f− 1(zni))

β � 〈rx
β
ZNi, r − r(1 − yZNi)

β, r − r(1−

zZNi)
β〉 for β> 0

(7) fβ(lhi) � 〈(ai/r)β, 1 − (1 − bi/r)β, 1 − (1 − ci/r)β〉

for β> 0

It is obvious that the operational results of (2), (4), (5),
and (8) are LNEs and the operational results of (3) and (7),
and (9) are SVNEs.

4. Weighted Arithmetic and Geomatic Mean
Operators of SVNLNHEs

(is section proposes some weighted aggregation operators
of SVNLNHEs corresponding to the linguistic and neu-
trosophic conversion function and its inverse conversion
function, and then indicates their properties.

4.1. Aggregation Operators of SVNLNHEs Corresponding to
the Linguistic and Neutrosophic Conversion Function. Let
zni �< xZNi

, y
ZNi
, z

ZNi
> (i� 1, 2, . . ., q) and lhi � 〈sai

, sbi
, sci

〉

(i� q+ 1, q+ 2, . . ., m) be q SVNEs and m − q LNEs, re-
spectively. (en, based on Definition 3 and the SVNEWAM
and SVNEWGM operators of Eqs. (2) and (3) [17], the
weighted arithmetic and geomatic mean operators of
SVNLNHEs corresponding to the linguistic and neu-
trosophic conversion function are proposed by the
SVNLNHEWAMN and SVNLNHEWGMN operators,

SVNLNHEWAMN zn1, zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm􏼐 􏼑 � 􏽘

q

i�1
βi · zni + 􏽘

m

i�q+1
βif lhi( 􏼁

�〈1 − 􏽙

q

i�1
1 − xZNi( 􏼁

βi 􏽙

m

i�q+1
1 − ai/r( 􏼁

βi , 􏽙

q

i�1
y
βi

ZNi 􏽙

m

i�q+1
(bi/r)

βi , 􏽙

q

i�1
z
βi

ZNi 􏽙

m

i�q+1
ci/r( 􏼁

βi〉 (12)
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SVNLNHEWGMN zn1, zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm􏼐 􏼑 � 􏽙

q

i�1
zn

βi

i 􏽙

m

i�q+1
f
βi lhi( 􏼁

�〈􏽙
q

i�1
x
βi

ZNi 􏽙

m

i�q+1
ai/r( 􏼁

βi , 1 − 􏽙

q

i�1
1 − yZNi( 􏼁

βi 􏽙

m

i�q+1
1 − bi/r( 􏼁

βi , 1 − 􏽙

q

i�1
1 − zZNi( 􏼁

βi 􏽙

m

i�q+1
1 − ci/r( 􏼁

βi〉,

(13)

where βi ∈ [0, 1] is the weight of zni (i� 1, 2, . . ., q) and lhi
(i� q+ 1, q+ 2, . . .,m) with 􏽐

m
i�1 βi � 1.(en, the aggregated

results of the SVNLNHEWAMN and SVNLNHEWGMN
operators are SVNEs.

Especially, when q�m (without LNEs), the
SVNLNHEWAMN and SVNLNHEWGMN operators are
reduced to the SVNEWAM and SVNEWGM operators [17],
i.e., Eq. (2) and Eq. (3).

Based on the properties of the SVNEWAM and
SVNEWGM operators [17], it is obvious that the
SVNLNHEWAMN and SVNLNHEWGMN operators also
contain the following properties:

(1) Idempotency: if zni = f(lhi) = zn for i= 1, 2, . . ., q,
q+ 1, q+ 2, . . ., m, there are SVNLNHEWAMN

(zn1, zn2, . . . , znq, lhq+ 1, lhq+2, . . . , lhm) � zn and
SVNLNHEWGMN(zn1, zn

2, . . . , znq, lhq+1, lhq+2, . . . , lhm) � zn.
(2) Boundedness: let zn− � 〈min

i
(xZNi, ai/r),max

i
(yZNi, bi/r), max

i
(zZNi, ci/r)〉 and

zn+ � 〈max
i

(xZNi, ai/r),min
i

(yZNi, bi/r), min
i

(zZNi,

ci/r)〉 be the minimum and maximum SVNEs for
i= 1, 2, . . ., m, and then there are the inequalities

zn− ≤ SVNLNHEWAMN(zn1, zn2, . . . , znq, lhq+1,

lhq+2, . . . , lhm)≤ zn+ and zn− ≤ SVNLNHEWGMN

(zn1, zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm)≤ zn+.
(3) Monotonicity: if the condition of zni ≤ zn∗i (i= 1, 2,

. . ., q) and lhi ≤ lh∗i (i= q+ 1, q+ 2, . . ., m) exists,
SVNLNHEWAMN(zn1, zn2, . . . , znq, lhq+1, lhq+2,

. . . , lhm)≤ SVNLNHEWAMN (zn∗1 , zn∗2 , . . . , zn∗q ,

lh∗q+1, lh∗q+2, . . . , lh∗m) and SVNLNHEWGMN (zn1,

zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm)≤
SVNLNHEWGMN (zn∗1 , zn∗2 , . . . , zn∗q , lh∗q+1,

lh∗q+2, . . . , lh∗m) also exist.

4.2. Aggregation Operators of SVNLNHEs According to the
Inverse Conversion Function. Let zni=< xZNi

, y
ZNi
, z

ZNi
> (i= 1,

2, . . ., q) and lhi � 〈sai
, sbi

, sci
〉 (i= q+ 1, q+ 2, . . ., m) be q

SVNEs and m − q LNEs, respectively. (en, based on Def-
inition 3 and the LNEWAM and LNEWGM operators of
Eqs. (7) and (8) [4], the weighted arithmetic and geomatic
mean operators of SVNLNHEs corresponding to the inverse
conversion function are proposed by the SVNLNHEWAML
and SVNLNHEWGML operators:

SVNLNHEWAML zn1, zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm􏼐 􏼑 � 􏽘

q

i�1
βif

− 1
zni( 􏼁 + 􏽘

m

i�q+1
βi · lhi

� 〈r − r 􏽙

q

i�1
1 − xZNi( 􏼁

βi 􏽙

m

i�q+1
1 − ai/r( 􏼁

βi , r 􏽙

q

i�1
y
βi

ZNi 􏽙

m

i�q+1
bi/r( 􏼁

βi , r 􏽙

q

i�1
z
βi

ZNi 􏽙

m

i�q+1
ci/r( 􏼁

βi〉,

(14)

SVNLNHEWGML zn1, zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm􏼐 􏼑 � 􏽙

q

i�1
f

− 1
zni( 􏼁􏼐 􏼑

βi
􏽙

m

i�q+1
lh

βi

i

� 〈r 􏽙

q

i�1
x
βi

ZNi 􏽙

m

i�q+1
ai/r( 􏼁

βi , r − r 􏽙

q

i�1
1 − yZNi( 􏼁

βi 􏽙

m

i�q+1
1 − bi/r( 􏼁

βi , r − r 􏽙

q

i�1
1 − zZNi( 􏼁

βi 􏽙

m

i�q+1
1 − ci/r( 􏼁

βi〉,
(15)

where βi∈ [0, 1] is the weight of zni (i= 1, 2, . . ., q) and lhi
(i= q+ 1, q+ 2, . . .,m) with 􏽐

m
i�1 βi � 1. (en, the aggregated

results of the SVNLNHEWAML and SVNLNHEWGML
operators are LNEs.

Especially, when q� 0 (without SVNEs), the
SVNLNHEWAML and SVNLNHEWGML operators are
reduced to the LNEWAM and LNEWGM operators [4], i.e.,
Eq. (7) and Eq. (8).

Based on the characteristics of the LNEWAM and
LNEWGM operators [4], it is obvious that the

SVNLNHEWAML and SVNLNHEWGML operators also
contain the following characteristics:

(1) Idempotency: if f − 1(zni) = lhi = lh for i= 1, 2, . . ., q,
q+ 1, q+ 2, . . ., m, there are SVNLNHEWAML

(zn1, zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm) � lh and
SVNLNHEWGML(zn1, zn2, ..., znq, lhq+1, lhq+2, ...,

lhm) � lh.
(2) Boundedness: let lh− � 〈min

i
(rxZNi, ai),max

i
(ryZNi, bi),max

i
(rzZNi, ci)〉 and lh+ � 〈max

i
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(rxZNi, ai), min
i

(ryZNi, bi),min
i

(rzZNi, ci)〉 be the
minimum and maximum LNEs for i= 1, 2, . . ., m,
and then there are the inequalities lh− ≤
SVNLNHEWAML (zn1, zn2, . . . , znq, lhq+1, lhq+2,

. . . , lhm)≤ lh+ and lh− ≤ SVNLNHEWGML

(zn1, zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm)≤ lh+.
(3) Monotonicity: if the condition of zni ≤ zn∗i for i= 1,

2, . . ., q and lhi ≤ lh∗i for i= q+ 1, q+ 2, . . ., m exists,
SVNLNHEWAML(zn1, zn2, . . . , znq, lhq+1, lhq+2,

. . . , lhm)≤ SVNLNHEWAML (zn∗1 , zn∗2 , . . . , zn∗q ,

lh∗q+1, lh∗q+2, . . . , lh∗m) and SVNLNHEWGML (zn1,

zn2, . . . , znq, lhq+1, lhq+2, . . . , lhm)≤
SVNLNHEWGML (zn∗1 , zn∗2 , . . . , zn∗q , lh∗q+1,

lh∗q+2, . . . , lh∗m) also exist.

5. MAGDM Models in the
Environment of SVNLNHSs

In this section, novel MAGDM models are developed in
terms of the SVNLNHEWAMN and SVNLNHEWGMN
operators and the SVNLNHEWAML and SVNLNHEWGML
operators to perform MAGDM issues with quantitative and
qualitative attributes in the mixed information environment
of SVNEs and LNEs.

Regarding a mixed information MAGDM issue in the
circumstance of SVNLNHSs, there exist t alternatives,
denoted by a set of them E � E1, E2, . . . Et􏼈 􏼉, and then they
are satisfactorily assessed overm attributes, denoted by a set
of them V= {v1, v2, . . ., vq, vq + 1, vq + 2, . . ., vm}, which
contains q quantitative attributes and m − q qualitative at-
tributes. (en, there is a group of decision makers
G � g1, g2, . . . ge􏼈 􏼉 with their weight vector
α � α1, α2, . . . αe􏼈 􏼉 for αk∈ [0, 1] and 􏽐

e
k�1 αk � 1. (e

assessment values of each alternative over the q quantitative
attributes are given by the decision makers gk (k= 1, 2, . . ., e)
and represented by SVNEs znk

ji � 〈xk
ZNji, yk

ZNji, zk
ZNji〉 for

xk
ZNji, yk

ZNji, zk
ZNji ∈ [0, 1] (k= 1, 2, . . ., e; j= 1, 2, . . ., t; i= 1,

2, . . ., q), and then the assessment values of each alternative
over them − q qualitative attributes are represented by LNEs
lhk

ji � 〈sak
ji
, sbk

ji
, sck

ji
〉 for sak

ji
, sbk

ji
, sck

ji
∈ S (k= 1, 2, . . ., e; j= 1, 2,

. . ., t; i= q+ 1, q+ 2, . . ., m) from the LTS S= {sp|p= 0, 1, 2,

. . ., r}. (us, all assessed values can be constructed as the e
decision matrices of SVNLNHEs Mk = (znk

ji, lhk
ji)t×m (k= 1,

2, . . ., e). (en, a weight vector β � (β1, β2, . . . βm) is
specified to consider the weights βi of attributes vi (i= 1, 2,
. . ., m) with βi∈ [0, 1] and 􏽐

m
i�1 βi � 1.

(us, two MAGDM models are developed in terms of
the SVNLNHEWAMN and SVNLNHEWGMN operators or
the SVNLNHEWAML and SVNLNHEWGML operators to
perform MAGDM issues with the mixed evaluation infor-
mation of SVNEs and LNEs.

Model 1. A MAGDM model using the SVNLNHE-
WAMN and SVNLNHEWGMN operators is developed to
perform the MAGDM issue with SVNLNHEs. Its detailed
steps are presented as follows:

Step 1: using the SVNEWAM operator of Eq. (2) and
the LNEWAM operator of Eq. (7), the decision ma-
trices Mk � (znk

ji, lhk
ji)t×m (k� 1, 2, . . ., e) are aggre-

gated into the overall decision matrix
M � (znji, lhji)t×m.
Step 2: using the SVNLNHEWAMN operator of Eq.
(12) or the SVNLNHEWGMN operator of Eq. (13), the
aggregated result for Ej (j� 1, 2, · · ·, t) is obtained by the
following equation:

znj � SVNLNHEWAMN znj1, znj2, . . . , znjq, lhjq+1, lhjq+2, . . . , lhjm􏼐 􏼑 � 􏽘

q

i�1
βi · znji + 􏽘

m

i�q+1
βif lhji􏼐 􏼑

�〈1 − 􏽙

q

i�1
1 − xZNji􏼐 􏼑

βi
􏽙

m

i�q+1
1 − aji/r􏼐 􏼑

βi
, 􏽙

q

i�1
y
βi

ZNji 􏽙

m

i�q+1
bji/r􏼐 􏼑

βi
, 􏽙

q

i�1
z
βi

ZNji 􏽙

m

i�q+1
cji/r􏼐 􏼑

βi〉,

(16)

or

znj � SVNLNHEWGMN znj1, znj2, . . . , znjq, lhjq+1, lhjq+2, . . . , lhjm􏼐 􏼑 � 􏽙

q

i�1
zn

βi

ji 􏽙

m

i�q+1
f
βi lhji􏼐 􏼑

�〈􏽙
q

i�1
x
βi

ZNji 􏽙

m

i�q+1
aji/r􏼐 􏼑

βi
, 1 − 􏽙

q

i�1
1 − yZNji􏼐 􏼑

βi
􏽙

m

i�q+1
1 − bji/r􏼐 􏼑

βi
, 1 − 􏽙

q

i�1
1 − zZNji􏼐 􏼑

βi
􏽙

m

i�q+1
1 − cji/r􏼐 􏼑

βi〉.

(17)

Step 3: the score values of F(znj) (j� 1, 2, . . ., t) are given
by Eq. (4) and the accuracy values ofG(znj) (j� 1, 2, . . .,
t) are given by Eq. (5) if necessary.

Step 4: the alternatives are sorted in descending order
based on the sorting laws of SVNEs, and the first one is
the best choice.
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Step 5: end.

Model 2.AMAGDMmodel using the SVNLNHEWAML
and SVNLNHEWGML operators is developed to perform
the MAGDM issue with SVNLNHEs. Its detailed steps are
presented as follows:

Step 1’: the same as Step 1.
Step 2’: using the SVNLNHEWAML operator of Eq.
(14) or the SVNLNHEWGML operator of Eq. (15), the
aggregated result for Ej(j � 1, 2, . . . , t) is given by the
following equation:

lhj � SVNLNHEWAML znj1, znj2, . . . , znjq, lhjq+1, lhjq+2, . . . , lhjm􏼐 􏼑 � 􏽘

q

i�1
βif

− 1
znji􏼐 􏼑 + 􏽘

m

i�q+1
βi · lhji

�〈r − r 􏽙

q

i�1
1 − xZNji􏼐 􏼑

βi
􏽙

m

i�q+1
1 − aji/r􏼐 􏼑

βi
, r 􏽙

q

i�1
y
βi

ZNji 􏽙

m

i�q+1
bji/r􏼐 􏼑

βi
, r 􏽙

q

i�1
z
βi

ZNji 􏽙

m

i�q+1
cji/r􏼐 􏼑

βi〉,
(18)

or

lhj � SVNLNHEWGML znj1, znj2, . . . , znjq, lhjq+1, lhjq+2, . . . , lhjm􏼐 􏼑 � 􏽙

q

i�1
f

− 1
znji􏼐 􏼑􏼐 􏼑

βi
􏽙

m

i�q+1
lh

βi

ji

�〈r 􏽙

q

i�1
x
βi

ZNji 􏽙

m

i�q+1
aji/r􏼐 􏼑

βi
, r − r 􏽙

q

i�1
1 − yZNji􏼐 􏼑

βi
􏽙

m

i�q+1
1 − bji/r􏼐 􏼑

βi
, r − r 􏽙

q

i�1
1 − zZNji􏼐 􏼑

βi
􏽙

m

i�q+1
1 − cji/r􏼐 􏼑

βi〉.
(19)

Step 3’: the score values of P(lhj) (j� 1, 2, . . ., t) are
given by Eq. (9) and the accuracy values of Q(lhj) (j� 1,
2, . . ., t) are given by Eq. (10) if necessary.
Step 4’: the alternatives are sorted in descending order
based on the sorting laws of LNEs, and then the first
one is the best choice.
Step 5’: end.

6. Illustrative Example on the Selection
Problem of Industrial Robots Containing
Both Quantitative and Qualitative Attributes

(is section applies the proposed MAGDM models to an
illustrative example on the selection problem of industrial
robots that contains both quantitative and qualitative at-
tributes in the circumstance of SVNLNHSs to prove their
usefulness, and then gives a comparison with existing
techniques to show the availability and rationality of the new
techniques.

6.1. Illustrative Example. (is subsection applies the pro-
posed MAGDM models to the selection problem of in-
dustrial robots containing both quantitative and qualitative
attributes to illustrate their application and availability in the
circumstance of SVNLNHSs.

Some industrial company wants to buy a type of in-
dustrial robots for a manufacturing system. (e technical
department preliminarily provides four types of industrial
robots/alternatives, denoted as their set E� {E1, E2, E3, E4}.
(en, they must satisfy four requirements/attributes: op-
erating accuracy (v1), carrying capacity (v2), control per-
formance (v3), and operating space and dexterity (v4). (e
weight vector of the four attributes is given by β� (0.25, 0.3,

0.25, 0.2). (us, three experts/decision makers are invited to
satisfactorily assess each alternative over the four attributes
by their truth, falsity, and indeterminacy options/judgments,
where the assessment values can be specified in the mixed
forms of both the SVNEs znk

ji � 〈xk
ZNji, yk

ZNji, zk
ZNji〉 for

xk
ZNji, yk

ZNji, zk
ZNji ∈ [0, 1] (k� 1, 2, 3; i� 1, 2; j� 1, 2, 3, 4)

regarding the quantitative attributes v1 and v2 and the LNEs
lhk

ji � 〈sak
ji
, sbk

ji
, sck

ji
〉 for sak

ji
, sbk

ji
, sck

ji
∈ S (k� 1, 2, 3; i� 3, 4;

j� 1, 2, 3, 4) regarding the qualitative attributes v3 and v4
from the LTS S� {very unsatisfactory, unsatisfactory, slight
unsatisfactory, medium, slight satisfactory, satisfactory, very
satisfactory}� {s0, s1, s2, s3, s4, s5, s6} with r� 6. (e weight
vector of the three decision makers is given by α� (0.4, 0.35,
0.25). (us, the three decision matrices are constructed as
follows:

M
1

�

〈0.8, 0.1, 0.2〉 〈0.7, 0.1, 0.1〉 〈s5, s2, s2〉 〈s5, s2, s3〉

〈0.8, 0.2, 0.1〉 〈0.8, 0.1, 0.3〉 〈s5, s1, s2〉 〈s4, s3, s2〉

〈0.7, 0.1, 0.1〉 〈0.8, 0.2, 0.2〉 〈s5, s3, s2〉 〈s4, s2, s3〉

〈0.8, 0.2, 0.2〉 〈0.9, 0.2, 0.3〉 〈s4, s1, s2〉 〈s5, s2, s2〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
2

�

〈0.7, 0.2, 0.2〉 〈0.8, 0.1, 0.2〉 〈s4, s3, s1〉 〈s5, s2, s1〉

〈0.8, 0.2, 0.3〉 〈0.8, 0.2, 0.3〉 〈s5, s2, s1〉 〈s4, s1, s2〉

〈0.8, 0.2, 0.3〉 〈0.7, 0.1, 0.1〉 〈s4, s1, s2〉 〈s5, s2, s3〉

〈0.9, 0.1, 0.1〉 〈0.8, 0.2, 0.1〉 〈s5, s1, s3〉 〈s5, s1, s2〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
3

�

〈0.8, 0.3, 0.1〉 〈0.8, 0.1, 0.1〉 〈s5, s2, s1〉 〈s4, s1, s1〉

〈0.7, 0.1, 0.2〉 〈0.9, 0.2, 0.3〉 〈s4, s1, s1〉 〈s5, s1, s1〉

〈0.8, 0.1, 0.1〉 〈0.8, 0.2, 0.1〉 〈s5, s2, s2〉 〈s5, s2, s3〉

〈0.8, 0.1, 0.1〉 〈0.8, 0.1, 0.1〉 〈s5, s1, s2〉 〈s5, s3, s2〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)
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(us, the two MAGDM models developed can be uti-
lized in the example to perform the MAGDM issue with
SVNLNHEs.

Model 1. (e MAGDM model using the SVNLNHE-
WAMN and SVNLNHEWGMN operators can be applied in
the example, and then its detailed steps are depicted as
follows:

Step 1: using the SVNEWAM operator of Eq. (2) and
the LNEWAM operator of Eq. (7), the above three
decision matrices are aggregated into the following
overall decision matrix:

M �

〈0.7695, 0.1677, 0.1682〉 〈0.7648, 0.1000, 0.1275〉 〈s4.7254, s2.3050, s1.3195〉 〈s4.8108, s1.6818, s1.5518〉

〈0.7787, 0.1682, 0.1747〉 〈0.8318, 0.1516, 0.3000〉 〈s4.8108, s1.2746, s1.3195〉 〈s4.3182, s1.5518, s1.6818〉

〈0.7648, 0.1275, 0.1469〉 〈0.7695, 0.1569, 0.1320〉 〈s4.7254, s1.8455, s2.0000〉 〈s4.6805, s2.0000, s3.0000〉

〈0.8431, 0.1320, 0.1320〉 〈0.8484, 0.1682, 0.1552〉 〈s4.6805, s1.0000, s2.3050〉 〈s5.0000, s1.7366, s2.0000〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

Step 2: by Eq. (16) or Eq. (17), we give the aggregated
values:
zn1 =< 0.7795, 0.1958, 0.1804>, zn2 =< 0.7921, 0.1884,
0.2392>,
zn3 =< 0.7751, 0.2049, 0.2231>, and zn4 =< 0.8290,
0.1761, 0.2178> .
Or zn1 =< 0.7789, 0.2324, 0.1885>, zn2 =< 0.7876,
0.1934, 0.2464>,
zn3 =< 0.7749, 0.2276, 0.2754>, and zn4 =< 0.8265,
0.1850, 0.2504> .
Step 3: by Eq. (4), the score values of F(znj) for Ej (j= 1,
2, 3, 4) are given below:
F(zn1) = 0.8011, F(zn2) = 0.7882, F(zn3) = 0.7824, and
F(zn4) = 0.8117.
Or F(zn1) = 0.7860, F(zn2) = 0.7826, F(zn3) = 0.7573,
and F(zn4) = 0.7970.
Step 4: the sorting order of the four alternatives is
E4> E1> E2> E3.

Clearly, the sorting orders obtained by the
SVNLNHEWAMN operator of Eq. (16) and the
SVNLNHEWGMN operator of Eq. (17) are identical in this
example.

Model 2. (e MAGDM model using the SVNLNHE-
WAML and SVNLNHEWGML operators can also be applied
in the example, and then its detailed steps are depicted as
follows:

Step 1’: the same as Step 1.
Step 2’: by Eq. (18) or Eq. (19), we give the aggregated
values:
lh1 =< s4.6773, s1.1747, s1.0823>, lh2 =< s4.7528, s1.1302,
s1.4353>,
lh3 =< s4.6508, s1.2297, s1.3384>, and lh4 =< s4.9739, s1.0564,
s1.3070> ,
or lh1 =< s4.6736, s1.3944, s1.1311>, lh2 =< s4.7255, s1.1603,
s1.4783>,
lh3 =< s4.6494, s1.3657, s1.6526>, and lh4 =< s4.9591, s1.1100,
s1.5027> .

Step 3’: by (9), the score values of P(lhj) for Ej (j= 1, 2, 3,
4) are given as follows:
P(lh1) = 0.8011, P(lh2) = 0.7882, P(lh3) = 0.7824, and
P(lh4) = 0.8117,
or P(lh1) = 0.7860, P(lh2) = 0.7826, P(lh3) = 0.7573, and
P(lh4) = 0.7970.
Step 4’: the sorting order of the four alternatives is
E4> E1> E2> E3.

Hence, the sorting orders obtained by the SVNLNHE-
WAML operator of Eq. (18) and the SVNLNHEWGML
operator of Eq. (19) are identical in this example.

Obviously, the score values and sorting orders between
Model 1 and Model 2 reflect the same results. Moreover, we
see that whether SVNEs are converted to LNEs or LNEs to
SVNEs in the aggregation operations, their final decision
results are actually identical. (us, decision makers can
choose Model 1 or Model 2 in MAGDM applications.
(erefore, it is obvious that our new techniques are valid and
reasonable.

6.2. Comparative Analysis with the Existing Neutrosophic
MAGDM Models. Since the assessed values of SVNLNHEs
are given in this illustrative example, the existing neu-
trosophic MAGDM models [4, 17] cannot deal with this
illustrative example in the situation of SVNLNHEs. (en,
our new techniques can handle neutrosophic MAGDM
issues with SVNEs and/or LNEs and show the following
highlights and advantages:

(1) (e proposed SVNLNHEs can conveniently denote
the mixed information of SVNEs and LNEs re-
garding the assessment objects of quantitative and
qualitative attributes, which is suitable for human
judgment and thinking/expression habits, while
existing neutrosophic expressions cannot represent
SVNLNHE information.

(2) (e proposed SVNLNHEWAMN and
SVNLNHEWGMN operators or the proposed
SVNLNHEWAML and SVNLNHEWGML operators
provide the necessary aggregation tools for handling
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MAGDM issues in the SVNLNHE circumstance,
while the existing SVNEWAM and SVNEWGM
operators [17] are only the special cases of the
SVNLNHEWAMN and SVNLNHEWGMN opera-
tors, and then the existing LNEWAM and
LNEWGM operators [4] are only the special cases of
the SVNLNHEWAML and SVNLNHEWGML op-
erators. Furthermore, the various existing aggrega-
tion operators cannot aggregate SVNLNHEs.

(3) Since the existing MAGDM models with the single
evaluation information of SVNEs or LNEs [4, 17] are
the special cases of our new MAGDM models, our
new MAGDM models are broader and more ver-
satile than the existing MAGDM models [4, 17].
Furthermore, the various existing MAGDM models
cannot carry out MAGDM problems with
SVNLNHE information.

Generally, the new techniques solve the SVNLNHE
denotation, aggregation operations, and MAGDM issues in
the mixed information situation of SVNEs and LNEs. It is
clear that our new techniques are very suitable for such
decision-making issues with quantitative and qualitative
attributes and overcome the defects of the existing decision-
making techniques subject to the single evaluation infor-
mation of SVNEs or LNEs. (erefore, our new techniques
reveal obvious superiorities over the existing techniques in
the neutrosophic information denotation, aggregation op-
erations, and decision-making methods.

7. Conclusion

Due to the lack of the SVNLNHE denotation, operations,
and decision-makingmodels in existing neutrosophic theory
and applications, the proposed notion of SVNLNHS/
SVNLNHE and the defined linguistic and neutrosophic
conversion function solved the hybrid neutrosophic
information denotation and operational problems of SVNEs
and LNEs. (en, the proposed SVNLNHEWAMN,
SVNLNHEWGMN, SVNLNHEWAML, and
SVNLNHEWGML operators provided necessary aggrega-
tion algorithms for handling MAGDM issues with
SVNLNHEs. (e established MAGDM models solved such
decision-making issues with quantitative and qualitative
attributes in the SVNLNHE circumstance. Since the eval-
uation values of quantitative and qualitative attributes in the
decision-making process are easily represented in SVNEs
and LNEs that are given in view of decision makers’ pref-
erences/thinking habits, the managerial implications of this
original research will be reinforced in neutrosophic deci-
sion-making methods and applications. Finally, an illus-
trative example was given and compared with the existing
techniques to show the availability and rationality of the new
techniques. Moreover, our new techniques not only over-
come the insufficiencies of the existing techniques but also
are broader and more versatile than the existing techniques
when dealing with MAGDM issues in the setting of
SVNLNHEs. However, in this study, the new techniques of

the SVNLNHE denotation, aggregation algorithms, and
MAGDM models reflected their superiority over existing
techniques.

Regarding future research, these new techniques will be
further extended to other areas, such as medical diagnosis,
slope risk/instability evaluation, default diagnosis, and
mechanical concept design, in the mixed information sit-
uation of SVNEs and LNEs. (en, we shall also develop
more aggregation algorithms, such as Hamacher, Dombi,
and Bonferroni aggregation operators, and their applications
in clustering analysis, information fusion, image processing,
and mine risk/safety evaluation in the mixed information
situation of both SVNE and LNE or both IVNE and un-
certain LNE.

Abbreviations

IVNS: Interval-valued neutrosophic set
IVNE: Interval-valued neutrosophic element
LTS: Linguistic term set
LNS: Linguistic neutrosophic set
LNE: Linguistic neutrosophic element
LNEWAM: Linguistic neutrosophic element

weighted arithmetic mean
LNEWGM: Linguistic neutrosophic element

weighted geometric mean
MADM: Multiple attribute decision-making
MAGDM: Multiple attribute group decision-

making
SNS: Simplified neutrosophic set
SVNS: Single-valued neutrosophic set
SVNE: Single-valued neutrosophic element
SVNEWAM: Single-valued neutrosophic element

weighted arithmetic mean
SVNEWGM: Single-valued neutrosophic element

weighted geometric mean
SVNLNHS: Single-valued neutrosophic and

linguistic neutrosophic hybrid set
SVNLNHE: Single-valued neutrosophic and

linguistic neutrosophic hybrid
element

SVNLNHEWAMN: Single-valued neutrosophic and
linguistic neutrosophic hybrid
element weighted arithmetic mean
(for the aggregated SVNE)

SVNLNHEWGMN: Single-valued neutrosophic and
linguistic neutrosophic hybrid
element weighted geometric mean (for
the aggregated SVNE)

SVNLNHEWAML: Single-valued neutrosophic and
linguistic neutrosophic hybrid
element weighted arithmetic mean
(for the aggregated LNE)

SVNLNHEWGML: Single-valued neutrosophic and
linguistic neutrosophic hybrid
element weighted geometric mean (for
the aggregated LNE).
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